Soil erosion and associated sediment supply to rivers
van Dijk, P.M.

Citation for published version (APA):
van Dijk, P. M. (2001). Soil erosion and associated sediment supply to rivers Amsterdam: UvA IBED FG

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CONTENTS

ACKNOWLEDGEMENTS

1 INTRODUCTION

1.1 Scope
1.2 Aim of the Thesis
1.3 Relevance and Background
1.4 Outline of the Thesis

2 Soil Erosion on Arable Land and Its Control: Field Studies and Experiments

2.1 Runoff Generation and Soil Erosion in Small Agricultural Catchments
 2.1.1 Introduction
 2.1.2 The research sites
 2.1.3 Materials and methods
 2.1.4 Results
 2.1.5 Discussion

2.2 Effects of Conservation Cropping Systems on Plot Erosion
 2.2.1 Introduction
 2.2.2 Methods
 2.2.3 Results and discussion
 2.2.4 Conclusions

2.3 Effects of Tillage and Cropping Systems on Surface Roughness and Depression Storage
 2.3.1 Introduction
 2.3.2 The cropping systems and corresponding tillage
 2.3.3 Methods
 2.3.4 Results
 2.3.5 Conclusions

2.4 Effects of Grass Strips on the Sediment Load of Shallow Flow
 2.4.1 Introduction
 2.4.2 Methods
 2.4.3 Results
 2.4.4 Conclusions
3 Soil Erosion and Associated Sediment Supply to Streams: A Modelling Study

3.1 Introduction

- 3.1.1 Research questions and background
- 3.1.2 Sediment supply from the hillslope; a conceptual model
- 3.1.3 Starting points for the quantification of sediment supply

3.2 The Rhine Basin and Basic Data

- 3.2.1 General
- 3.2.2 Relief
- 3.2.3 Soil
- 3.2.4 Land use
- 3.2.5 Drainage network
- 3.2.6 Climate

3.3 Methods

- 3.3.1 The sediment supply model
- 3.3.2 Assessment of the model parameters
- 3.3.3 Model implementation
- 3.3.4 Field observations

3.4 Sensitivity Analysis

- 3.4.1 Introduction
- 3.4.2 Methods
- 3.4.3 Results
- 3.4.4 Discussion and conclusions

3.5 Modelling Results for Present Climate Conditions

- 3.5.1 Spatial patterns in sediment production and supply
- 3.5.2 Temporal patterns in erosion and sediment supply

3.6 Model Evaluation

- 3.6.1 Introduction
- 3.6.2 Omitted sediment supply processes and model error
- 3.6.3 Uncertainty analysis
- 3.6.4 Validation of erosion rates
- 3.6.5 Sediment supply versus the sediment yield of some rivers
- 3.6.6 Conclusions

3.7 Sediment Supply in 2050 (Scenario Calculations)

- 3.7.1 The scenarios
- 3.7.2 Model parameters sensitive to climate
- 3.7.3 Results of scenario calculations
- 3.7.4 Conclusions

3.8 Conclusions
4 EVALUATION AND RESEARCH NEEDS

4.1 INTRODUCTION

4.2 SEDIMENT DELIVERY AND CONNECTIVITY
 4.2.1 Concentrated flow erosion in winter time
 4.2.2 Field evidence for sediment supply from hillslope sources
 4.2.3 Relevance of sediment source assessment for surface water quality

4.3 LARGE SCALE ASSESSMENTS
 4.3.1 Introduction
 4.3.2 Modelling of overland flow on the large scale
 4.3.3 Validation of large scale erosion models

SUMMARY

SAMENVATTING

REFERENCES

CURRICULUM VITAE
There's more to the picture than meets the eye
(Neil Young in *my my, hey hey*)

voor mijn ouders,
Luka
en Anne-Frédérique