A new defect of peroxisomal function involving pristanic acid: a case report
McLean, B.N.; Allen, J.; Ferdinandusse, S.; Wanders, R.J.A.

Published in:
Journal of Neurology, Neurosurgery and Psychiatry

DOI:
10.1136/jnnp.72.3.396

Citation for published version (APA):
A new defect of peroxisomal function involving pristanic acid: a case report

B N McLean, J Allen, S Ferdinandusse and R J A Wanders

doi:10.1136/jnnp.72.3.396
A new defect of peroxisomal function involving pristanic acid: a case report

B N McLean, J Allen, S Ferdinandusse, R J A Wanders

Peroxisomes are subcellular organelles found in all mammalian cell types, and are particularly abundant in mammalian cell types, and are particularly abundant in hepatocytes with 40 times the amounts of neurons or astrocytes, and in cells specialising in lipid metabolism. Their main function is H$_2$O$_2$ metabolism, ether-phospholipid biosynthesis, β-oxidation of fatty acids and other compounds (very long chain fatty acids (VLCFAs)), monounsaturated and polyunsaturated fatty acids, prostaglandins, dihydroxycholestanolic acid/trihydroxycholestanolic acid (DHCA/THCA), xenobiotics), glyoxylate metabolism, polyamine catabolism, cholesterol and dolichol synthesis, and pipicoxyl and phytanic acid degradation.

Pristanic acid is derived from phytanic acid by α-oxidation, followed by decarboxylation, and also directly from exogenous dietary sources. Phytic acid is derived from purely exogenous sources, mainly dairy products and ruminant fats.

Peroxisomes contain more than 60 enzymes so disorders of peroxisomal function result in several syndromes combining neurological and systemic features. Until 1999, 17 disorders had been described, 16 with neurological involvement.

The first well defined disorder described in 1946 was a hereditary ataxia, later to be given the eponym Refsum’s disease, 7 combining retinitis pigmentosa and α-oxidation of fatty acids and other compounds, which were normal. An EEG showed gross disturbances with generalised slowing and loss of α activity. He required ventilation, but then underwent spontaneous recovery, whereupon he was found to be blind. This was initially suspected to be due to occipital lobe infarction, but pigmentary retinal changes were seen extensively in the periphery of both fundi, and a novel combination.

The biochemical defect has been recently elucidated, and has been shown to be due to a deficiency of α-methylacyl-CoA racemase (AMACR) making our patient one of the first adults to be described with this condition.

CASE REPORT

A 44 year old man presented with failing vision, having been suspected by his general practitioner of malingering.

He was born of non-consanguineous parents, one of six children, his brother and four sisters being in good health. He had left school at the age of 14. He had been a poor scholar with reading difficulties and after leaving had a succession of unskilled jobs from which he was invariably dismissed. At the age of 18 he presented with an encephalitic illness characterised by 3 days of severe headache, nausea, and photophobia, with a single blackout followed by progressive confusion, irrational behaviour, and resulting in coma.

He developed focal seizures, with eye deviation to the left and jerking of the neck muscles, which on one occasion generalised. He had tonic deviation of his eyes to the right, sometimes with slow deviation, bilateral papilloedema, but no other focal neurological signs. He had a mild pyrexia and a neutrophil leucocytosis (13×109/l). He underwent cerebral angiography and CSF analysis, including protein estimation, both of which were normal. An EEG showed gross disturbances with generalised slowing and loss of α activity. He required ventilation, but then underwent spontaneous recovery, whereupon he was found to be blind. This was initially suspected to be due to occipital lobe infarction, but pigmentary retinal changes were seen extensively in the periphery of both fundi, and a neuroretinitis was proposed. His EEG improved, but did not return to normal, remaining slowed. Vision slowly recovered, initially with perception of light, then colours, and finally acuity, achieving a distance acuity of 6/12 bilaterally and a reading acuity of N24 right N18 left. A neurophysiometric assessment showed a premorbid verbal IQ of 86, a reading age of 7.5 years, and a long term problem with vision was suspected.

At the age of 22 he developed generalised seizures, only partially controlled with phenobarbital and phenytoin. An

In general, peroxisomal disorders present either at birth with deficits resulting in severe hypotonia and craniofacial dysmorphism or as later onset psychomotor retardation, seizures, and hepatomegaly. There is, however, a considerable range of clinical problems within a disorder and overlap between disorders, so that some can only be differentiated on biochemical grounds.

We present a case of adult onset neurological disease the features of which were reminiscent of a peroxisomal disorder, but in a novel combination.

The biochemical defect has been recently elucidated, and has been shown to be due to a deficiency of α-methylacyl-CoA racemase (AMACR) making our patient one of the first adults to be described with this condition.

Abbreviations: VLCFA, very long chain fatty acids; DHCA/THCA, dihydroxycholestanolic/trihydroxycholestanolic acid; AMACR, α-methylacyl-CoA racemase
and a photoconvulsive response. Visually evoked potentials were normal. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had a previous episode of depression with an overdose, and he had been employed since his encephalopathy. His examination showed bilateral gynaecomastia with hyperpigmentation.

Table 1 Results of fatty acid and bile acid analysis from serum

<table>
<thead>
<tr>
<th>Value found</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>C26 (µmol/l)</td>
<td>0.53 (0.33–1.39)</td>
</tr>
<tr>
<td>C26/C22</td>
<td>0.008 (<0.030)</td>
</tr>
<tr>
<td>C24/C22</td>
<td>0.58 (0.32–0.92)</td>
</tr>
<tr>
<td>Phytanic acid (µmol/l)</td>
<td>20 (<12.8)</td>
</tr>
<tr>
<td>Pristanic acid (µmol/l)</td>
<td>1.05 (<3.0)</td>
</tr>
<tr>
<td>Pristanic/phytanic</td>
<td>5.25 (0.05–0.40)</td>
</tr>
<tr>
<td>Bile acid profile (µmol/l):</td>
<td></td>
</tr>
<tr>
<td>Deoxycholic acid</td>
<td>0.02 (<6.4)</td>
</tr>
<tr>
<td>Chenodeoxycholic acid</td>
<td>0.22 (0.22–12.4)</td>
</tr>
<tr>
<td>Cholic acid</td>
<td>0.44 (0.05–0.60)</td>
</tr>
<tr>
<td>Ursodeoxycholic acid</td>
<td>0.00 (<2.1)</td>
</tr>
<tr>
<td>Hyocholic acid</td>
<td>0.00 (<1.0)</td>
</tr>
<tr>
<td>Dihydroxycholestanolic acid</td>
<td>0.11 (not detectable)</td>
</tr>
<tr>
<td>Trihydroxycholestanolic acid</td>
<td>2.90 (not detectable)</td>
</tr>
<tr>
<td>Dihydroxycholestenolic acid</td>
<td>0.00 (not detectable)</td>
</tr>
<tr>
<td>C29 dicarboxylic acid</td>
<td>0.01 (not detectable)</td>
</tr>
</tbody>
</table>

The EEG showed excessive slowing with a right temporal focus and a photoconvulsive response.

At the age of 25 he had an episode of status epilepticus, by which time his vision had declined to 6/36 right and 6/60 left uncorrected.

At the age of 34 he was involved in a road traffic accident and sustained a small right frontal extradural haematoma with confusion, not requiring surgery. After this he developed drop attacks and frequent headaches.

At the age of 41 he became aware of declining vision, and was found to have VA 1/18 L+R, constricted fields, and a generalised “retinopathy”.

When he presented at the age of 44, he was complaining of migrainous headaches daily from his accident, and a recent episode of amnesia with automatic behaviour. He had not been employed since his encephalopathy.

There was a family history of ischaemic heart disease, his father dying aged 67 of a heart attack. He was single without children, and taking only phenytoin and phenobarbital. There was a previous episode of depression with an overdose, and he had been employed since his encephalopathy.

At the age of 41 he became aware of declining vision, and was found to have VA 1/18 L+R, constricted fields, and a generalised “retinopathy”.

When he presented at the age of 44, he was complaining of migrainous headaches daily from his accident, and a recent episode of amnesia with automatic behaviour. He had not been employed since his encephalopathy.

There was a family history of ischaemic heart disease, his father dying aged 67 of a heart attack. He was single without children, and taking only phenytoin and phenobarbital. There was a previous episode of depression with an overdose, and he was known to have a low renal glucose threshold.

His examination showed bilateral gynaecomastia with sparse body hair and a feminine habitus. Both testes were atrophied. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with a high arched palate, but sparse body hair and a feminine habitus. Both testes were atrophied. He had depressed reflexes generally with impaired pin afferent pupillary defects the remaining cranial nerves were normal. He had micrognathia with(346,18),(653,24)
characterised as an absence of the cause abnormalities of VLCFA or phytanic acid. Missed, as peroxisomal disorders have always been assumed to be VLCFA and VLCFA concentrations. Had the pristanic acid concentrations and mildly raised phytanic acid concentrations not been measured, the condition would have been associated with generalised peroxisomal disorders. Abnormalities of pristanic acid metabolism were first associated with many features in common, particularly with Refsum’s disease. His disease course has been relatively benign.

In humans, the only peroxisomal disorders of β-oxidation so far identified are those relating to VLCFAs, DHCA/THCA, pristanic acid and bile acid intermediates, and these so far identified are those relating to VLCFAs, DHCA/THCA, pristanic acid and bile acid intermediates, or loss of lipid functions “downstream”.

The biochemical defect causing Refsum’s disease lies “upstream”, yet the clinical phenotype of the disorders differ, although with considerable overlap. Why there should be this distinction is uncertain, but there may be a differential effect on tissues depending on the proportions of product accumulation (phytanic and pristanic acid and bile acid intermediates), or loss of lipid functions “downstream”.

In humans, the only peroxisomal disorders of β-oxidation so far identified are those relating to VLCFAs, DHCA/THCA, and pristanic acid. Multiple enzymes are involved (fig 1) and abnormalities of pristanic acid metabolism were first associated with generalised peroxisomal disorders.

This currently described patient showed highly increased pristanic acid concentrations and mildly raised phytanic acid and VLCFA concentrations. Had the pristanic acid concentrations not been measured, the condition would have been missed, as peroxisomal disorders have always been assumed to cause abnormalities of VLCFA or phytic acid.

The biochemical defect in this case has only recently been characterised as an absence of the α-methylacyl-CoA racemase. There is stereoselectivity of the α-methyl branched acyl CoA esters and the bile acid intermediates, and these must be converted to their S forms before degradation by peroxisomal β-oxidation. Absence of the racemase has the same consequences as a deficiency of the branched chain acyl-CoA oxidase, although in the second R and S stereoisomers accumulate, and in racemase deficiency only R isomers accumulate. Analysis of both enzymes is required to establish the precise defect.

He therefore has a unique combination of features, distinct from the other peroxisomal disorders, but with many features in common, particularly with Refsum’s disease. His disease course has been relatively benign.

Presumably this is autosomal recessive as are most of the other peroxisomal disorders, but his family have refused blood testing and skin biopsy. The presence of hypogonadism does raise the possibility of an X linked disorder, but we have been made aware of a woman with the condition (personal communication), so this seems unlikely.

Given that Refsum’s disease responds to dietary elimination of phytanic acid, therapy for this disorder was attempted using a pristanic acid and phytanic acid depleted diet, but he would not tolerate the dietary change. His seizures have remained controlled on phenytoin alone, and there has been no significant progression in his visual failure or neuropathy over 2 years.

As biochemical and molecular biological techniques advance, further peroxisomal disorders are likely to emerge. Recently, another novel disorder of peroxisomes has been described, with multiple enzyme deficiencies (reduced lignoceric acid oxidation, cytosol catalase only, reduced di-hydroxyacetone phosphate acyl transferase, and reduced phytic acid oxidation) and normal peroxisomes as in type 2 disorders, but clinically a mixed type 1 and 3 (an adult with facial deformity, cognitive impairment, retinal pigmentation, seizures, and deafness without liver problems).

These overlapping clinical syndromes highlight the importance of wider screening of biochemical function using plasma and fibroblasts. We recommend that any patient presenting with retinal pigmentation resulting in visual failure, and neurological disturbances, particularly seizures and a peripheral neuropathy, be screened not only for VLCFA/C26 ratio, but also should have pristanic acid concentrations assayed.

Figure 1 The peroxisomal β-oxidation pathway, showing the steps involved in the oxidation of pristanic acid and THCA/DHCA. The site of activity of AMACR, where the defect occurs in this disorder, is indicated. *
A new defect of peroxisomal function involving pristanic acid

REFERENCES