
UvA-DARE is a service provided by the library of the University of Amsterdam (http

UvA-DARE (Digital Academic Repository)

Federated Information Management for virtual enterprises

Garita Rodriguez, C.O.

Publication date
2001

Link to publication

Citation for published version (APA):
Garita Rodriguez, C. O. (2001). Federated Information Management for virtual enterprises.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:02 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/federated-information-management-for-virtual-enterprises(79ec7cbb-40c8-4d6b-afe3-8a7dc573f972).html

Chapterr 4

Designn and Implementat ion of
thee Federated Information
Managementt System for VEs

4.11 Introduction

Ass identified during the requirement analysis phase of the DIMS, Virtual Enterprise
memberss need to have access to up-to-date information that is physically distributed
amongg different nodes in the VE network. This is necessary in order to support for
instance,, the basic data exchange operations among VE members, as well as more
sophisticatedd functionalities regarding the coordination and monitoring of the tasks
thatt are being independently executed by different VE members. Clearly, an advanced
informationn management mechanism is needed to be designed and implemented in
orderr to provide transparent access to VE distributed information. In principle, the
designn of this mechanism could be based on a single globally accepted VE schema,
throughh which different VE nodes can make available their information to all the
otherr nodes that represent actual or potential VE partners. Through this single global
schema,, enterprises would have access to an integrated view of the VE distributed
informationn and the physical location details of the data would remain hidden.

However,, due to the competitiveness of pre-existing enterprises and their pro›
prietaryy information, it is not realistic to assume in the design of the information
managementt platform for the VE network, that such a single global schema can be
usedd to define all the information that is visible and exchanged by all partners. For
instance,, it is evident that the degree of trust among competitive enterprises in a
VEE is limited, and that each enterprise needs to precisely define the access rights
andd visibility levels on its local information for every other VE member. Besides the
issuess of trust and protection of sensitive information, there are many other factors
thatt determine the information access rights among individual VE members, such as:
thee relationships with other VE members (e.g. producer, consumer, retailer) within a

93 3

94 4 Designn and Implementation of the Federated Information Management System for VEs

givenn distributed production chain, the function that they play in the VE (e.g. coor›
dinator,, supervisor, regular partner), and the legal rights/obligations that they may
havee acquired through the VE contracts.

Inn order to address these and many other issues identified during the requirement
analysiss phase, the approach for VE information management adopted in the design
off the DIMS is based on a federated database architecture [71, 11]. In particular,
thee design of the DIMS accomplished in the context of the ESPRIT PRODNET II
projectt and described in this dissertation, introduces a "VCL integrated schema"
thatt not only supports transparent access to distributed VE information, but at the
samee time it allows the proper definition of access rights among VE members through
thee creation and maintenance of export schema hierarchies defined on the local VCL
databasee schema.

Thee main objective of this chapter is to describe the general design and implemen›
tationn of the DIMS federated architecture and its internal components. In particular,
thee main DIMS elements that are analyzed in this chapter include:

a.. The VCL federated schema that provides an integrated definition of both the
locall and the distributed VE information that can be accessed by end users and
applicationss at each VE node.

b.. The DIMS Export Schema Manager, which allows each VE member to create
exportt schemas hierarchies that implement the proper access rights and visibility
levelss on the local information that needs to be shared with other VE members.

c.. The Federated Query Processor, whose major goal is to handle the local and
distributedd queries issued on the VCL integrated schema, while respecting the
accesss rights defined at each node through the export schemas. The DIMS
federatedd query processor also incorporates a workflow-based mechanism to in›
temperatee with the internal systems of the company in order to retrieve the
mostt up-to-date information when required.

d.. The DIMS Server Agent, which supports the interoperability between the in›
ternall DIMS elements and the other VCL components and external enterprise
systems. .

Additionally,, this chapter illustrates the actual application of these generic DIMS
componentss and mechanisms in the context of the general PRODNET VE demon›
strationn scenario.

Consequently,, the structure of this chapter is organized as follows. Section 4.2
presentss the general approach for the design of the DIMS architecture and introduces
itss major internal components. Section 4.3 focuses on design of the VCL integrated
schemaa and its high-level data structures (based on the requirement analysis phase
describedd in Chapter 3). Section 4.4 provides a more detailed analysis of the concepts
off roles and access rights definitions for VE partners, and how they are properly sup›
portedd by the DIMS Export Schema Manager Tool (ESMT). Section 4.5 describes
thee specific tasks associated with the DIMS Federated Query Processor (FQP) com›
ponent,, and illustrates how they are assisted by internal VCL workflow management

4.2.. General Approach for the Design of the DIMS 95 5

activities.. Section 4.6 addresses more specific design and implementation details re›
gardingg the DIMS interoperable Server Agent component. Section 4.7 demonstrates
thee application of the aforementioned DIMS architectural components and mecha›
nismss in several actual VE scenarios in PRODNET. Section 4.8 includes some possi›
blee directions for future work and extensions to the DIMS functionalities, focusing on
thee export schema management approach. Finally, Section 4.9 summarizes the main
conclusionss of this chapter.

4.22 General Approach for the Design of the DIMS

Inn the next sections, the details of the DIMS reference architecture and its main
internall components are described.

4.2.11 The DIMS Three-tier Architecture

Inn addition to the traditional client-server applications, some multi-threaded applica›
tionss are conveniently modeled using a three-tier architecture, also called client-agent-
serverr architecture. In this architecture the client is only concerned with presentation
services.. The agent (or application server) processes the application logic for the
clientt tier, hiding the underlying implementation and access details of the server tier
andd adding higher level support functionalities for the client. In this way, the server
tierr is designed in order to encapsulate lower-level implementation details of the data
managementt services required by the agent tier.

Inn this sense, the DIMS design and implementation approach follows a three-tier
architecturee of this type (please see Figure 4.1). The client tier is represented by all
thee other VCL components that request DIMS services via a DIMS client library.
Thee applications server (agent) is represented by the DIMS Server Agent, together
withh the other DIMS internal operational components. The DIMS Sever Agent acts
ass a client of an internal database server (i.e. Oracle), which in turn represents the
serverr tier in this scenario. Bearing in mind this general three-tier architecture will
helpp understanding the relationships among some DIMS components that will be
addressedd in forthcoming sections of this document.

Otherr VCL
componentss and
externall modules

Clientt Tier

^

DIMSS Server Agent andb
^>> internal components^B---^’ Serverr Agent Tier

Serverr Tier

DIMSS Database Manager
(ORACLEE server) 3 3

Figuree 4.1: General DIMS three-tier architecture.

96 6 Designn and Implementation of the Federated Information Management System for VEs

4.2.22 The Interna l DIM S Reference Architectur e

Thiss section focuses on the main components of the DIMS applications server tier
introducedd in the previous section. The general reference architecture of this tier
embodiess the following components, as depicted in Figure 4.2:

 VCL Integrated Schema.

 Export Schema Manager and Tool.

 Federated Query Processor.

 DIMS Server Agent.

 Internal DIMS Database Manager.

 DIMS Kernel Configurator.

AA general description for every component is given in the paragraphs below.

Th ee DIM S VCL Integrated Schema

Ass mentioned in Chapter 3, the DIMS component adopts a federated database ap›
proachh in order to allow transparent access to the VE distributed information, with
properr support for enterprise node autonomy and access rights. In particular, the
designn of the DIMS is based on a "VCL integrated schema" that provides a unified
definitionn of both the local and the distributed VE information that can be accessed
byy end users and applications at each VE node. Other VCL components and external
enterprisee modules issue federated database queries on this schema through the DIMS
serverr agent, which takes care of the interaction with the federated query processor
(forr federated and distributed queries), or with the local database schema (for certain
kindss of queries that do not require advanced query processing). The VCL integrated
schemaa is described in details in Section 4.3.

Expor tt Schema Manager and Tool

Thee Export Schema Manager (ESM) is the component that encloses the functionality
too create and maintain the hierarchy of export schemas that are defined on the VCL
locall schema, based on the visibility access that need to be specified for a given node.
Thee ESM functionalities are used for instance, to create a basic VCL export schema,
andd then, to define VCL partner export schemas based on it. The ESM will ensure
thatt the export schema hierarchy remains consistent, and that the schema definitions
forr every dependent partner export schema are properly created. The ESMT (Export
Schemaa Manager Tool) developed for DIMS provides a user interface to support the
definitionn and creation of the export schemas as part of the local information that is
sharedd with other enterprises. This component is further described in Section 4.4.

4.2.. General Approach for the Design of the DIMS 97 7

Otherr VCL Components
Externall Modules
(e.g.. PPC, DBPMS)

DIMSS service requests/
VCLL service answers

DIMS S

DIMSS service answers/
VCLL service requests

DIMSS service
requests/answers s

DIMSS service answers/
PPCC service requests

DIMSS Server Agent

exportt schema config.

Export t
Schema a
Manager r

exportt schema
info. .

ll r internal data access

Internall DIMS Database Manager
(Locall DB Schema) | j

internall data access

config.. data access

internall data access

Figuree 4.2: General DIMS architecture approach.

Th ee DIM S Federated Query Processor

Thee main objective of the Federated Query Processor (FQP) is to transparently sup›
portt the access to data distributed over the nodes of the VE network, taking into
accountt the specific visibility access rights (represented by export schemas) defined
forr every node. As will be described in Section 4.5, the federated query processing
functionalityy of DIMS enables end users such as the VE Coordinator to query the
privilegedd VE-related information for which the coordinator is authorized, while hid›
ingg the data location details. Furthermore, considering that the information in legacy
systemss and internal modules (e.g. ERP/PPC) of the enterprises is updated inde›
pendentlyy of the VCL operation, the federated query processor in the DIMS is also
responsiblee for retrieving the most up-to-date generated data, in case it is required
byy the query issuer application or end user.

Th ee DIM S Server Agent

Thee multi-user DIMS Server Agent corresponds to the heart of the "agent tier" of
thee DIMS architecture introduced in Section 4.2.1. Basically, the DIMS Server Agent
iss responsible for receiving and dispatching all the DIMS service requests issued by
thee other VCL modules. The Server Agent first determines the nature of the service
requestss and then triggers the activation of the involved DIMS internal components,
forr instance, the Federated Query Processor. The Server Agent also contains a library
off services that support a part of the general operation of the VCL modules. As
willl be explained in details in Section 4.6, the Server Agent represents the gateway

9 8 8 Designn and Implementation of the Federated Information Management System for VEs

too the internal DIMS architecture, which encapsulates all the specific information
managementt services for the VCL modules. The DIMS agent tier is implemented
usingg a sophisticated multithreading mechanism implemented in C++ through which
multiplee service requests can be processed concurrently. For instance, Figure 4.3
representss an example in which the DIM S agent dynamically creates multiple working
threadss depending on the incoming service requests from end-user applications or VCL
moduless (e.g. LCM, DBPMS, PCI components described in Chapter 1), or sends a
threadd message to the FQP server, which in turn instantiates multiple working threads
iff necessary.

Interna ll DIM S Database Manager

Fromm the DIMS implementation point of view, it is highly desirable to utilize a good
commerciall existing DBMS in order to avoid the construction of a complete data man›
agementt system platform from scratch (namely, the reinvention of the wheel). The
DBMSS used as the "construction ground" for the development of the DIMS is Oracle
versionn 7.3. In the context of the general DIMS three-tier architecture, this component
representss the server tier that provides the fundamental functionalities expected from
aa database management system including: transactions management, data storage
andd retrieval facility, stored procedures management, SQL support, interface libraries
forr front-end development environments, database triggers, etc. These functionalities
providedd by the Oracle Server are exploited by the DIMS component.

Thee Oracle Server is used by the DIMS internal components through a specific set
off access mechanisms including [100]:

 ODBC driver. The facilities of the Microsoft ODBC driver for Oracle are used

>> Inter-thread Message Dynamic Thread Instantiation

Figuree 4.3: Example of DIMS server multi-threading capabilities.

4.2.. General Approach for the Design of the DIMS 99 9

inn most DIMS data access scenarios.

 Oracle Call Interface (OCI). OCI is a specific Oracle interface that allows devel›
operr users to directly embed Oracle calls into high-level applications. It provides
aa lower-level program call interface to an Oracle database.

 Oracle stored procedures and packages management. A stored procedure or
functionn is an object that logically groups together a set of SQL (and PL/SQL)
programmingg language statements to perform a specific task. Procedures and
functionss are stored in a database for continued use. Furthermore, a package is
aa group of related procedures and functions that are stored in the database for
furtherr use as a unit.

 Oracle embedded PL/SQL. PL/SQL is the Oracle procedural language exten›
sionn of SQL. PL/SQL combines the simplicity and flexibility of SQL with the
procedurall functionality of a structured programming language, including for
instancee IF-THEN-ELSE, WHILE, and LOOP language instructions. It is also
possiblee to embed PL/SQL blocks directly in the applications.

 Specific Oracle tools. For instance, the Oracle Data Loader functions were used
byy the DIMS server in order to load ASCII files containing the VE topology and
configurationn information.

Inn general, all of the above means to access the Oracle server were used to some
extentt for the DIMS implementation (see Figure 4.4). For every specific implemen›
tationn case, the possibility to apply a specific mechanism was evaluated and the best
choicee was selected. For example, in some cases the use of ODBC interface (through
Microsoftt ODBC database classes) facilitated the implementation of the DIMS func›
tions,, but in some cases, a lower-level and more flexible mechanism such as the OCI
wass required to develop the required DIMS functionality. All the mechanisms were
usedd at some point for some functions in the DIMS implementation.

Itt is also important to mention that all the low-level details to access these Oracle-
specificc tools remain hidden from the VCL components that use the functionality

Oraclee Server

Figuree 4.4: DIMS use of Oracle programming interfaces and tools.

100 0 Designn and Implementation of the Federated Information Management System for VEs

providedd by DIMS, and therefore they do not access the Oracle server directly. The
VCLL modules do not need to know which internal DBMS is used for the DIMS kernel.

DIM SS Kernel Configurator

Thee DIMS Kernel Configurator is an interface application that allows the user to
specifyy configuration of certain DIMS operation parameters. The main parameters
include: :

 DIMS users and access security definitions (accounts and passwords). The local
userss of the enterprise that will have access to the DIMS applications need to
bee identified and access security needs to be reinforced. These users will be the
generall VCL users.

 Communication port number of DIMS server. The port number used by the
DIMSS service interface library must be specified (the details of the service in›
terfacee mechanism will be described in Section 4.6).

 Timeout duration for distributed queries. When a distributed query is sent to a
givenn node, there must be a timeout mechanism to decide how long the query
processorr must wait for the answer to arrive from the remote node.

Inn this section, the internal components of the DIMS have been briefly introduced
inn order to provide a global view of the system architecture. In the next sections of
thiss chapter, the main DIMS components are individually described in more details.

4.33 Design of the DIMS VCL Integrated Schema

Thee analysis of the wide variety of shared and exchanged information among VE
memberr nodes in order to achieve a comprehensive description and classification of this
information,, represents one of the main tasks tackled within the design of the DIMS.
Ass described in Chapter 3, a step-wise approach has been followed for this analysis,
including:: (1) the definition of several distinct focus areas, (2) the categorization of
thee information according to different enterprise data exchange scenarios, and (3) the
divisionn of the enterprise information into three categories (Self, Acquaintance, and
Virtuall Enterprise) with corresponding public, restricted and private subdivisions.

Basedd on this extensive analysis of the information modeling requirements for the
DIMS,, it is possible to identify:

1.. Which part of the information is generated, stored and maintained in one en›
terprise,, and thus becomes local (i.e. partially the Self and partially the local
partt of the Virtual Enterprise information).

2.. Which part of the information needs to be accessed from the other enterprises,
andd thus needs to be imported from other enterprises (i.e. partially the Ac
quaintancequaintance and partially some other enterprises’ information that is related to
thee Virtual Enterprise).

4.3.. Design of the DIMS VCL Integrated Schema 101 1

3.. Which part of the local enterprise information needs to be shared with other
enterprises,, that thus needs to be exported to other enterprises (partially the
SelfSelf information and partially some local part of the Virtual Enterprise informa›
tion).. However, the visibility levels of the enterprise information from external
nodess must be carefully determined by every node in order to ensure its own
autonomyy and information privacy.

4.. Since every enterprise needs to have access to both its local information and the
informationn imported from other enterprises, thus the two parts of information
needd to be integrated into one coherent schema for the sake of enterprise’s
conveniencee of access and retrieval of distributed information. Then, this in›
tegratedd information includes also part of the VE-Self and VE-Acquaintance
informationn at this node.

Therefore,, in order to support all the specified information management require›
ments,, and the proper interoperation among VCLs in different nodes, a federated
databasee architecture is designed for the DIMS component [71, 11, 65, 74]. The
DIMSS federated architecture approach has proven to adequately facilitate and sup›
portt the sharing and exchange of distributed information between enterprises in VEs,
whilee providing the necessary information visibility levels to ensure their own auton›
omyy and information privacy. The design of the DIMS federated architecture has its
rootss in the PEER federated database system, and it has been properly extended and
adaptedd to cope with the specificities of the VE paradigm, as described in Chapter 3
(seee also [169, 16]).

4.3.11 General DIMS Federated Approach

Thee design of DIMS is based on the definition of the VCL integrated schema, de›
scribedd in the next section, that is represented and handled in all nodes. Data can be
imported/exportedd through this VCL schema, but the proper access rights are defined
locallyy at every enterprise to precisely specify the rights of external nodes. Therefore,
althoughh the sharable data at every node can be accessed through the same schema
structuree representing the VCL information (as illustrated in Figure 4.5), DIMS prop›
erlyy preserves the federated information access and visibility constraints by means of
well-determinedd export schema definitions.

Thee export schemas are specified for every other VE partner for every VE in which
thiss node is involved. This addresses the fact that depending on the VE, an enterprise
mayy play a different role and therefore may have a different access level in each VE.
Inn other words, the information stored in a node about a particular VE is not made
availablee with the same visibility level to all VE members (for instance, in one VE,
thee visibility can be defined differently for every node).

Thee concepts of roles, visibility levels, and access rights among VE partners will
bee addressed in details in Section 4.4. But, what is important to notice here is that
regardlesss of these access rights considerations, the VCL schema itself remains the
samee along the network of cooperating nodes. As a result of this design decision,
thee nodes do not need to physically import the schema descriptions from each other,

102 2 Designn and Implementation of the Federated Information Management System for VEs

VCL_Componn en

Directory_Info o

has_dbpms has_dbpms

EDLMngr r
hai hai

STEP_Mngr r

PCI_Mng: :
=g g

Human_Interface e

has_self_dir has_self_dir X X
Oihers_J5ir_Infb b

WW has_pthers_dir

Local_Confii gurator

^^ VCL_Config

I I
Partner_Export t

Schema a

kas_partner_exporlkas_partner_exporl t ^

U U

has_phas_p ther_pa rtner

has_partner_info has_partner_info
haha s__se lf__partner

Cardinalit yy of Associations

ls"M-"ll L u g i »|ck« |
Association n

[ciassll J " 1 C)ass2 |

]] Class | One or mor.

has^partnerjrfo has^partnerjrfo

hasjypc hasjypc

basjiMJitfQ basjiMJitfQ

°° PPC_tafo

has_step_info has_step_info

has_acf_info has_acf_info

|� || Local VCL £2 D i r e c t o r y n VE-related
Componentss Info. Info. Info.

Figuree 4.5: Partial high-level DIMS integrated schema.

inn order to identify the structure of the data available in other nodes. Consequently,
thiss design decision has simplified the adoption of the actual VCL platform and DIMS
systemm for the involved enterprises.

4.3.22 The DIMS VCL Integrated Database Schema
Thee federated architecture of the DIMS handles the local, import , export and
integratedd schemas for the enterprise, while supporting the expected data location
transparencyy for the user, the site autonomy, and the access security (associated to
distributedd query processing) among other requirements. As mentioned before, every
enterprisee needs to have access to both its local information and the information
importedd from other enterprises, and thus the two parts of information need to be
integratedd into one coherent schema in order to provide enterprises with seamless
accesss to distributed VE information. Then clearly, always a part of this integrated
schemaa represents the local schema (of which a part is also exported), and the other
partt represents some imported schemas at the node.

Basedd on the initial analysis and identification of the wide variety of information

4.3.. Design of the DIMS VCL Integrated Schema 103 3

describedd in the previous section, the integrated object-oriented database schema
forr enterprise information has been designed, and is depicted in Figure 4.5. This
integratedd object-oriented database schema represents a unified inheritance hierarchy
(subtype/supertype)) with the corresponding association relationships among different
typee (class) definitions. Here, the DIMS schema diagram is described in the style of
thee Object Modeling Technique (OMT) notation [139]. The notation used for this di›
agramm is depicted at the bottom corner of Figure 4.5. Please notice that for simplicity
reasons,, this figure represents only partial high-level categories of the actual informa›
tionn handled within the VCL. This integrated schema has been developed taking as
aa reference the VE cooperation layer architecture of PRODNET (see Chapter 1).

Thee class that represents the integrating focal point in this schema is the "VCL
class"" (appearing in the middle of this schema in Figure 4.5). The comprehensive
VCLL information is basically composed of three major parts:

 VE-related information (represented at the bottom right side of this schema
diagram))

 Local VCL components’ information (represented on the top left side of the
diagram))

 Directory information (represented at the top right side of this schema diagram).

Thesee main clusters of classes are briefly described below.

Locall VCL components informatio n

Alll the information that different components of the VCL need to handle in order to
functionn properly and perform their activities is embodied in the VCL_Component
class.. These components consist of, for instance, the DBPMS, the LCM, the
EDIJMngr,, STEP_Mngr, PCI_Mngr, the Human-Interface, and the LocaLConfigurator
module.. Every one of these VCL components is represented as one "class" in Fig›
uree 4.5, where clearly, the class for each particular component is defined as a special›
izationn of the VCL.Component class.

VE-relatedd informatio n

Ass depicted in Figure 4.5, a given VCL node can be involved in any number of
differentt VEs. The VE information (VE class) encompasses the information about
thee structure for these involvements, such as their members’ composition (i.e. VE
topology),, identification of the VE coordinator, etc. as its attributes. Furthermore,
itt covers the detailed information about the partners of the VEs. The VE_Partner
classs represents the concept of the VE-member. A VE-member can be the enterprise
itselff (Self_Partner) or can be another partner (Other_Partner). As can be seen in the
figure,figure, every instance of class VE is associated with one instance of Self-Partner and
withh one or more instances of Other-Partner.

104 4 Designn and Implementation of the Federated Information Management System for VEs

Furthermore,, within each VE, for the enterprise itself (Self-Partner), a set of local
enterprisee information (e.g. ERP/PPC information) is managed and stored (Part›
nerr Jnfo) at the enterprise’s VCL. This information encompasses different kinds of
dataa at the enterprise that can be potentially shared with the other partners. The lo›
call information contains the ERP/PPC information, EDI-related data, STEP-related
andd DBPMS-related data. All this information is kept locally for every enterprise.

Thee information of other partners is captured through the association defined be›
tweenn the Other_Partner class and PartnerJnfo (has-partner-info association). Please
noticee that this information is not physically stored locally at this node for the other
partners,, rather this information is distributed over the corresponding other-partners’
nodes.. In other words, this part of information will be imported from other partners
whenn there is a federated query at this node that needs to access it and if the node
iss authorized to access it. Now, from the point of view of the users and the applica›
tionss issuing such queries, this association between Other_Partner and Partner Jnfo
iss treated as any other local relationship that is also represented in the integrated
schema.. This means that the DIMS provides transparency on data location, that sup›
portss the queries on other nodes’ local information through the distributed/federated
queryy processing on the integrated schema at every node. It is important to notice
thatt with the design of DIMS integrated schema structure for the nodes, the schema
forr this node’s Partner Jnfo and other nodes’ Partner Jnfo is the same. This design re›
flectsflects the fact that the schema for what a company makes available to others, is in turn
thee same as the schema of the information that is imported from those companies.

Thee Other J^artner class is also associated with the Partner J5xport_Schema. This
classs provides the facility to make the Partner Jnfo partially available to be exported
too other partners. The Partner J^xport-Schema class is introduced as a mechanism to
supportt these different levels of visibility to local information for every other partner
inn the VE. Through this concept an export schema for every other partner is defined.
Thee details of the export schema definition mechanisms are given later in this chapter.

Finally,, there is some information that needs to be kept for all VE J^artners within
onee VE to facilitate the communication and interactions with them. This informa›
tionn corresponds to the VE-partners’ VCL.Config class. For every VE-partner, a
descriptionn of its VCL configuration is needed, in order to know its specific "VE
platform-related"" capabilities, and to determine the way in which the communica›
tionss between the nodes can be held. For instance, the communication configuration
establishess the means by which a node can be addressed (e.g. Internet, ftp, email)
andd the corresponding addresses. The VCL configuration also describes whether the
nodee uses a STEP module, for example. For efficiency and reliability reasons, this
informationn is kept locally at every node. Then, when it changes at a given node,
thee update-and-notification mechanism must propagate this information to others in
orderr to inform the other nodes about these changes.

Director yy Informatio n

Thee descriptive information that every enterprise is willing to make publicly available,
regardlesss of cooperating with them or not, is represented by the directory informa-

4.4.. Federated Export Schema Management 105 5

tionn (Directory_Info) in VCL schema for both the enterprise itself (Self_Dir_Info) and
forr other enterprises (Others_Dir_Info), in which this enterprise is interested. The
directoryy information can include a general description of the products, services, and
activitiess of the company.

Inn terms of other research related to the VCL integrated schema, a comprehensive
analysiss of other approaches to integrate VE distributed information was presented
inn Chapter 2. In particular, the DIMS approach was also evaluated in that chap›
terr against other VE information management infrastructures. Furthermore, other
genericc approaches of integrated schema management in the context of federated
databasess can be found in [63], where the emphasis is on a federated database ap›
proachh with one integrating schema that uses an ODMG interface to different DBMSs.
Also,, in [138] and [3], other techniques are presented to define user-specific ’views1

forr supporting authorized database access based on the underlying database schemas.
However,, in contrast to the DIMS architecture, these generic approaches do not aim
att the specific support for the VEs and their requirements. For instance, there is
noo notion of enterprise roles and visibility levels supported by hierarchies of export
schemas,, as will be explained in more details in the following section.

4.44 Federated Export Schema Management

Thiss section presents how specific access rights on local information can be defined at
eachh enterprise node through export schema definitions for every other VE partner.
Thesee export schema definitions are created and maintained by the DIMS Export
Schemaa Manager Tool (ESMT). However, before addressing the detailed design and
functionalityy of the ESMT, the underlying concepts of roles and visibility levels in
VEss are introduced next.

4.4.11 The Concept of VE Partner Roles

Ass mentioned in Section 4.3.1, not all members of a VE need or can request and
acquiree the same access level to the local information of other enterprises. This is
partlyy due to the fact that enterprises play different partner roles in different VEs.
Forr instance, two given regular partners involved in the VE production chain may
onlyy require to exchange data about product descriptions, while the VE coordinator
mayy need to have privileged access to more detailed information about internal pro›
ductionn processes at several individual partner sites in order to monitor the progress
off global VE activities. Furthermore, it cannot be denied that the level of trust among
competitorr enterprises in a VE is limited (even when they are collaborating towards a
givenn goal), due to the risk of involuntarily disclosing sensitive know-how information
too rival companies (see also [86, 153]). In addition, the access rights on local informa›
tionn may be determined by legal contracts or agreements among VE partners, which
alsoo need to be considered when deciding what information to make available and
underr which circumstances. Therefore, based on certain parameters or attributes,
everyy enterprise needs to rely on a mechanism to precisely define the specific access

1066 Design and Implementation of the Federated Information Management System for VEs

rightss and visibility levels on its local information for every other VE partner. In the
approachh presented in this thesis, the varied parameters that will determine the level
off access rights on local information for other VE partners, are merged into one main
attributee called "ifo/e".

Inn related literature, different concepts of role in the context of VEs have been
introduced.. For instance, a role can be defined as an "access control group" [58], as
aa "named set of privileges" [118], or as a "task-oriented relationship" [80]. In this
dissertation,, a role is defined for every enterprise as a category (or class) that is asso›
ciatedd to VE partners, depending on a combination of the determining characteristics
mentionedd above. Roles are used here in order to facilitate the proper definition of
accesss rights of other VE partners on local information of an enterprise [65].

Furthermore,, the notion of role usually implies some context that explains how
roless interact and that determines certain relationships among them [107]. Based on a
similarr idea, an extended concept of role is handled in this chapter, where a complete
hierarchyhierarchy of roles is defined, representing the relationships among enterprises such
ass the coordinator, supervisor (subordinated to coordinator but enabled to monitor
certainn VE activities), and regular partners. The advantage of defining this hierarchy
off roles is that then it is possible to associate to every "different category of functions"
(i.e.. "roles") an individual definition of the access rights. Thus, the partner role
conceptt can also be used to determine the position of each partner in a hierarchy of
accesss rights definitions. In this way, both the description of the VE in terms of roles
andd associated privileges and its relation with the export schemas, remain relatively
fixedd as enterprises join/leave the VE or change the role within the VE. Also in [151]
thee importance of a flexible and dynamic support of roles in a shared environment is
described,, in relation to shared-space applications and programming environments.

Figuree 4.6 shows two example role hierarchies that can be defined for a VE. In
bothh cases, we assume that in the VE there are certain well-defined roles, such as
thee coordinator, supervisor, partner, client and supplier. In general, a role definition
cann be either based on (a restriction of) another role, or stand-alone. For instance in
casee (B) in Figure 4.6, the functions/responsibilities of the Supervisor are modeled
ass a direct restriction of the functions of the Coordinator, while in case (A) the func›
tions/responsibilitiess of Supervisor and Coordinator are independent of each other.
Ass such, in case (B), the access rights of the Supervisor role, are a restriction of the
accesss rights of the Coordinator, which is the immediate predecessor in the hierarchy.
Therefore,, the export schema of the Supervisor is also a restriction of the export
schemaa of the Coordinator as will be explained in the next section.

Itt is important to mention that the role assumed by an enterprise is established
duringg the initialization/creation stage of the VE. Thus, according to the VE ini›
tialization/creationn model described in [39], once the VE partners are identified and
selectedd after some negotiation process, the VE structure (topology) is defined, as
welll as the role that each partner will play in the VE. This VE topology and role in›
formationn is distributed among the VE members and the generated VE configuration
iss loaded at every partner site. Please notice that before this step, formal contracts
needd to be signed with individual partners, in order to formalize their agreement and
determinee their rights and obligations in the context of the new collaboration. Con-

4.4.. Federated Export Schema Management 107 7

(A))

C]Coordinator^ ^

C V E " ^^ W C _ V E ^

)) CfupervisoT> Cfartner> C_Cpordiriator_J>

C c ^ C s i ^ i DD C S u p e U ^

^PartneL. .

ClienT)) C^Supplier̂

Figuree 4.6: Examples of VE role hierarchies.

tractt terms can then be defined in terms of "supervision clauses" that can for instance
enforcee the rights of the VE coordinator in order to monitor the progress of a local
productionn order at individual partner sites. The supervision clauses can be defined
byy the VE coordinator, based on commonly agreed VE contracts, and distributed to
everyy VE partner [99, 152]. Each individual partner can in turn load this information,
validatee it, and then define the proper information access rights and visibility levels
forr the VE coordinator and other VE partners as follows.

4.4.22 Visibility Levels in VEs

Ass mentioned in the previous section, the level of visibility of each other VE partner
onn local information must be determined individually at each enterprise, based on the
rolerole and associated characteristics of the other partner enterprises. In other words,
everyy node in the federation must decide what part of its local information to make
availablee to every other partner within every particular VE in which the enterprise is
involved.. Therefore, the level of visibility and access rights that other partners have
onn the local VCL schema of an enterprise must be clearly determined [65].

Inn order to accomplish this objective, a federated database approach can be used
inn which every node can protect its autonomy and privacy by defining one detailed
individualindividual export schema based on its VCL local schema, for every other node with
whichh it shares information. Every partner export schema represents a partner visibil
ityity level that defines the proper access rights of another node to this node’s local data.
Forr every class defined in the local schema, the individual export schema determines
whichh instances (i.e. horizontal class partitioning) and which attributes (i.e. vertical
classs partitioning) of those instances will be made available to every other node (see
alsoo [149, 123]. Through this mechanism, different degrees of granularity can be pre›
served,, ranging from a small atomic value of one specific attribute of a determined
classs instance, to the complete VCL information being accessible from another node.

Inn the DIMS approach, the basic idea of defining individual export schemas on
thee local schema for every external "user", has been extended and generalized to the
definitionn of a hierarchy of export schemas (i.e. a hierarchy of visibility levels) [71, 10].
Thiss hierarchy allows the grouping and classification of common export schema char›
acteristicss based on the roles of enterprises in a VE, facilitating the task of individual

108 8 Designn and Implementation of the Federated Information Management System for VEs

exportt schema definitions.
Too explain a situation where this hierarchy becomes highly valuable and convenient

forr the VE creation and configuration tasks, let us assume that for a specific VE there
aree three different kinds of roles that a given enterprise can play: the coordinator,
supervisor,supervisor, and regular VE partner. Clearly, for every role, different information
itemss must be made accessible from other nodes. For example, the VE coordinator
needss to know some information, which is actually concealed to other VE partners.
Thee support for a fine-grained visibility level mechanism is required in this case.

Byy using the described concept of hierarchical export schema definition, different
visibilityy levels can be properly defined for every partner based on their role in the
VE.. Figure 4.7 represents an example of a general export schema hierarchy defini›
tion.. At the first level of visibility it is needed to extract the data that corresponds
too every given VE from the local VCL schema. Namely, a horizontal partitioning of
informationn that chooses all objects related to one VE (e.g. VE-j in the figure) is
achieved.. Further, a second level of visibility is defined for every VE export schema,
throughh a vertical partitioning that supports the proper information access rights
forr the different partner roles, i.e. coordinator, supervisor, and regular partner. For
instance,, the VE coordinator will obviously have more access visibility to other part›
ners’’ data than a simple regular VE partner due to its inherent control, monitoring,
andd possibly auditing responsibilities. Similarly, a supervisor in charge of the proper
accomplishmentt of a specific subtask inside a VE, will have more access visibility to
partners’’ information than other regular VE partners, but certainly more limited than
thee coordinator. However, all these three kinds of export schemas are defined on top
off the initial export schema (for a VE) as the base. Furthermore, at the third level
off visibility, the definition of the export schema, even at the level of partners of the
samee VE, can still be different for every particular partner (e.g. for Pi , P2 , and P�
inn Figure 4.7) since a node needs to exchange different information with every other
VEE member.

Clearly,, when further layers for visibility levels become necessary to define, the
exportt schema hierarchy can be extended and modified.

Eachh partner export schema is actually composed by a set of individual export
definitionss at the level of VCL schema classes, as will be described in the next section.
Therefore,, the partner export schemas correspond with export schema sets that are
specifiedd for each role. Through the external schema sets, the proper visibility levels

PCLL Schema

TT * *"
11 .�, . .
Coordinatorr ES

� -- Tii ES= Export f V
ii Schema [U I c a J

VE-jj ES J

11 Supervisor ES I Partner ES

((S1 ES 1 (Sk ES | P1 ES [P2 ES | Pn ES)

Figuree 4.7: Example of Export Schema hierarchy definition on VCL information.

4.4.. Federated Export Schema Management 109 9

forr the partners on the local schema of the enterprise are specified and maintained.
Anyy change applied to an export schema will be perceived by the involved enterprises
duee to the reduction and/or extension of the visibility level when accessing the cor›
respondingg remote data. Depending on the trust or contractual relationship among
enterprises,, an update notification mechanism for this point could be implemented if
required.. For instance, a VE coordinator may want to be notified when a VE partner
makess a change in the data set definitions for the internal production information
thatt is exported to the coordinator. This notification could be automatically done by
thee DIMS component.

Finally,, please notice that the export schema definitions based on the VCL schema
inn Figure 4.5, represent the derivations from that VCL’s local schema in the feder›
atedd database architecture of the DIMS. Also remember that no schemas need to be
"physicallyy imported" due to the fact that the schema structure is the same for both
thee exported and imported information at every VCL. In other words, as was ex›
plainedd in Chapter 3, the "importation" of the export schemas is automatically done
byy DIMS since there is a common unified integrated schema among all VCL nodes.
Therefore,, there is no need to explicitly handle import schema definitions that would
bee mapped into the integrated schema. Nevertheless, this does not mean that all
thee "information" is available to every given node, since the visibility levels carefully
definedd through their export schema definitions.

4.4.33 DIMS Federated Export Schema Manager

Inn order to properly manage the application of the hierarchy of export schemas de›
scribedd in the previous section, and to assist the end user with the sequence of steps
forr their definition, an "Export Schema Manager Tool" (ESMT) has been developed
ass part of the DIMS [11]. The ESMT is used for instance, to create the hierarchy of
roless and the hierarchy of export schemas at each VE node. The ESMT will ensure
thatt the export schema hierarchy remains consistent, and that the export schema for
everyy VE partner is properly created and defined. Clearly, simple information access
scenarios,, which can also occur, are fully supported. For instance, even if no hierarchy
iss required and only basic independent export schemas for every partner are needed,
thee ESMT can support this functionality operating on the described schema in the
samee way. In this simplest case, independent roles can also be associated with the
exportt schema sets; no further composition is required here.

Thee ESMT offers a graphical user interface which makes it a comprehensive, easy-
to-use,, and friendly tool, that is provided as a part of the VCL human interface.
Therefore,, the ESMT highly facilitates the definition of fine-grained access levels at
eachh node for every VE partner.

Pleasee notice that by using the ESMT to support the scenarios described in the
previouss section, proper access rights among enterprises can be defined in an easy and
systematicc way, and therefore, the necessary trust that enterprises need to participate
inn this kind of intricate collaborative environments is not only supported but also
reinforced.. This trust reinforcement is a key issue to guarantee the success of the VE.

110 0 Designn and Implementation of the Federated Information Management System for VEs

Interna ll Representation of Export Schemas

Thee database definition in Figure 4.8 is designed to store the information that is
handledd by the ESMT of the DIMS. The database structures for export schema rep›
resentationn properly support the recursive definition of elements, as required by the
exportt schema hierarchy.

Pleasee notice that according to this figure, every Partner is associated with a
Role.. Every Role has as attributes: the role identifier, the general type of the role
(e.g.. coordinator, supervisor, regular), the name, and eventually the identification of
thee parent of the role in the hierarchy.

Ass mentioned in the previous section, the access rights are expressed in terms of
thee role that enterprises play within the VE. Thus, for every VE partner role, an
externall schema set (Export-Set) is defined, which at the end corresponds with the
partnerr export schema. Through the Export-Set, the proper visibility levels for the
partnerss on the local schema of the enterprise are specified. An Export-Set can be
eitherr a single or a dependent export set depending if they are based on other export
setss or not. With this approach, the support for the general export schemas definition
iss provided, where no pre-defined export schema definitions are strictly required at
thee level of for instance, coordinators, supervisors, and partners, but rather any kind
off other hierarchies can be defined and supported as necessary.

Furthermore,, an Export-Set consists of a set of schemas, which in turn can be
singlee schemas (EXP) or dependent schemas (Dependent-EXP) following this defini›
tionn strategy. Every EXP schema has as attributes: the identification of the physical
schemaa definition for the exact table (e.g. an Oracle view name), a list containing the
attributess selected from that table (selectSpec), a condition on the specified attributes
(whereSpec),, and the original table on which the schema is defined (fromSpec). These
threee strings are used to generate the SQL statement, used to define the physical view
inn the local data base system (i.e. Oracle). If a schema is a Dependent-EXP schema,
thenn the fromSpec refers automatically to the corresponding EXP schema.

Inn order to illustrate the use of these schema definitions, some specific examples of
instancee diagrams for the schema classes are presented in Figure 4.9. Two database

Partner r

partnerld:: String

Role e
roleld:: String
roleType:: String
roleName:: String

has_EXP_Schemahas_EXP_Schema £~

EXP P

physicalSchemaName:String g
selectSpec:: String
whereSpec:String g
fromSpec:String g

zsz z 1 1

has_has_ exp_ schema_set

has_parent_role has_parent_role

Export_Set t

schemald:: String

_L L is: :
Single_Export_Set t

based_on based_on
dep_set dep_set

~L L
Dependantt Export_Set

Dependant_EXP P
based_based_ on_ dep_schema

Figuree 4.8: Schema definitions for partner export schema management.

4.4.. Federated Export Schema Management 111 1

tabless (Order and Product) are shown, first with single EXP schemas (tvl and tv2)
forr each table, containing only the information about orders and products related
too the VE identified by "vel2". The single EXP schema construction establishes the
firstfirst visibility level, to filter only this information. Then, these schemas are associated
withh a single export schema set instance called "pvl", which represents the general
exportt schema for "vel2". Based on this VE export schema, a VE coordinator export
schemaa is defined. To do this, two dependent table schemas are defined (tv3 and tv4),
andd associated to a dependent export schema set pv2. Please notice that the definition
off the dependent table schemas hide those fields that were present in the previous
visibilityy level, but that for example are not made available to the VE coordinator.

Anotherr example is provided in the same figure, and in this case first a general
partnerr export schema (tv5, tv6) is defined based on the general VE export schema
(tvl,(tvl, tv2). In this case, the fields which can be made accessible to any given partner

Order r
id:string g
ve:ve: string
duee Date; date
reuu Date: date
clientld:: string
pricee ;real

Productt |
m m

id;; string \
desc:: string j
price;; real

 . : : . : : . . : . . ,

(EXPP Schema)

tableNameOrder r
physicalViewName:: t v l
selectss pec: *
t’romSS pec Order
whereSpec:ve=vel2 2

(EXPP Schema)

tablee Name Product
physicalViewName:: tv2 1
selectSpec:: *
fromm Sp ec :P rod uc t
whereSpec:: id in (select
productt Id from tvl)

L L
(Singlee Schema Set)

PCLViewID:: p v l

(Gen.(Gen. View for VEI2)

(Dependentt Schema)

tab!! eName Order
physicalViewName:: tv3
selectSpec:: id. ve,
dueDate.. clientld
fromSpec:tvl fromSpec:tvl
whereSpec: :

ii z

J J

ff (Dependent Schema) i

tableNamee Product
physicalViewName;; tv 4
selectSpec:: *
fromSpec:tv2 2
whereSpec: :

’’ (Dependent Schema) \

tableNameOrder r
physicalViewName e
selectSpec:: id, ve,
dueDate.. clientld
fromSpec:tvv]
whereSpec: :

(v5 5

(Dependentt Schema)

tabll e Name Product
physicalViewName:: tv6
selectSpec:: *
fromSpec:tv2 2
whereSpec: :

(Dependentt Schema Set)

PCLViewID:: pv3
{{ Gen View for VE Partner)

(Dependentt Schema)

tableNameOrder r
physicalViewName:: tv7
selectSpec:: *
fromSpec:tv3 3
whereSDec:cIientId=l l

(Dependentt Schema)

tablee Name :Product
physicalViewName:: tv8
selectSpec:: *
fromSpec:tv5 5
whereSpec:: id in (selei

\productIdd from lv7)

(Dependentt Schema Sen

PCLViewID:pv44 (view for VE Partner I
thisthis partner will see info, about order

Figuree 4.9: Instance diagram of view hierarchy for regular VE partners.

file:///productId

112 2 Designn and Implementation of the Federated Information Management System for VEs

aree provided (in this example the order price information is removed in tv5 and
tv6tv6 definitions). On top of this generic partner export schema, a specific partner
exportt schema is defined for Partner 1 in "vel2". For Partner 1, only the information
relatedd to the partner (clientld = 1) is made accessible through tv7 and tv8. The
specificc partner export schema definitions provide examples of how the export schema
hierarchyy can be defined to support a flexible visibility level definition approach for
everyy partner, based on its function in the VE, e.g. coordinator, regular partner,
supervisor. .

Definitio nn of VE Export Schemas using the ESMT

Inn this section, a specific methodology for the definition of the VE Export Schemas
usingg the Export Schema Manager Tool (ESMT) is presented. As mentioned in the
previouss section, the Export Schema, that will define visibility levels and access rights
too other nodes’ information, consists internally of a set of export table schemas (EXP)
andd dependent export table schemas (Dependent-EXP). The EXP refers to an export
schemaa defined on one database table, and the Dependent-EXP is a schema defined
onn an EXP. Then, the Export Schema is assigned to a role, and every partner will be
associatedd with one of the roles that have been defined.

Thee ESMT was developed for DIMS to support the definition and creation of the
Exportt Schemas as part of the local information that is shared with other enterprises.
Itt helps the user of VCL to define and create the export schemas, during the config›
urationn phase of the VE. Also, it can be used during the execution phase of the VE,
ass access rights need to be modified due to for instance, agreement modifications or
whenn defining access rights to new partners that have just joined the VE.

Thee main window of the ESMT interface contains a menu bar that enables the
userr to perform different operations, such as the definition of different schemas (see
Figuree 4.10). These operations will be illustrated below.

Thee VE Export Schemas and their relation with every node in the VE need to
bee defined in several steps. These specific steps and the actions associated to each of
themm using the ESMT are described next:

Createe EXP Set

Createe Role Schema

Createe Enterprise EXP Schema

r-i\ r-i\
Figuree 4.10: Export Schema Manager interface.

4.4.. Federated Export Schema Management 113 3

1.. Define the Role Schema hierarchy. A complete hierarchy of the roles that every
nodee can play in a VE must be created (as described in Section 4.4.1), including
forr instance, the three basic kinds of roles: coordinator, supervisor, and regular
partner.. The Create Role Schema option in the main ESMT window allows
thee user to create this role hierarchy schema, by specifying the type of role, the
namee that will identify it and its parent role in the hierarchy. As mentioned
inn Section 4.4.1, this hierarchy of roles can be automatically distributed by the
VEE coordinator and loaded by each partner during the VE configuration phase.

2.. Create an EXP schema for every database table (Figure 4.11). The EXPs
determinee which instances (i.e. horizontal partitioning) will be available, for
instance,, to the Coordinator node. In this case, it is also necessary to define
whichh database tables will be accessible by another node. In the ESMT, the
Createe EXP window supports the creation of the EXPs, and the user has to
enterr a unique name for the EXP name (these identifiers could be generated au›
tomatically).. Then, the attributes that define the EXP need to be specified, i.e.
thee original table on which the schema is based on, the list of attributes selected
fromm the table, and the conditions on the specified attributes. In principle, de›
faultt EXPs could be created automatically for the whole VCL schema (e.g. an
EXPP could be created for all tables with no selected instances by default).

3.. Define zero or more Dependent-EXPs for every EXP schema defined above. The
Dependent-EXPss determine which attributes will be available for instance, to
thee nodes in the Supervisor level. The Create Dependent-EXP window sup›
portss the creation of the Dependent-EXPs when necessary. This operation is
equivalentt to the previous one, except that the base is not a table, but an EXP.

-EXPSFEEHCATIONS--

EWNaree e

JExpReqlteml l

Basedd on table 11

|DBPMS_REQUESTEDITEM M

-Atfe&tóe ss and Coraüora �

UstofASflbutes s

ASSOCIATEDREQORDERID D
CODE E
DELIVERYDATE E
DESCRIPTION N
EARUESTENDDATEOFPRODUCTION N
EARLIESTSTARTDATEOFPR0DUCTI0N N

Figuree 4.11: Create enterprise EXP schema.

1 1 4 4 Designn and Implementation of the Federated Information Management System for VEs

4.. Define zero or more Dependent-EXPs for every Dependent-EXP defined above.
Thiss operation is equivalent to the previous one, except that the reference is
nott an EXP, but another Dependent-EXP. These schemas determine which at›
tributess will be made available for instance, to the nodes in the Enterprise level.

5.. Define the EXP/Dependent-EXP Set (Figure 4.12). This set groups the EXP
andd Dependent-EXPs that will specify the proper visibility levels for the dif›
ferentt kind of roles. The Create EXP/Dependent-EXP set window supports
thee creation of the export schema set. An EXP/Dependent-EXP hierarchy
(whichh represents the specific instance diagram for the export schema hier›
archy)) is displayed in order to show how EXP schemas are defined for each
databasee table, and how the Dependent-EXPs are based on the EXPs. Also,
thee EXP/Dependent EXP Set is displayed showing how the set is taking form
accordingg to what the user has selected or removed from the hierarchy. Finally,
thee SQL description of the chosen database-table, EXP schema or Dependent-
EXPP schema is also displayed on screen.

6.. Create the association Role/Export Schema. Each role in the hierarchy of roles
(definedd in Step 1) is associated with one EXP/Dependent-EXP Set (defined in
Stepp 5), so that every defined role is able to access only predefined information.
Thee advantage of associating every role with a EXP/Dependent-EXP Set is that
thenn it is easier to define different visibility levels for every actual VE partner.

7.. Assign an Export Schema to an Enterprise. This step associates an enterprise
withh one of the roles of the Role Schema hierarchy defined above, so that every

EBagggBEEiEl l
Sett Specifications - �� :� :

Se** \eet0m Matna JExpSetl

E&VDependantt B& Hieiaichy

 DBPMS_PRDDUCTI0NORDEP
BB 9 ExpProdOrderl

mm �xpP##*defi;f :
 ExpProd0rder2

ff DBPMS.REQUESTEDITEM
ExpReqlteml
BB - ExpReqltemll

II ExpReqlteml 11
00 ExpReqltem2
ExpReqltem3

ii OBPMS_REQUESTEDORDER
ExpReqOrdetl
SS ExpReqGrderU
ExpReq0fdet2
ExpSCI
ftft ExpReq3
Eii ExpReq31

BB ExpReq311
ExpReq3111 1

SQLL Desetiption of Chosen Schema -

MM MM

EXP/DD ependant EXP SeS,

ExpReqltemll l
ExpReqOrderll l

zJ J

ATTRIBUTES:: CODE, ENTERPRISEID.MATERIAL. NAME. OFRCIALNAME, ORDERS!
FROM:: E»pPfodOrderJ
CONDITIONS: :

Figuree 4.12: Create EXP/Dependent-EXP set.

file:///eet0m

4.5.. Federated Query Processing 115 5

nodee will be able to access specific information, according to the role that it
playss in the VE. The Create Enterprise EXP Schema window supports the
definitionn of the export schema for an enterprise. It allows the association of a
specificc enterprise (Enterprise ID) with a specific Role (Enterprise Role ID).

Afterr having followed this sequence of steps accordingly for each VE partner, the
accesss rights on local information would be properly defined at a given enterprise
forr all the other VE partners. Please also notice that since these steps are carried
outt independently and asynchronously at different VE enterprise nodes, there may
bee a need to notify other partners when the export schemas have been properly
definedd (although this is not needed if there is a fixed deadline agreed for this process
amongg the VE members). If necessary, this "notification mechanism" could be done
automaticallyy by the DIMS as described in Section 4.4.2. Then, the end users or
applicationss at different VE enterprise nodes can issue distributed queries on the VCL
integratedd schema described in Section 4.3.2, and the access rights defined at every
nodee will be respected. The evaluation of the distributed queries is accomplished by
thee Federated Query Processing mechanism, described in the next section.

4.55 Federated Query Processing

Thee main objective of the federated query processing (FQP) in DIMS is to support
seamlesss access to protected information that may be physically distributed over
differentt nodes of the VE network [74]. The FQP component enables user applications
(forr instance, the DBPMS module), to query some proprietary VE-related information
fromm other enterprises (for which the application is authorized), while hiding the
physicall data location details. Please notice that the federated queries are issued on
thee DIMS integrated VCL schema (described in Section 4.3.2), and that the authorized
accesss on the local data is always controlled by the FQP mechanism through the
exportt schema definitions described in Section 4.4.3. Furthermore, considering that
thee information stored in internal modules (e.g. ERP/PPC system) of the enterprises
iss constantly updated, the federated query processor in the DIMS can retrieve the
mostt up-to-date generated data from these modules, when necessary.

AA simple example of a federated query is the query issued by a human operator
att an enterprise who requests some information from other VE members. Another
federatedd query example can be related to the advanced VE coordination module,
thatt requires to access information from many enterprises. For instance, the coor›
dinatorr enterprise in the VE needs to access certain information (spread over many
nodes),, so that it can monitor the status and performance of VE nodes. Thus, the
coordinatorr enterprise (represented by for instance the DBPMS coordinator module)
askss its own DIMS for this information. For this purpose, the DIMS provides a set of
high-levelhigh-level functions based on the VCL interface standard for module interoperation,
soo that the enterprise DBPMS does not need to worry about low-level database access
mechanism/languagee details and/or the location of the data required to be accessed.

Inn order to explain the internal mechanisms and functionality of the FQP compo›
nentt of DIMS, it is necessary to first classify different kinds of queries that it processes.

116 6 Designn and Implementation of the Federated Information Management System for VEs

Inn the most general case, two kinds of federated queries may arrive at the DIMS of
ann enterprise, i.e. an internal query: a query arriving from the PPC or other VCL
moduless in the node, such as DBPMS; or an external query: a query arriving from
anotherr enterprise’s DIMS. Furthermore, there are two forms of internal queries that
needd to be handled. The internal query can be either a local query, which will be
answeredd without acquiring any information from other enterprises, or a distributed
query,query, which involves the retrieval of information from one or a specific set of other
enterprises.. In either case, the original federated query is processed against the DIMS
integratedd schema, through which the local and imported data is seamlessly accessed
fromm any higher-level application interacting with the DIMS.

Pleasee notice that in order to identify if the requested data at the query receiver
nodee has been properly granted to the query issuer, the FQP component must work
withh data definitions gathered and configured through the ESMT. Namely, FQP con›
trolss the access to the local data using the export schema definitions generated by
usingg ESMT, as described in Section 4.4.3.

4.5.11 Federated Query Processing Tasks

Thee processing of general federated queries can be summarized as follows: when the
queryy arrives at the DIMS, it is analyzed and decomposed into a set of single-node
subqueries,, each of which needs to be sent to only one site (VE node) to be processed.
Afterr that, the results of the sub-queries are gathered and merged into the final result.
Iff necessary, the FQP module interacts with the corresponding internal enterprise
moduless e.g. ERP/PPC, to retrieve up-to-date local production data, during this
process. .

Ass will be described later in this section, given the complexity associated with
thee FQP subtasks and the need to involve several VCL modules to provide the query
results,, the FQP process heavily relies on the workflow management features offered
byy the LCM module of VCL.

Inn order to better understand the internal operation of the FQP module in DIMS
(andd also its relationship with the ESMT), Figure 4.13 describes the main subtasks
off the federated query processing. These subtasks are described next, starting with
thee query processing steps that take place at the query issuer node (Node A in Fig›
uree 4.13):

1.. Query Reformulation. The FQP module provides a high-level function library
thatt contains both general and application-dependent functions for the DIMS
clientt applications. Besides those functions, a friendly user interface has been
developed,, which enables the end-user to issue certain queries by selecting menu
items.. In general, the query requesters do not need to worry about the low-level
databasee access language and details, when using the DIMS high-level functions.
Whenn one of these library functions is called, the first step in the FQP is to
parsee it and reformulate it into an internal query format, depending on the
parameterss specified for every function.

4.5.. Federated Query Processing 117 7

Fromm PCL application or end-user - Node A

Query y
ReibnnulaticTO O

DIM SS - Node A

Query y

Local l
Subquery y
Evaluation n

fAF I I
!! ubquery Reque*

Pulll PPC Data

Subqueryy Result
Merge e SS ibquery Answer

q-result t

Too PCL application or end-user - Node/

AC 1 1

nn • D

D I M S - N o d ee B
Export t
Schema a
Manager r

H H ACC 2

Query y
Rewritingg &
Locat t
Subquery y
Evaluation n

TAPI I

Pulll PPC
Data a

Subqueryy Result
Transmission n

A CC 1: Workflow activities for sending/receiving DIM S to DIMS query messagt

A CC 2: Workflow activities for retrieving data from legacy system

Figuree 4.13: Federated Query Processing subtasks and interactions.

Queryy Decomposition. In this step the reformulated query is analyzed to de
terminee the specific VE partners involved in the original query. This can be
donee by analyzing the input parameters of the DIMS access services, such as
thee high-level functions and generic distributed/federated queries described in
Chapterr 3. The incoming query is then decomposed into a set of simpler sub-
queries,, so that each subquery involves the retrieval of data from only one VE
nodee at a time. Namely, each subquery needs to be sent to only one corre
spondingg partner to be processed locally at that side. Some subqueries may
needd to be processed locally at the node of the application that originated the
federatedd query, or may need to be sent to other nodes. It is also important
too point out again that the FQP mechanism operates on the integrated schema
describedd in Section 4.3.2. In PRODNET, all the nodes have agreed on this
commonn integrated schema, and as a result, it is not necessary to keep extra
informationn about different import schema structures at each node. Therefore,
theree is no transformation needed to be applied on the external queries before
theyy are sent.

Subqueryy Transmission. Here, the subqueries that need to be sent out to remote
nodess (external subqueries) are properly handled and transmitted. Furthermore,
thee external subqueries are coded according to an internal DIMS message struc
ture,, which contains: the type of message (subquery in this case), the query id,
thee id of the sender node, the id of the query receiver node, and the query itself.

118 8 Designn and Implementation of the Federated Information Management System for VEs

4.. Local Subquery Evaluation. The local queries in DIMS are evaluated on enter›
prisee data that is temporarily stored in the DIMS database. Depending on the
informationn request (a query parameter) the end user application can decide if
thee query should be evaluated against the data that is stored in the local DIMS
databasee at the point of evaluation, or if the up-to-date data must be pulled
outout from the PPC. In the first case, it is assumed that the PPC pushes the
informationn periodically when it is necessary and that therefore, the data in the
DIMSS database is up to date. In the second case, the local subquery evaluation
stepp must wait until the information is pulled from the PPC or until a time›
outt occurs. Please notice that the DIMS properly handles both PPC push/pull
mechanismss depending on the parameters specified by the query issuer applica›
tion.. Different workflow plans will be executed in each case, as will be explained
laterr in this section. Furthermore, the DIMS can also be configured to remove
unusedd data from the local database at some point during the execution of the
workfloww plans. For example, as the last step of a given VCL workflow plan
execution,, the LCM can notify the DIMS to delete some data that the PPC
mayy have temporarily stored for the processing of a given workflow event.

5.. Pull PPC Data. The DIMS can communicate with the local data sources of the
enterprise,, through a specific application programming interface (API). The
functionss in the developed API are executed within a workflow plan (controlled
byy the LCM module) that allows the retrieval of data from the internal database
system.. The API functions convert the internal results into the common data
formatt defined by the VCL interoperability approach. In this way, any internal
systemm of an enterprise can interoperate with the VCL components. Conse›
quently,, when it is necessary to apply the "PPC pull" strategy described in
thee previous step, the DIMS can get the up-to-date data from enterprise’s local
productionn system through the specific API, and store it in its internal database
temporarilyy during the processing of the query. As mentioned before, after this
stepp the modified external subquery or local subquery can be executed on the
dataa stored temporarily in the DIMS database.

6.. Subquery result merge. In this step, the data results for local and/or distributed
subqueriess are gathered and interpreted. This step must wait for the results
associatedd with the external queries that may have been transmitted to another
VCLL node. When all the expected results have arrived or a time-out event is
triggered,, the results are merged and returned to the originating application.
Thee mechanism through which the data is returned, can be synchronous or
asynchronouss as will be detailed out later in this chapter.

Furthermore,, the query processing steps that take place at the query receiver
nodess (e.g. Node B in Figure 4.13) are described next:

1.. Subquery arrival. An internal DIMS "dispatcher" thread is always active and
listeningg for incoming queries from other DIMSs. When an external query is
received,, a new thread is launched in order to initiate the local query processing

4.5.. Federated Query Processing 119 9

att the receiver node. The arriving external query is actually contained in a
DIMSS message according to the format described in the subquery transmission
stepp for the query issuer node.

2.. Query rewriting against Export Schema Definitions. The correct processing and
evaluationn of the subquery at the receiver node is crucial from the point of view
off secure data access. There is a number of steps that must be followed in order
too convert the incoming subquery into a local query that can be properly evalu›
ated.. As described earlier, the VCL schema definition is the same in all nodes.
Therefore,, any node can issue a query against the whole VCL schema. But
clearly,, the access rights of every node to the data that it can actually import
fromm a second node, are precisely specified in the export (individual) schema
definedd for it in the target node. Therefore, the arriving query will be evaluated
againstt the corresponding export schema. However, before this query evaluation
step,, the query specification first needs to be rewritten according to the partic›
ularr export schema definition. For example, the class names of the individual
viewss that ultimately implement the export schemas, will be definitely different
thann the actual class names specified in the incoming subquery. In other words,
sincee names of VCL integrated schema classes are the ones used by the incom›
ingg query, these names need to be replaced by the names specified through the
correspondingg local export schema. For this purpose, the FQP mechanism must
havee access to the information generated by the Export Schema Manager Tool.
Afterr the rewriting step, the query can be evaluated locally, and all the visibility
accesss constraints are preserved.

3.. Pull PPC data. This step is exactly the same as in the query issuer node (please
seee corresponding step above).

4.. Subquery result transmission. Once the result of the evaluation of the external
queryy is received, it must be transmitted back to the query issuer node as a
DIMSS message. The format of a DIMS query-result message contains: the type
off message (query answer in this case), the query id (the same that arrived with
thee DIMS query message), the id of the receiver node (the query sender), the id
off the query receiver node as message sender, and the result of the query itself.

Thee DIMS FQP also implements the mechanisms to properly handle the errors
andd exceptions that might eventually occur during the query processing steps. For
example,, the DIMS timeout mechanism properly handles PPC delays when updating
data,, as well as delays in other nodes when resolving an external query. In the case
off a failure in a single site or the communication links, some data will be unreachable
too the end user module. However, the end users should be allowed to access the
partiall information, which was successfully retrieved. In the DIMS federated query
processingg approach, the end user is informed about the incompleteness of the data
andd the incomplete query results are provided to him. Afterwards, the requesting
modulee or user can issue another query to try to access the unreachable part of
informationn again.

1200 Design and Implementation of the Federated Information Management System for VEs

Otherr approaches to the federated query processor design and development can
bee found in [174] and [95]. In these works, the query processing mechanism is de›
signedd and developed to support a general multi-database architecture where there is
aa central interoperable layer to handle global queries, and a component layer at each
databasee system participating in the federation. However, this general approach does
nott support all the VE environment requirements and peculiarities that have been
describedd in Chapter 3.

Itt should be mentioned that in the PRODNET project the DIMS-to-DIMS com›
municationn involved in some of these steps is not done directly. For the sake of
uniformityy of interactions, and to ensure the security and authenticity of informa›
tionn exchange among enterprises, the DIMS-to-DIMS communication is performed
viaa two other VCL modules, namely, the local coordinator module LCM (developed
inn PRODNET by the New University of Lisbon) and the communication interface
modulee PCI (developed by the ESTEC software company). The strategy used for
interactionss among DIMSs is consistent with the general VCL architecture, while at
thee same time the PCI advanced communication functionality is exploited. As such,
thee inter-DIMS messages among enterprises are always embedded within the PCI
messages. .

Pleasee also notice, that all the messages exchanged between VCL nodes are prop›
erlyy encrypted and secured by the PCI communication component of the VCL, apply›
ingg algorithms such as the DES, RSA, and digital signature for message authentication
(seee [119] for more details). The communication protocol parameters for exchanging
low-levell messages are also handled by this VCL component (e.g. using TCP/IP com›
municationn parameters). The PCI is also in charge of handling very large messages,
whichh may for example contain the results from the evaluation of a federated query.
Thiss component determines the best way to send large amounts of information along
thee network, embedded in VCL messages. Thus, the DIMS federated query processor
exploitss all these PCI features when passing the inter-DIMS messages.

4.5.22 Workflow Support for DIMS

Ass mentioned in the previous section, the DIMS in PRODNET does not use its own
"dedicated"" mechanism to communicate either with the legacy systems or with re›
motee DIMSs. Instead, the DIMS follows the common VCL approach, that exploits
thee facilities of the VCL communicator (PCI) and the VCL workflow manager com›
ponentss (LCM). Due to the involved complexity associated with FQP, the workflow
managementt facilities of LCM are used in order to coordinate the operations per›
formedd by multiple internal and external VCL components. To achieve this purpose
inn PRODNET, close inter-relations are created between the DIMS and LCM modules
off VCL as described in the next section.

Workflo ww support for federated query processing

Theree are several specific workflow plans designed for DIMS in collaboration with
thee LCM developers to support the FQP mechanism, including plans for: (1) send-

4.5.. Federated Query Processing 121 1

ing/receivingg DIMS-to-DIMS query messages; and (2) DIMS data retrieval from the
enterprise’ss ERP/PPC legacy system. These workflow plans are referenced as AC1
andd AC2 respectively in Figure 4.13. In the first case, sending DIMS-to-DIMS query
messagess can be generalized as sending/receiving messages between two enterprises
inn the VE (e.g. EDIFACT messages). Clearly, within each enterprise the specific
activitiess in these workflow plans can be defined and configured differently depend›
ingg on the business processes and procedures applied at every enterprise. The second
workfloww plan is defined for data retrieval from the legacy systems. Namely, it enables
thee DIMS to get data from legacy systems of the enterprise.

Figuree 4.14 represents an event-trace diagram that illustrates the complex se›
quencee of actions that need to take place among VCL components during the com›
binedd execution of these FQP workflow plans. In particular, the figure represents
thee flow of activities involved in the processing of a DIMS federated query initiated
byy the DBPMS. This particular query involves an inquiry about the status of the
requestedd orders, from the involved partners in a VE. The diagram shows the major
stepss in the activity flows for the part of the query processing where the coordinator
nodee (Enterprise A) sends a subquery to one of the remote nodes (Enterprise B), and
requestss the most recently updated data (order status) from its PPC.

Thee sequences in this diagram can be summarized in the following list. First, the
stepss at the sender node where the query is generated (Enterprise A) include:

•• DIMS processes the federated query and calls VCL_SendExternalQuery core

"Enterpris ee A HH h

arrivin g g
query y

qjfer y y
result result

,12}} LCMJjendKxternalDimsQue'y

(3)) PCI„DeliverMessjge

(3)) Service Answer

((2'i Service An s_wer_

ICM_AnsweringExternuIDimsQuerv v
14)) PCL_Rcco.LinisinL'\!•---.!•;•••

__ '4.1 Service Answer

(5)) DlMSJ^eceive.Messuge
|j3ï^ëry7i-ëArïsï ï

DlMS_GetPciMss Conten DLM M Ms s

Servicee Ans we

•• Enterpris e B -

LCM_RccL'iveDimsMesss lire

(1)) PCL_RecognisineMf

DServicee Answer

^12)) PCJJDeliyerMessag
13)) DIMS GetPciMsgC pment

J}>J}> ServiceAnswer

(2)) ServiceAnswer

^ (11 i ServiceAnswer̂

(2)LCM_SendIi i

L(3)Servicee Answer

__ i = L̂ j-'IYJ tsAn_s we t

J.4)J.4) LCM_SendPimsQ

WServiecAngwgL L

Figuree 4.14: In te rac t ions of VCL in ternal modu les for F QP suppo r t.

122 2 Designn and Implementation of the Federated Information Management System for VEs

servicee with datakey of the message kl. This core service aims at sending an
inter-DIMSS subquery message, embedded in the PCI message format, to one
remotee node.

•• LCM calls PCLDeliverMessage, to send the message which is identified by DIMS
too remote node Enterprise B.

•• PCI requests the message content from DIMS by calling DIMS_GetPciMsg-
Contentt service and builds the PCI message.

•• PCI sends the message to the remote node and calls LCM_ServiceAnswer.

•• LCM calls DIMS .Service Answer to inform that the inter-DIMS message is sent.

Furthermore,, at the remote node (Enterprise B) the steps include:

•• PCI receives the message and puts the content of the message in DIMS by
callingg DIMS. PutPciMsgContent service.

•• PCI asks LCM the VCL_RecognisingMessage service with the datakey of the
comingg message, k2

•• LCM interprets that the message is inter-DIMS message and calls DIMS_-
ReceiveMessage. .

•• DIMS processes the message in its database and invokes the VCL_SendInternal-
DimsQueryy core service to ask the PPC to update the requested data in the
DIMS. .

•• LCM asks PPC_PutData to perform the DIMS request.

•• PPC stores/updates data by using DIMS internal services and calls LCM_-
ServiceAnswerr to inform DIMS about the updated data.

•• LCM calls DIMS -Service Answer so that DIMS knows that PPC finished the
requestedd task.

•• DIMS evaluates the query and embeds the result in the inter-DIMS message and
callss LCM_SendDimsQueryResult core service with the datakey of the message,
k3.k3. This core service aims at sending the answer of external query to the query
issuerr (Enterprise A).

Finally,, the steps that take place at the node Enterprise A, when the query results
aree sent back, are:

•• PCI receives the message and puts the content of message in DIMS by calling
thee DIMS. PutPciMsgContent service.

•• PCI asks LCM VCL_RecognisingMessage service with the datakey of the mes
sage,, k4-

4.5.. Federated Query Processing 123 3

•• LCM interprets that the message is inter-DIMS message and calls DIMS_-
Receii veMessage.

•• DIMS parses the message in its database, processes the result and if all the
resultss have arrived then the DIMS returns the answer.

Dataa Availabilit y Notification s for the VE coordinator

Ass another example of workflow management applications to support DIMS-related
functionalities,, let us consider the case in which local systems need to inform the
VEE coordinator component about the availability of new specific local data. Namely,
sincee the production-related order information within a VE is generated individually
inn different VE nodes depending on their own local production planning, the VE
coordinatorr needs to be informed about the availability of such information in every
VEE node. Figure 4.15 represents the approach followed by DIMS, which allows the
legacyy systems of the VE node to inform or notify the VE coordinator about the
availabilityy of new production information.

Ass described in the example below, the PPC of Enterprise A stores the notification
inn DIMS and informs LCM (that asks PCI) to send it to the coordinator Enterprise B.
Enterprisee B receives the notification and the VE coordinator module (DBPMS) will
pickupp the notification message. After this process, the VE coordinator starts asking
federatedd queries to the node's DIMS in order to gather the data necessary for the
supervisionn of the VE nodes.

Thee general steps of informing the VE coordinator are provided in the following
listt to have a better understanding of this diagram. First, let us consider the steps
thatt take place at Enterprise A:

COORDINATOR R

PPC C DIMS S
I_l_pims_PutDbpmsNotificatio o

LCM M

ServiceAnswer r

PCL_InformRemoteDbpm m

ServiceAnswer r

PCI I

tz*n n PCl_DeliverMM ;ssage

ENTERPRISEE A

DIMS_Gett 'ciMsgContent

ServiceAnswer r

ServiceAnswer r

PCI I LCM M

DIMS_PutPcc MsgContcnt

|P P viceAnss wei

DBPMS S

, , . .,, n , - (ServiceAnswer
PCL_Recoo ̂ nisingMessaj ;e

Dbpms_Infbrmm Notification

== !
Servicee An swe:

ENTERPRISEE B I

DIMS S

DIMS_GetDII pnfsNotif.

ServiceAnswer r 4 4

Figuree 4.15: VCL Module interactions for informing VE coordinator.

124 4 Designn and Implementat ion of the Federated Information Management System for VEs

•• When the production information of VE order is available in PPC, PPC calls
DIMS_PutDbpmsNotification. .

•• After DIMS stores the PPC notification given in the input parameter of
thee DIMS_PutDbpmsNotification service, it answers this request with the
datakey(fc-Z)) of the notification in the DIMS database and also the "location of
thee coordinator".

•• If the coordinator is the local node, PPC invokes the VCL JnformLocalDbpms
whilee passing the DIMS datakey (kl). Otherwise, it invokes the VCLJnform-
RemoteDbpmss (in Figure 4.15, the coordinator is a remote node).

—— VCL-InformRemoteNotification

** LCM receives the VCL JnformRemoteDbpms core service and calls the
PCI_Delii ver Message, to send the notification message to the coordina
torr node (Enterprise B).

** PCI requests the message content from DIMS by calling the DIMS_-
GetPciMsgContentt service with key kl and builds the PCI message.

** PCI sends the message to the remote node and calls LCM_Service-
Answer. .

** LCM calls PPC-ServiceAnswer to inform that the notification is sent.

—— VCL-InformRemoteNotification (not shown in the figure)

** LCM calls DBPMSJnformNotification.
** DBPMS asks DIMS to get the PPC notification by calling the DIMS_-

GetDbpmsNotificationn service.
** DIMS returns the notification data structure to DBPMS.

Consequently,, the corresponding steps at Enterprise B (VE Coordinator) include:

•• PCI receives the message and puts the content of the message in DIMS by
callingg the DIMS_PutPciMsgContent service.

•• PCI asks LCM the VCL_RecognisingMessage service with the datakey of the
comingg message, k2.

•• LCM recognises the message and calls the DBPMSJnformNotification service.

•• DBPMS asks DBPMS to get the notification that arrived in the PCI message
byy calling the DIMS_GetDbpmsNotification.

•• DIMS returns the notification data structure to DBPMS.

Otherr scenarios regarding the application of workflow management techniques to
supportt the DIMS information management tasks have been described in [76, 9].

Finally,, it can be mentioned that in the reference VCL architecture, the LCM
componentt actually works very closely with the DIMS component, and together they

4.6.. DIMS Internal Kernel Implementation 125 5

constitutee a kernel for information handling and coordination. In other words, the
relationshipp between DIMS and LCM is in fact "symbiotic", in the sense that they
establishh a mutually beneficial cooperative relationship in order to support different
VCLL functionalities. Namely, the DIMS provides LCM with specific information man›
agementt functions that support the proper flow of data between the VCL components
involvedd in the execution of a given workflow plan.

4.5.33 FQP End-user Interface

Besidess the FQP services that the DIMS offers for other VCL components and internal
enterprisee modules, a user interface is also developed that demonstrates the advanced
functionalityy of FQP and how the FQP works in conjunction with the Export Schema
Manager.. This user-friendly interface allows the end users to form a query by selecting
queryy parameter items from a dialog window. For example, one of the main users of
thee federated query processing is the person in charge of the VE coordination and
monitoring.. However, any other user can send different requests to the DIMS FQP
componentt by using this interface. Figure 4.16 shows a snapshot of the FQP interface
throughh which the end user can retrieve different data fields of specific production
orderss from several VE partners within a given VE.

4.66 DIMS Internal Kernel Implementation

Thiss section addresses more specific design and implementation details regarding the
DIMSS Server Agent that was introduced in Section 4.2.2.

Request t

|GET_PRODUCTIONORDEF_»j j

V E N a a e e

|VE_Demoo H

Associatee laVatue:

d d
Fieldss Selection

(Thee default selection is ALL a&riwues...

Enterr the value f of partner Akros

9300002 2 OKK |

Cancell |

Figuree 4.16: FQP demonstration interface.

126 6 Designn and Implementation of the Federated Information Management System for VEs

4.6.11 The DIMS Server Agent

Thee Server Agent is the gateway to the internal DIMS architecture, which encapsu›
latess all the specific information management services for the VCL modules (here,
"module"" refers to the system implemented for each VCL component). The Server
Agentt can be seen as a bi-directional gateway, in the sense that it also provides a
mechanismm that allows internal DIMS components to reach the service interface of
otherr VCL modules when required. For example, when internal DIMS components
requiree a specific service from another VCL module, the request will be canalized
throughh the DIMS Server Agent, so that both the in-going and out-going service re›
questt functionality between the DIMS and other VCL modules is encapsulated in the
Serverr Agent.

Too support this interoperation, a mechanism must be defined through which the
DIMSS services are made available to be requested by the other VCL internal modules
(ass well as ERP/PPC and DBPMS). The mechanism used by DIMS complies with
thee common mechanism that has been defined in the PRODNET project, in order to
achievee the required level of interoperability among all the VCL modules. Here, we
needd to take into account that the VCL modules in PRODNET have been developed
independently,, and that different development tools and implementation languages
havee been adopted by different partners of the consortium. Even though all the mod›
uless have been developed for the Windows NT operating system, there is still a very
widee range of possibilities for development environments and tools as represented in
Figuree 4.17. Since every partner has specific reasons or preferences for one or another
environment,, a common interoperation mechanism has been defined and agreed by
thee consortium. In this section, the implementation of this common interoperation
mechar r

PCI I
 Developer: ESTEC.Portuaal
 Borland C++

C C

LCM M
 Developer: UNINOVA.Portuaal
 MS Visual C++
 Windows Sockets

PPC C
•• Developer: CSIN. Portugal

 Borland C++
 Windows Sockets

STEP P
’’ Developer: PROSTEP. Germany

 Borland C++
ss sockets / CORBA

DIMS S
** Developer: UvA.Netherlands

 MS Visual C++
C C

EDI I
** Developer: LICHEN. France

 Delphi
E E

DBPMS S
 Developer: UFSC. Brazil
 Borland C++

C C

Figuree 4.17: Diversity of implementation environments and interoperation mechanisms used by the
developmentt teams of PRODNET modules.

4.6.. DIMS Internal Kernel Implementation 127 7

Inn order to reach the desired level of interoperability between the DIMS and the
otherr VCL modules, both DIMS and the other VCL modules should be extended
(wrapped)) with some sort of common interoperation layer, through which services
cann be reciprocally requested and answered. This layer couples with the associated
heterogeneityy problems among modules that are autonomous and independently de›
veloped.. There are some considerations for the design of such a layer, for instance:

•• Dynamic Integration. No compilation process should be required when the
DIMSS is installed in a company, or even when it is coupled to other modules.

•• Bi-directional interoperation. This means that the VCL modules should be able
too access the DIMS services, and viceversa.

Takingg these points into account, the interoperation layer is actually composed of
twoo main parts (see Figure 4.18): the VCL Module Interoperation Layer (developed
forr each individual VCL module) and the DIMS Interoperation Layer. Each of these
layerss consists in turn of two major components: the client interface component
andd the interoperation server (or proxy) component. Please also notice that the
DIMSS Interoperation Layer actually represents a part of the DIMS Server Agent
interoperationn functionality described before in this section. In order to understand
thiss model, it is important to keep in mind that the interoperation between the VCL
modulee and the DIMS is managed by a dual client-server interaction. In other words,
eachh interoperation layer needs to act both as client and server of the other layer
simultaneously.. For instance, the DIMS is able to request services from any VE
Cooperationn Layer Module (here called LM) , via the LM client interface (which is
dynamicallyy embedded in the DIMS interoperation layer). The LM client wil l in turn
contactt the LM interoperation server that will carry out the service request (at the
LMM side). Similarly, the LM needs to be able to request services from the DIMS via
thee DIMS client, which is dynamically embedded in the LM interoperation layer. In
thiss way, the DIMS client will in turn contact the DIMS interoperation server (proxy)
thatt wil l carry out the service request, as shown in Figure 4.18.

Inn the case of PRODNET, all LMs and DIMS client interfaces are provided as
DLLss that are linked to the corresponding main application. Each DLL supports the
interfacee to specific services that wil l be implemented in the associated interoperation
server.. The LM client DLLs must be dynamically loaded by the DIMS in order to
enablee the sending of messages from DIMS to that LM; similarly, the LM must load
thee DIMS client DLL in order for the LM to be able to send messages to the DIMS.
Thee DIMS and each LM also have to implement a communication mechanism in order
too receive messages from other modules through the corresponding client interface.
Thee protocol or mechanism adopted to support the communication between the client
interfacess and respective interoperation servers is totally dependent of the LM itself
andd the PRODNET approach does not impose any constraints about this.

Generall Functions for Interoperatio n among VCL modules

Ass it was already mentioned, the integration of DIMS and LMs via interoperation lay
erss involves a bi-directional "message exchange". Namely, the DIMS needs to request

128 8 Designn and Implementation of the Federated Information Management System for VEs

VCL L
Modulee 1 (LM1)

LM11 Interop. Layer

LM11 interop.
Server r

rtr\ rtr\
I I

DIMS S
Client t

Interface e

_ 4 _ _

VCL L
Modulee 2 (LM2)

LM22 Interop. Layer

LM22 interop.
Server r

DIMS S
Client t

Interface e

JJ "%_

VCL L
Modulee 3 (LM3)

LM33 Interop, Layer

LM33 Interop.
Server r

DIMS S
Client t

Interface e

....]] V

"\ \

LM1 1
Client t

Interface e

LM2 2
Client t

Interface e

LM3 3
Client t

Interface e

IZ Z
DIMS S

interop. .
Server r

DIMSS Interoperation Layer

DIMS-VCL L
modules s

.. Interoperation
rr Layer

DIMSS Server Agent

Figuree 4.18: General DIMS - VCL modules interaction.

servicess (and get the service result or answer) from the LMs, and conversely, the LMs
needd to request services (and also get the service answer) from the DIMS. Further›
more,, please notice that the communication mechanism to implement the functions
providedd in the client DLLs to request internal services, can be implemented in either
synchronouss or asynchronous manner. In the synchronous approach, the requesting
clientt application program will not proceed with its execution until the request is
fullyy processed at the server application side, and the service answer is returned as
parameterss of the service request itself. The service requests can also be satisfied
asynchronously,, which means that the issuing application program will send the re›
questt and will be "released’’ to do other tasks while the requested service is being
carriedd out at the server application side. Once the service request is accomplished at
thee receiver server side, the answer is sent (at some point) to the issuing application
viaa a specific function. Both approaches are supported by the general PRODNET
modell and the DIMS implementation, however in this chapter the asynchronous ap›
proachh is assumed and described since it is the most commonly used approach by the
PRODNETT VCL components.

Inn order to support the asynchronous approach, a pre-requisite for each LM (and
thee DIMS as well) is the inclusion, in the corresponding LM client interface, of a
pairr of services that are required for the bilateral interoperation mechanism. These
interfacee services are included in the client LM DLLs.

Thee basic declaration for both of the LM interface services is as follows:

<< LM-ID > _ServiceRequest (parameters)

<LMJD><LMJD> .Service.ServiceAnswerAnswer (parameters)

Inn these declarations, <LMdD> is a unique identifier for each LM, i.e. an acronym
usedd to uniquely represent each LM within a certain enterprise environment. The
LMJDLMJD is just a string of characters, for instance, it may be instantiated as: "Dims",
"Lcm",, "Step", etc. For both of the request/answer functions, the parameters comply

4.6.. DIMS Internal Kernel Implementation 129 9

withh a generic type definition that allows the transmission of elements of all the
necessaryy parameter types, as will be described in the next section. Furthermore, the
LMM DLL is named as VCL<XM_/D>.dll , and will be distributed together with a
headerr file (VCL<ZM1/D>.h) , containing all the data type and service definitions
thatt are required in order to use the corresponding library file. Furthermore, all the
VCLL modules will use a common header file (VCLDefs.h), that contains the common
definitionss that are shared among all the VCL modules.

Inn order to support the DIMS service request/answer mechanisms, the DIMS client
interfacee provides two services that comply with the same criteria established for the
LMM client interfaces as described above. Namely, the DIMS client interface provides
thee following two functions:

•• DIMS_ServiceRequest (parameters)

•• DIMS_ServiceAnswer (parameters)

Bothh services will be available too the LMs through a header file called VCLDims. h
andd a DLL named VCLDims.dll .

AA basic interaction scenario of the general DIMS-LMs integration model using
thee service request/answer functions is depicted in Figure 4.19. For instance, let
uss suppose that an LM needs to request a DIMS service. Then the LM wil l asyn
chronouslyy call the DIMS_ServiceRequest function of the DIMS client interface, which
iss distributed through the VCLDims.dll library file. After this invocation, the LM
iss released to continue with its regular execution, and the request is transparently
transferredd to the DIMS interoperation server at the DIMS interoperation layer side.
Then,, the DIMS Server Agent wil l contact the internal DIMS components that need
too be activated in order to satisfy the service request. When the DIMS service request
iss fulfilled, the answer is sent to the LM via the <LMJD>.ServiceAnswer function of
thee LM client interface that is included in the VCL<Z/Af_/D>.dll library file. This LM
clientt interface wil l in turn seamlessly contact the LM interoperation server, which
wil ll eventually trigger LM specific functionalities in order to process the service an
swer.. It is also possible that the DIMS requests a service from another LM, in which
casee an equivalent sequence of steps wil l be followed, achieving therefore the desired
full-duplexx asynchronous communication between the DIMS and all other LMs.

Parameterss of Service Request/Answer Functions

Thee parameters of the service request/service answer functions are specified using
twoo main predefined types: a token parameter type (VclTokenPtr), and a linked list
off VCL parameters of an generic VCL parameter type (VclParametersList), which
supportss all possible parameter types that are required to be exchanged among VCL
modules.. In other words, thee service function declarations for DIMS (considering only
thee asynchronic approach) are specified as follows:

•• int DIMS_ServiceRequest (VclTokenPtr token, VclParametersList inputParams);

•• int DIMS_ServiceAnswer(VclTokenPtr token, VclParametersList outputParams);

130 0 Designn and Implementation of the Federated Information Management System for VEs

(thee LM server may in turn
contactt internal LM services)

(thee LM service answer/request is
transparentlyy transferred to the
LMM server)

<LM>_ServiceRequestt /
<LM>_Servicee Answer

VCL L
Modulee (LM)

DIMSS Server

DIMS_ServiceRequestt /
DIMS_ServiceAnswer r

DIMS-VCLL modules
nteroperation n

yy Layer

(thee DIMS service answer/request
’transparentlyy transferred to the
DIMSS interoperation server of the
DIMSS Server Agent)

[[{the DIMS Server Agent directly interacts
\\ with the other DIMS components)

Figuree 4.19: DIMS - VCL module integration scenario.

Thee token parameter type supports the context definition for the execution of the
servicee request, and specifies among other fields:

•• A unique service request identifier (used for workflow management purposes).

•• The identifier of the VCL "core service" (i.e. specific VCL workflow plan) in
whichh context the specific service request is being issued.

•• The identifier for the VE and the VE enterprise node where the service request
iss issued.

•• The identifier of the specific "module service" that is being requested from the
correspondingg module.

•• A token creation timestamp. among other fields.

Furthermore,, the nodes of the VCL parameters list allow the specification of the
actuall parameters that the specific service being requested (or answered) needs. For
thee VCL parameter list nodes, a generic VCL data type has been defined from which
aa large set of specific data types can be derived and used in any module service.
Forr instance, the union type definition in the C language depicted in Figure 4.20.
illustratess some of the possible data types that have been defined for a VCL parameter
listt node.

Throughh the agreed parameter-passing mechanism, the DIMS can offer high-level
servicess to other VCL modules. For instance, to support the VE monitoring and
coordination,, specific DIMS services are used in PRODNET by the DBPMS module.
Onee such example is when the DIMS needs to receive specific information related
too for instance: the requested (purchase) orders, requested order items, and internal
productionn orders, that have been assigned to a given set of the VE partners (these

4.6.. DIMS Internal Kernel Implementation 131 1

unio nn VclGenericParamete r
VclResultConditio nn vclResultCondition ;
VclMessageConten tt vclMessageConten t , -
VclLoglnformatio nn VclLoglnformation ;
VclEnterpriseListNod ee vclEnterpriseListNode, -
PciDeliveryCondition ss pciDeliveryConditions ;
PciSecretKe yy pciSecretKey ;
PciAuditlnfoLis tt pciAuditlnfoList ;
PciAuditlnfoBuffe rr pciAuditlnfoBuffer ;
DimsDataKe yy dimsDataKey ;
StepDataExchang ee stepDataExchange ;
AttachedFileNod ee attachedFileNode ;
DimsQuerySpe cc dimsQuerySpec ;
LcmMessageContex tt lcmMessageContext ;
DbpmsRequestedOrderTre ee dbpmsRequestedOrderTree ;
DbpmsRequestedOrde rr dbpmsRequestedOrder ;
DbpmsRequestedlte mm dbpmsRequestedltem ;
DbpmsProductionOrde rr dbpmsProductionOrder, -
DbpmsDbpp dbpmsDbp ;
DbpmsDpp dbpmsDp ;
DbpmsSupervisionClaus ee dbpmsSupervisionClause ;
VclCompleteOrde rr vclCompleteOrder ;

/ ** defaul t * / Opaqu e opaque ;
} ; ;

Figuree 4.20: Partial definition of VCL parameter list node structure.

dataa structures will be further described in Section 4.7.1 of this chapter). A partial
definitionn for the requested order type is included in Figure 4.21.

Byy properly filling the VCL token and parameter structures of the DIMS service
requestt function, the VCL modules as well as other internal enterprise systems, can use
thiss kind of high-level functionality involving the retrieval of distributed information
thatt is physically stored along the VE network. In PRODNET, the DIMS offered
manyy specific services for different VCL and PPC modules involving a large variety
off data types, as will be described in Section 4.6.3 of this chapter.

Thee detailed description of the files and type declarations for the services and data
structuress mentioned in this section is outside the scope of this chapter. However,
theyy have been properly documented in [76].

Remotee Procedure Call Implementation

Thee two DIMS DLL functions to answer/request DIMS services have been imple›
mentedd using a specific Remote Procedure Call (RPC) mechanism [150]. This mecha›
nismm avoids the development of complicated low-level communication code that would
bee necessary in order to cope with the interoperability among DIMS and the other
VCLL modules.

Furthermore,, the RPC mechanism clients can make a function call that is actually
executedd in the server, which does not need to be running in the same machine as the
client.. All the parameter-passing details are managed internally by the RPC. As any

132 2 Designn and Implementation of the Federated Information Management System for VEs

typede f f
{ {
TimeStam pp plannedStartDateO f Produc t ion, -
TimeStam pp plannedEndDateOfProduction ;
TimeStam pp startDateOfProduction ;
TimeStam pp endDateOfProduction ;
TimeStam pp deliveryDate ;
floa tt priceTotal ;
DbpmsRoStatu ss orderStatus ;
floa tt orderProgress ;
TimeStam pp lastFeedback ;
unsigne dd in t manufacturingLeadTime ;
Identifier3 22 code ;
Identifier3 22 name ;
Identifier3 22 officialName;
Identifier6 44 description ;
Identifier3 22 operationResponsibility ;
Identifier3 22 operationAuthority ;

}} DbpmsRequestedOrder, -

Figuree 4.21: Sample definition for DBPMS requested order structure.

regularr function, the remote function may receive input/output parameters of any
built-inn or user-defined data type.

Therefore,, the two DIMS services included in the DIMS DLL actually perform a
calll to a remote procedure for which the implementation resides in the DIMS server.
Thee DIMS DLL acts in this sense as an RPC client that connects to the RPC server
(inn the DIMS server).

Finally,, it must be mentioned that the reliability and the performance results using
RPCC for the DIMS implementation were satisfactory considering the PRODNET
demonstrationn scenarios (these scenarios will be described in Section 4.7.2). In other
words,, the mechanism proved to be robust, efficient, and convenient to implement the
PRODNETT interoperation approach in the DIMS case. For more information on how
too use RPC, please see for instance [150].

4.6.22 DIMS Implementat ion Environment and Tools

Regardingg the specific implementation environment and tools that were used in
thee DIMS development, the system was implemented on Windows NT using Mi›
crosoftt Visual C++ (MVC++), Professional Edition, version 5.0 [101, 170, 134]. The
MVC+++ tools used to support the DIMS implementation include: Microsoft Foun›
dationn Classes (MFC), MFC Database classes, Microsoft ODBC driver for Oracle,
andd RPC support tools. The Oracle tools used in the DIMS implementation include
thee Oracle Enterprise Manager Utilities and the Oracle Data Loader, among others
[100,, 106]. Finally, it can also be mentioned that the tools and mechanisms mentioned
inn this section were successfully used during the development phase of the DIMS, and
contributedd to a satisfactory level of performance and robustness of the final system.

4.6.. DIMS Internal Kernel Implementation 133 3

4.6.33 Summary of DIMS Implemented Services

Theree is a wide variety of DIMS high-level services that were developed and made
availablee for other VCL and internal enterprise modules, based on the interoperation
mechanismm described earlier in Section 4.6. In PRODNET, the DIMS offered a total
off (roughly) fifty services for different VCL modules involving many varied parameter
dataa types. In Table 4.1, a brief classification and summary of these DIMS services
iss provided.

AA short description of each of these services is included in Appendix C of this
thesis.. Besides these high-level services, other kinds of lower-level data access services
(e.g.. through ODBC or Oracle package functions) could be used if necessary, in some
particularr scenarios. Nevertheless, the use of these low-level services is discouraged for

1.. Support services for LCM
1.1.1.1. Service DeleteDataElements
1.2.1.2. Service AttachFilesRef
1.3.1.3. Service GetDBP
2.. Support services for DBPM S
2.1.2.1. DIMS support for DBPMS workflow
2.1.1.. Services for DBPMS registers requests
2.1.1.1.. Service GetRequestedOrderTree
2.1.1.2.. Service GetRequestedOrder
2.1.1.3.. Service GetRequestedltem
2.1,1.4.. Service GetProductionOrder
2.1.2.. Services for querying DBPMS registers
2.1.2.1.. Service GetResultRequestedOrderTree
2.1.2.2.. Service GetResultRequestedOrder
2.1.2.3.. Service GetResultRequestedltem
2.1.2.4.. Service GetResultProductionOrder
2.1.3.. DIMS services for Informing DBPMS
2.1.3.1.. Service GetDBPMSNotification
2.2.2.2. Services for Dbpms Supervision Clauses
2.2.1.. Service Put�SupClaus e
2.2.2.. Service Get_Result.Dps_Sup-Clause
2.3.2.3. Services for getting DP information
2.3.1.. Service GetDPId
2.3.2.. Service GetDBPId
3.. Support services for PPC
3.1.3.1. Services for PPC purchase orders
3.1.1.. Service PutVclOrder
3.1.2.. Service GetVclOrder
3.2.3.2. Services for PPC generic "blobs"
3.2.1.. Service GetPPCMessageContent
3.2.2.. Service PutPPCMessageContent
3.3.3.3. Services for PPC'/Informing DBPMS
3.3.1.Servicee PutDBPMSNotification
3.4.3.4. Services for PPC putting DBPMS data
3.4.1.. Service PutReqOrdTree
3.4.2.. Service PutRequestedOrder
3.4.3.. Service PutRequestedltem
3.4.4.. Service PutProductionOrder

4.. Support services for EDI
4.1.4.1. Services for sending /receiving orders
4.1.1.. Service PutOrder
4.1.2.. Service PutOrderLines
4.1.3.. Service GetOrder
4.1.4.. Service GetOrderLines
4.1.5.. Service FetchOrderLine
4-2.4-2. DIMS services for EDI blob services
4.2.1.. Service PutBlob
4.2.2.. Service GetBlob
4.3.4.3. Services for EDI CONDRA services
4.3.1.. Service GetStepDataExchange
4.3.2.. Service PutStepDataExchange
4.3.3.. Service GetStepDataElements
4.3.4.. Service PutStepDataElements
5.. Support services for STEP
5.1.. Service PutStepDataExchange
5.2.. Service GetStepDataExchange
5.3.. Service PutAttachedFileNames
5.4.. Service GetAttachedFileNames
6.. Support services for PCI
6.1.6.1. Services for PCI message mgmt.
6.1.1.. Service PutPciMessageContent
6.1.2.. Service GetPciMessageContent
6.2.6.2. Services for PCI enterprise node
6.2.1.. Service PutVEPartner
6.2.2.. Service GetVEPartner
6.2.3.. Service PutPrivateKey
6.2.4.. Service GetPrivateKey
6.2.5.. Service PutPublicKey
6.2.6.. Service GetPublicKey
7.. Services for VE configuration
7.1.7.1. Service DIMS Load VE Configuration

Tablee 4.1: List of DIMS services implemented in PRODNET.

134 4 Designn and Implementat ion of the Federated Information Management System for VEs

thee reasons of functional generality, data access independence, and compatibility with
thee workflow management approach that provides coordination among VCL modules.

Forr a full description of the parameters and data types associated with these
services,, please see the UvA Technical Report on the implementation of the PROD-
NETT DIMS [76]. This technical report also includes the complete definitions of the
DIMSS internal database schema, the DIMS Oracle stored procedures and packages,
thee DIMS interface header files, and the DIMS end-user installation manual.

Inn order to show an example of the run-time interoperation of DIMS with other
VCLL components, and the on-line execution of some of the DIMS services listed
inn Table 4.1, Figure 4.22 and Figure 4.23 are provided in this section. Namely,
Figuree 4.22 illustrates a run-time service request call (for the PutVclOrder service)
fromm the ERP/PPC module to the DIMS component of VCL, in order to store the
informationn related to a purchase order that is being sent to another VE partner
enterprise. .

Furthermore,, Figure 4.23 represents an example of the run-time module interac›
tionn between the DIMS and the STEP components. In this case, the STEP module
requestss the DIMS service PutStepDataExchange in order to store the STEP in›
formationn that is required to send an EDI/CONDRA message to another enterprise,
whichh needs to analyze the technical information about a given product. Please notice
thatt these module interactions strictly follow the interoperation approach described
inn Section 4.6.

4.77 Application of DIMS Approach in PRODNET

Inn this section, the application of the main DIMS architecture components described
inn this paper is demonstrated in the context of a real PRODNET VE scenario. For
thiss purpose, the main features of the VCL integrated schema, the Export Schema
Managerr Tool, and the Federated Query Processor will be specifically applied to sup›
portt the VE coordination and monitoring tasks associated with the DBPMS module

(a)) Sending the Order (PPC) (b)Storingg the Order in DIMS

Appficaticnn Object Tools Help

JJ i l ff 0 [71
Connedd \ Refresh Properties ; Operations] \ "••.:-••-.>A "ivz,\

.-- .+} Oeters ReceiveEi -*'•'*• • ••
:: v j Orders Received ami Accepts Jsposftf ö’Tfó r

(?)) Orders Received and Rejectee ’ I ’ - - - ’ "*'•""
|| - jjfj Delivery Records Received̂ ~ ."

ÉÉ |öuïgoin g . " —~ _ ..!.’..."
B-OB-O <*<**s A r a b l e Smd p e p ^ ^ 1 ^ ^ . . .

ÉÉ & V˚JJerrioMralaö O - � � �

:: <£[orders iser*
’’ - pf Orders Accepted by Receiver 1 1

;OrMa@Oractee ^

Wri t ingg log in format ion t o : d : \P rog ra» File*s\Prodnet^
DIHS�ServiceRes3uessi ’ ’

-�� >> Hes DIHS Hessage < �-� ’
PciTokenn <FPC19991Ö2ØI25Ö25QÖ0 > <VE_Demo> <Oxbit* > <V
PcIParasiee t e r s L i s t HumFarantet eras: < 1 y
PCII CGHP1ETE_Ö̌ ?DE R r e c e i v e d , ' • • -•
«SOS! !
n«;mQrderI.ines:: <2>

DIHS„PUT„PCX._ORDERR rece ived
SUCCESS S
Grder ld:: 213
Sendingg Ppc Serv i ce Answer I

Ready y

Figuree 4.22: Example of run-time service request call from PPC to DIMS.

file://d:/Progra�

4.7.. Application of DIMS Approach in PRODNET 135 5

inn PRODNET. In addition, the DIMS support for the basic VE operation and the
protectedd exchange of distributed information among regular partners will also be
demonstrated. .

Therefore,, Section 4.7.1 introduces the DIMS information modeling and data ac›
cesss requirements associated with the support for VE coordination and management
off Distributed Business Processes (DBPs). Further, the application of the FQP and
ESMTT components to support these VE coordination requirements is demonstrated
inn Section 4.7.2, within the context of the general PRODNET VE scenario.

Pleasee notice that all the DIMS components and functionalities presented in this
sectionn were fully implemented within the COTM group of the University of Ams›
terdam,, and were properly tested and integrated with the other components of the
PRODNETT architecture developed in conjunction with the other European and Latin
Americann partners of the PRODNET consortium.

4.7.11 DIMS Support for VE Coordination and Monitoring

Thiss section first introduces the specific information modeling and management re›
quirementss to support DBP management in VEs. After this analysis, the general
designn of the DIMS integrated schema and high-level functionalities to support these
needs,, are also presented.

Applicatio nn of Distribute d Business Processes for VE Coordination

Thee monitoring and coordination of the VE tasks and activities is a crucial issue
duringg the operation phase of the VE life cycle. Given the fact that the VE establishes

(b)Storingg the Data in DIMS

(a)Sendingg Data to DIMS (STEP Module)

D I M S _ S e r v i e e R e q u e s t t
X)X) X MS�Ssi r v i c eHee jues t

Heww DIMS M e s s a g e
a i * g o > > P e l T o k e nn <STEP_DATŁ_REQyEST> <YE_De»o> <Hi

P e l P a r a m e t e r s X i s tt H u a i P a r a m e t e r s : <1>
< S t e p D a t a K e y x P r o d n e tt E x c h a n g e Documen t s><19 9 8 - 1 2 - 0

< r e ff e ï - e n c e > < p e d a l . s t p x ^ d e s c r i p t i o n l X v O l x 1 x 1 9 9 8
< r e f e r e n o e x G 2 . d x i x d e s c r i p t i o nn 2 X v Q 2 x 3 x 1 9 9 8 - 1 2
< r e { e r e i i c e > < 0 33 . dxf x d e s c r i p t i o n 2 > < v G 2 > < 3 x 1398�1 2

DIMS_PUT_STEP_DATA_EXCHAHGEE x e c e i w e d
D i s p a t c h i n gg P u t S t e p B a t a E x c h a n g e
S e n d i n gg S t e p S e r v i c e A n s w e r !f I
A f t e rr S e n d i n g S t e p S e r v i c e A n s w e r M l
S t e p D a t a K e y :: <S22>

� _ - . �� > t i e w DIHS M e s s a g e < - •
P c l T o k enn <STEP_DATA_PEQUEST> <VE_Demo> < H i r a l a go
P c l P a r a m s t e x - s X i stt N t u n P a r a m e t e r s; <1>
DlMS_ATTACHED_FII£_HOD£SS r e c e i v ed
< 3 > < C : x p r o d n e t N e K c h a n g e F ï l e s N Ö 3 . d uff >

MM5„PUT„ATTACHED_FIIES_HAKESS r e c e i v ed
D i s p a t c h i ngg P u t A t t a c h e d F i l e H a m es
SfeepDataKey;; <523>
S e n d i ngg S t ep S e r v i ce Answer S '!

Readyy « w - ^ ^

Figuree 4.23: Example of run-time interoperation between STEP and DIMS modules.

1366 Design and Implementation of the Federated Information Management System for VEs

aa set of global goals involving several partners, which in principle can be completely
autonomouss and independent, there must be a well-defined mechanism to coordinate
differentt partners activities towards these global goals. In PRODNET, the DBPMS
module,, strongly supported by the DIMS and the LCM modules, accomplishes this VE
coordinationn task. The DBPMS module provides a set of advanced functionalities that
havee been identified and developed in PRODNET to tackle some specific problems
involvedd in the coordination of VE distributed activities [99].

Thee VE monitoring and coordination approach in PRODNET is based on a ref›
erencee model for Distributed Business Process representation. This model has been
usedd in order to properly represent the abstract concepts of VE, VE member, and
itss associated complex production chain, in such a way that the coordination and
monitoringg of VE tasks is adequately facilitated and supported [99]. The model is
designedd and developed at the Federal University of Santa Catarina in Brazil, based
onn some concepts and definitions specified in [20], among other sources. The complete
descriptionn of the DBPMS operations and DBP data models are outside the scope
andd the aim of this chapter. However, in the next paragraphs, those aspects of the
DBPMSS data model that require support by the DIMS functionality, are analyzed.
Inn particular, the following concepts are defined for the DBPMS:

•• Business Process (BP): structure that models the set or pool of VEs within a
particularr enterprise node. Several VEs can be managed inside a given enterprise
nodee (one enterprise can be involved in many VEs simultaneously).

•• Distributed Business Process (DBP): represents a specific VE instance, irrespec
tivelyy of the particular service or products being addressed. A DBP is associated
withh the corresponding VE partners (Domain Processes) described below.

•• Domain Process (DP): represents a specific VE member enterprise (i.e. a given
VEE partner). A DP is also associated with a set of zero or more requested orders
e.g.. specific product purchase orders.

•• Requested Order (RO): represents a specific Requested Order from another VE
member.. A RO is composed of (a set of) Requested Items. The RO contains
detailedd commercial specification related to the purchase order. The purchase
orderr could correspond to any product or service being provided by a given
company. .

•• Requested Item (RI): represents a specific Requested Item (or line) associated
withh one RO. The RI contains descriptive information about the different items
off the purchase order. An RI is in turn composed of a set of Production Orders.

•• Production Order (PO): contains the detailed description of an internal pro
ductionn order to be supervised. It contains specific internal production chain
informationn that is specific to the ERP/PPC of every company.

•• VE-Intra: contains extra intra-organizational parameters used for an analysis
off the progress evolution of each production order in a given VE.

4.7.. Application of DIMS Approach in P R O D N E T 137 7

Inn reality, the coherent support and management of the above concepts results in a
flexibleflexible approach to cover the complicated distributed production chain interactions
involvedd in manufacturing VE scenarios. Every VE coordinator node has one or
moree instances of the described data model. In this way, the VE coordinator, e.g.
thee DBPMS system, can actually ask questions about the orders and monitor their
status,, progress, and the other information related to other partners in a given VE.

D B PP Distribute d Informatio n Management Requirements for DIM S

Inn order to properly support the distributed business process model described in the
previouss section, a set of distributed data structures and data access functions must be
developed.. It must be noticed that the DBP information needed to be handled by the
VEE coordinator, is actually spread along the network of the VE member enterprises.
Inn other words, in fact the requested order information with its associated requested
items,, production orders and VE-intra parameters, represents a distributed "requested
orderorder tree", that is constantly updated at the local site of each VE partner fulfilling
thee requested order. When a given VE coordinator needs to monitor some of the
informationn contained in this tree, it must be provided with the most up-to-date
information.. This means that the DIMS must implement an access mechanism in
suchh a way that the data stored in the internal module of a remote node, can be
seamlesslyy queried, and accessed by the coordinator node. An important issue to
keepp in mind in this process is that in the access to any information associated with
thee requested order tree needed for the advanced coordination modules, such as the
DBPMSS in this case, the physical location of the distributed data shall remain hidden
andd only known to the DIMS module.

Forr instance, the VE coordinator must be able to ask the following kind of queries
onn the DBP model involving several VE members:

•• Get all the DBP identifiers, i.e. which VEs are being coordinated at this node.

•• Get all the DP identifiers associated with a given DBP, i.e. which partners are
involvedd in a given VE.

•• Get all the RO identifiers for a given DBP.

•• Get the RO (including status/progress information) for a given RO in a DBP.

•• Get all the RO tree information for a given RO in a DBP.

•• Get the most up-to-date RI information in a DBP regularly.

•• Get the most up-to-date PO information in a DBP regularly.

Att the same time, while the distributed queries are issued, data access rights for
thiss kind of data retrieval must be always supported by the information manage
mentt component. Please notice that as mentioned previously in Section 4.4, the VE
coordinatorr wil l obviously have more access visibility to the data stored in a given
enterprise,, than a simple regular VE partner, due to the control, monitoring, and

138 8 Designn and Implementation of the Federated Information Management System for VEs

possiblyy auditing responsibilities (and access rights) of the VE coordinator. Also, we
needd to remember that the visibility levels on the local enterprise information must
bee individually defined and configured for every other partner in every VE.

Thee PRODNET DIMS not only supports the transparent access to the complete
DBPP distributed information model, but at the same time, it supports the autonomy
andd independence of every involved enterprise. For example, the DIMS VCL inte›
gratedd schema, previously introduced in Section 4.3.2, also considers the integration
off the distributed information of the DBP, and provides the DBPMS with a unified
andd coherent schema that hides all the details of the physical distribution of data,
whenn issuing the database queries. A partial and simplified description of the DIMS
integratedd schema designed for DBPMS support is illustrated in Figure 4.24. This
partt of the DBPMS integrated schema basically represents the information related to
thee data structures described for the DBP model in Section 4.7.1. Namely, the dia›
gramm clearly illustrates the relationship between DP and DBP, and the composition
off RO, RI, PO, and intra-VE structures as a requested order tree.

Pleasee notice that by allowing the DBPMS module (or other end-users) to execute
queriess and other specific high-level data access functions on this integrated schema,
thee ultimate goal of monitoring and coordination of distributed requested order trees
inn a VE is accomplished. Furthermore, the federated query mechanism will take care
off retrieving the proper up-to-date data from the corresponding remote PPC system,
whenn required. In addition, the corresponding export schemas and access rights will
bee defined through the ESMT and will be considered during the FQP tasks. In
thee next section, several example scenarios are given regarding the application of

11 X

DP P

Identifierló ó
TimeSiampp startDate
TimeSiampp endDate
ldenlifierMM descriptor

Identifierlóó id
ldentifier644 name
ldcntifier322 faxNumbcr
Identifier644 email
unsignedd int poBox

(Requested(Requested Order Tree)

Requestt edOrder

Ideniifierr 16 id
Identifier644 description
TimeSiampp prodStartDate
TimeSiampp prodEndDate
[dentifier644 description
Statuss status
Floatt progress
TimeSiampp delivery Date
I’loaii totalPrice

Requesledltem m

Identifierlóó id
Identifier644 description
TimeSiampp prodStartDatc
TimeSiampp prodEndDate
Identifier^^ description
Statuss status
Floatt progress

ProductionOrder r

Identifierlóó id
Identifier644 description
TimeStampp prodStartDatc
TimeSiampp prodEndDate
Identifier644 description
Statuss stains
Floatt progress
Fbatt unitPrice

VElntru u

floatt processingTimc
Identifier:^^ processingTimclr
floatt wailingTime
TimeStampp readyTime
floaii completionTime
Idenlifier32 2
complett ionTimeln
floatfloat floatTime
Idenlifier322 floatTimeln

Figuree 4.24: Partial high-level DIMS integrated schema for DBPMS.

4.7.. Application of DIMS Approach in PRODNET 139 9

bothh FQP and ESMT mechanisms to support general VE operation and coordination
activities.. These scenarios rely on the DBP models and operations described above.

4.7.22 DIMS FQP/ESMT Example Scenarios

Ass mentioned in Chapter 3, a big live demonstration scenario was prepared for the
PRODNETT project and presented at the Pro-VE ’99 international conference in Oc›
toberr 1999 in Porto (Portugal) [43]. This scenario involved the functionality of all the
VCLL modules of PRODNET. In the case of the DIMS, several specific demonstration
casess were also developed to show the main functionalities of its FQP and ESMT mod›
uless within the PRODNET context. The following sections represent some of such
scenarioo cases. In order to describe these cases, let us first recall the main PRODNET
demonstrationn scenario.

PRODNETT Demonstration Scenario

Figuree 4.25 represents a general overview of the PRODNET intercontinental VE sce›
narioo to be used as a reference for the DIMS demonstration cases. It presents the VE
purchasee orders that were requested and received on each node (see also [43]). Please
rememberr that in this VE (corresponding to the VE2 described in Chapter 3), Enter›
prisee 1 is a bicycle producer that requires bicycle pedals and bicycle frames to supply
itss internal production. Therefore, it issues a purchase order to Enterprise 2 for each
kindd of product. In order to attend the order for bicycle pedals, Enterprise 2 needs
pedall moulds and some raw material (in this case PVC resin), which are ordered from
Enterprisess 4 and 3 respectively, which are located in Brazil (Enterprises 1 and 2 are
locatedd in Europe). The bicycle frames are produced and supplied by Enterprise 2
itselff (for more details about this scenario, please see Chapter 3).

Forr the DIMS demonstration, we use the same data applied in the general PROD›
NETT scenario. As shown in Table 4.2, Enterprise 2 locally stores the production
informationn of bicycle frames, Enterprise 3 the production information of PVC resin,
andd Enterprise 4 the production information of pedal moulds. Further, let us bear in
mindd that Enterprise 2 is the coordinator in this scenario.

Bikee Frames f ^ \
Enterprisee 1 j and Pedals / E n t e r p r j s e 2

Figuree 4.25: Purchase orders flow in PRODNET demonstration scenario.

140 0 Designn and Implementation of the Federated Information Management System for VEs

DIM SS Case 1 - Definitio n of Access Rights for VE Partners

Thee main goal of this case is to demonstrate the definition and creation of the export
schemass at a given VE node. As explained in Section 4.4.3, this definition takes place
att every enterprise and is part of the Enterprise Configuration/Reconfiguration step.

Ass mentioned in Section 4.4.1, it is not desirable that all the enterprises involved
inn a VE have the same access rights to information of a specific node. For instance, an
enterprisee with a role of regular partner should not have access to the internal infor›
mationn managed by an enterprise with coordinator role. In this specific demonstration
case,, Enterprise 2 will then define restrained access rights on its local information for
thee enterprises with a "Regular Partner" role, i.e. Enterprise 3 and Enterprise 4.

Thee main steps in the general process to define the access rights are illustrated in
Figuree 4.26 and briefly described next (please notice that these steps are consistent
withh the methodology described in Section 4.4.3):

1.. Define the role hierarchy. For this first step, we assume that the basic Role
Schemaa hierarchy has been already created as described in Section 4.4.1, and
definedd as in Figure 4.26. This role hierarchy just defines the Coordinator and
thee Regular Partner roles.

2.. Definition of export schemas. This step includes the definition of EXPs
forr the database tables of the DBPMS integrated schema described in Sec›
tionn 4.7.1. These tables include the production orders (Dbpms-Production-
Order),Order), the requested orders (Dbpms-RequestedOrder) and the requested items
tabless (Dbpms-Requestedltem). Figure 4.26 also depicts the detailed definition
off the export schema for the production order table, namely the ExpProdOr-
derl.. The other export schemas are defined in a similar way for the other tables,
ass specified in the EXP hierarchy. The ExpProdOrderl definition determines
thatt all the attributes (’*’) of the local Dbpms-ProductionOrder table in Enter›
prisee 2 can be made available, for those rows associated with VE1 and regarding
thee information about pedals (see conditions VE = VE1, Name = ’Pedals’ in
Stepp 2).

3.. Define the EXP Set. The third step is the creation of the export schema set.
Thiss EXP Set groups the EXPs and/or the Dependent-EXPs that will specify

a)) Enterprise
Enterpriseld d
Enterprisee 2
Enterprisee 2

2 2

Name e
Frame e
Pedal l

StartDate e
l-Apr-99 9
2-Aug-99 9

EndDate e
l-Nov-99 9
5-Nov-99 9

Delivery y
3-Nov-99 9
8-Nov-99 9

Requested d

100 0

200 0

Produced d
50 0

100 0

Price e
10 0

2 2

b)) Enterprise
Enterpriseld d
Enterprisee 3

3 3

Name e
PVCResin n

StartDate e
l-Sep-99 9

EndDate e
8-Oct-99 9

Delivery y
3-Oct-99 9

Requested d
70 0

Produced d
40 0

Price e
1 1

c)) Enterprise
Enterpriseld d
Enterprisee 4

4 4

Name e
PedalMould d

StartDate e
l-Sep-99 9

EndDate e
8-Oct-99 9

Delivery y
3-Oct-99 9

Requested d
1 1

Produced d
1 1

Price e
2000 0

Tablee 4.2: Sample of Local production information at every VE member.

4.7.. Application of DIMS Approach in PRODNET 141 1

f 7 \\ Define Role
WW Hie Hierarchy y

(J)) Create EXP

' ' Createe EXP Set

(DO O

(^Coordinator""" "

C^Reg.. Partne

Name: :
DBB Table:
Attributes: :
Condition: :

ExpProdOrderl l
Dbpms__Production_Order r

NAMEE = Pedal’
VEE = ’VE1’ j

C~£\C~£\ Associate Exp Set
^ � ’’ wi th Role

s. s.
Name:: ExpSetl
EXPss to Add. ExpReqOrderl,

ExpReqlteml, ,
ExpProdOrderl l

ff VE Identification
Rolee Type:
Rolee Name:
Rolee Parent:

I^EXPss Set Id:

0. 0.
:: VE Demo ’

Partner r
Regularr Partner
Coordinator r
ExpSetll J

fl fl
Associatee Role with

EE partner

VEVE Identifier: VE_Demo
Enterprise:: Enterprise 3
Role:: Regular Partner

EXPP Hierarchy

Databasee Tables
LL>> Dbpms_Production_Qrder

L=C>> Dbpms_Requested_Order

L=>> ExpReqOrderl

l i i>> Dbpms_Requested_ltem

H >> ExpReqlteml

Figuree 4.26: Definition of Export Schemas.

thee proper visibility level that Enterprise 2 wants to have for enterprises with a
givenn role (to be defined next).

4.. Associate Exp Set with Role. In this step, the export schema set ExpSetl is
associatedd with the role for Regular Partner.

5.. Associate VE partner enterprise with Role. At last, it is necessary to specify
whichh is the role that Enterprise 3 plays in the Virtual Enterprise; in this case,
itt corresponds with the Regular Partner role. The same must be specified for
Enterprisee 4. In this case, both nodes have access to the same information.

Throughh the steps defined above, this scenario case demonstrates how the ESMT
componentt of the DIMS can be used at the VE setup time (initialization) to give
specificc information visibility rights to other partners.

DIM SS Case 2 - FQP Reinforcement of VE-Partner s Access Rights

Inn this DIMS demonstration case, it will be shown how the FQP mechanism works
togetherr with the ESMT access rights definitions specified in Case 1. Please notice
thatt according to the previous definitions, both Regular Partners (Enterprise 3 and
4)) have exactly the same access rights on the local information of the Coordinator.
Also,, notice that these rights do not grant full access to the local information, but
onlyy to the part of it related to the pedal product in this specific VE.

Inn this second case, the regular partners in the VE will ask information that is
distributedd over the VE network. For example, let us assume that Enterprise 3 is

142 2 Designn and Implementation of the Federated Information Management System for VEs

expectingg a delay in its local production plan, and therefore it would like to postpone
itss delivery date of the PVC resin. For this reason, it needs to ask Enterprise 2 for some
productionn information about the pedal, such as the delivery date in Enterprise 2, and
alsoo needs to check it against its own production information, so that it can compare
thee two delivery dates. Then, it could propose a new delivery date for its local
productionn considering the delivery date of the pedal in Enterprise B. Enterprise 4
mayy encounter a similar situation at some point of its mould production process, and
mayy as well issue distributed queries involving the retrieval information from other
remotee nodes.

Inn order to validate the definition of the export schemas at Enterprise 2 for Enter›
prisee 3 and Enterprise 4, the DIMS Browsing Interface of the Federated Query Pro›
cessorr can be used to execute certain specific queries on the VCL integrated schema.
Forr example, any of the Regular Partners (e.g. Enterprise 3 and Enterprise 4) can
askk the query GetProductionOrder to gather the production information about the
orderss in the VE. Thus, the DIMS at Enterprise 3 (or Enterprise 4), after sending
thee query to the other enterprises, and after collecting, processing and merging the
results,, will present the final results through the Browsing Interface.

Inn this case, Enterprise 3 (or Enterprise 4), as a Regular Partner node, will not
gett all the information from Enterprise 2, since this enterprise has defined the access
rightss in such a way that only the information of Pedals will be presented, as it is
shownn in Table 4.3b.

However,, if the Coordinator node (i.e. Enterprise 2) asks the same query, then
thiss node will be able to see all the local and distributed VE information, since
thee Coordinator does not have any restricted access, as it is shown in Table 4.3a.
Thiss result is consistent with the fact that the DBPMS module of the Coordinator
enterprisee may need to gather production order information from all the VE partners,
whichh are involved in producing a VE order, in order to check if there is any delay in
thee delivery date.

Pleasee notice that all the queries issued by the end users and modules are applied
onn the DIMS integrated schema defined for DBPMS, and that the FQP properly
collectss and merges the partial results of the sub-queries (sent to all partners), before
returningg the final result to the coordinator as described in Section 4.5.1.

a)) Results at Enterprise 2
Enterpriseld d
Enterprisee 2
Enterprisee 2
Enterprisee 3
Enterprisee 4

Name e
Frame e
Pedal l
PVCResin n
PedalMould d

StartDate e
l-Apr-99 9
2-Aug-99 9
l-Sep-99 9
l-Sep-99 9

EndDate e
l-Nov-99 9
5-Nov-99 9
8-Oct-99 9
8-Oct-99 9

Delivery y
3-Nov-99 9
8-Nov-99 9
3-Oct-99 9
3-Oct-99 9

Requested d
100 0

200 0

70 0

1 1

b)) Results at Enterprise 3 and Enterprise 4
Enterpriseld d
Enterprisee 2
Enterprisee 3
Enterprisee 4

Name e
Pedal l
PVCResin n
PedalMould d

StartDate e
2-Aug-99 9
l-Sep-99 9
l-Sep-99 9

EndDate e
5-Nov-99 9
8-Oct-99 9
8-Oct-99 9

Delivery y
8-Nov-99 9
3-Oct-99 9
3-Oct-99 9

Requested d
200 0

70 0

1 1

Produced d
50 0

100 0

40 0

1 1

Produced d
100 0

40 0

1 1

Price e
10 0

2 2

1 1

2000 0

Price e
2 2

1 1

2000 0

Tablee 4.3: Final results for Demonstration Case 2.

4.7.. Application of DIMS Approach in PRODNET 143 3

DIM SS Case 3 - Dynamic Modificatio n of Access Rights for VE Partners

Thee aim of this scenario case is to show how the access rights for an enterprise can be
changedd at any time during the VE operation, due to for instance, changes in bilateral
agreementss or contracts among other reasons.

Followingg an approach similar to the export schema definition process illustrated
inn Case 1, Enterprise 2 can later limit the access rights for any other enterprise. For
example,, let us assume that now Enterprise 2 does not want to allow Enterprise 3
too see all the information about pedal, but only some part, since Enterprise 3 does
nott need to know the content of some fields related to specific internal production
processes.. For this reason, Enterprise 2 will make changes in the information visibility
rightss defined for Enterprise 3 by modifying the Export Schema associated to Enter›
prisee 3. Please notice that the changes on the visibility levels are only for Enterprise 3
butt not for the other enterprises with a Regular Partner role (e.g. Enterprise 4 will
keepp the same access rights).

Thee process to change the access rights is very similar to the previous case, except
thatt at the first step instead of creating an "EXP" schema, the "Dependent-EXPs"
(seee Section 4.4.3) need to be defined for the existing EXPs of the production or›
derss (ExpProdOrderl), the requested orders (ExpReqOrderl) and the requested items
(ExpReqlteml).(ExpReqlteml). For example, the Dependent-EXP for the EXP ExpProdOrderl in
Enterprisee 2 determines that only some attributes (e.g. Enterpriseld, Name, Descrip›
tion,, Delivery Date and Produced Quantity) can be made available to Enterprise 3.
Ass such, when Enterprise 3 asks through the DIMS Browsing Interface for the Get-
ProductionOrderProductionOrder query, to gather the production information about the orders in the
VE,, only the specified attributes related with ’Pedals’ will be received from Enter›
prisee 2 (see Table 4.4). In other words, the information for the StartDateOfProduct,
EndDateOfProduct,, RequestedQuantity, PricePerUnit attributes for Enterprise 3 will
nott be accessible. At the same time, Enterprise 4 is still able to access the entire set
off information.

Thee DIMS scenario cases presented in the previous sections, demonstrate how
thee ESMT tool of the DIMS can be used at the VE creation and set up phase to
definee specific information visibility rights to other partners, and also show how the
informationn access rights for other partners can be dynamically changed during the

a)) Results at Enterpris e 3
Enterpriseld d
Enterprisee 2
Enterprisee 3
Enterprisee 4

Name e
Pedal l
PVCResin n
PedalMould d

StartDate e

--
l-Sep-99 9
l-Sep-99 9

Endd Date

--
8-Oct-99 9
8-Oct-99 9

Delivery y
S-Nov-99 9
3-Oct-99 9
3-Oct-99 9

Requested d
200 0

70 0

1 1

Produced d
--
40 0

1 1

Price e
--
1 1

2000 0
b)) Results at Enterpris e 4
Enterpriseld d
Enterprisee 2
Enterprisee 3
Enterprisee 4

Name e
Pedal l
PVCResin n
PedalMould d

StartDate e
2-Aug-99 9
l-Sep-99 9
l-Sep-99 9

EndDate e
5-Nov-99 9
8-Oct-99 9
8-Oct-99 9

Delivery y
8-Nov-99 9
3-Oct-99 9
3-Oct-99 9

Requested d
200 0

70 0

1 1

Produced d
100 0

40 0

1 1

Price e
2 2

1 1

2000 0

Tablee 4.4: Final results for Demonstration Case 3.

144 4 Designn and Implementation of the Federated Information Management System for VEs

VEE operation time.
Pleasee also notice that the information retrieval in all these scenarios takes place

accordingg to the FQP steps and workflow activities described in Section 4.5, thorough
whichh several VCL modules (e.g. LCM, PCI, DIMS, DBPMS) and external modules
suchh as the ERP/PPC, work together in order to satisfy a federated query issued on
thee DIMS integrated schema.

4.88 Extensions and Future Work

Althoughh the research work presented in this chapter can be extended in many di›
rections,, this section principally focuses on some possible extensions for the ESMT
designn and implementation. In particular, the concept of export schema templates,
andd a mechanism to automatically create export schemas based on VE contract and
supervisionn clauses information, are introduced in this section in the context of the
PRODNETT approach. Further extensions will also be suggested in Chapters 5 and 6
off this thesis.

Pleasee notice that in general, issues related to the formalization of the interactions
amongg VE partners in terms of contracts and supervision clauses represent an active
fieldfield of research. For example, regarding other approaches related to VE contract
management,, in [88] an approach towards automation of contract match making is
described,, where standard form contracts and standard contract clauses are proposed.
Inn [122], contracts are used to specify the roles and relationships among "objects",
suchh as enterprise objects. However, the approach presented in this chapter exhibits
uniquee features towards the automatic reinforcement of the contract and supervi›
sionn clauses via the definition of fine-grained access rights based on export schema
definitions. .

4.8.11 Export Schema Templates

Besidess the concept of role defined in Section 4.4.1, there are other mechanisms that
couldd simplify the task of export schema definition for a specific VE partner. For
instance,, the concept of "export-schema-set template" can be introduced. Such tem›
platess represent a predetermined VCL export schema set, which will be used to create
neww export schema sets with similar characteristics. The idea of the template is to
capturee the general descriptions of certain VE member roles; for example, a default
regularr VE partner, or a default VE coordinator. In this way, a set of templates (built-
inn default descriptions of general export schema sets) are pre-defined and stored in
DIMS,, and the creation of new export schema sets can be carried out based on these
profiles.. A constructor function for an export schema set template would include a
listt of parameters that would be used to create the particular export schema set in›
stance.. The concept of template suggested here is similar to the use of class templates
handledd in object-oriented programming languages such as C++ [126].

Ass a simple example of template definition and instantiation, please see Fig›
uree 4.27. In this figure, a template for export schema sets is defined, where it is

4.8.. Extensions and Future Work 145 5

possiblee to specify parameters for the VE identifier and the client (VE member) iden›
tifier.. If many export schema sets present a given "pattern" such as the characteristics
definedd for this template, then the template can be used many times to create any
numberr of export schema instances. Please notice that a template could be based on
otherr template definitions, giving place to the concept of dependent templates.

Otherr applications of the concept of "templates" and "roles" applied to VE mod›
elingg can be found in [122]. In that approach the template refers for instance to the
specificationn of the common features of a collection of objects of a particular type e.g.
enterprises,, so that other object collections can be instantiated using it. These other
definitionss of roles and templates are related to our suggested approach; however the
emphasiss in that work is on formally modeling the general characteristics, behavior
andd interactions among abstract entities involved in a VE, while our emphasis is on
thee specific application of these concepts to the definition and support of the visibility
levelss for information exchange among the VE partners.

4.8.22 Automatic Creation of Expor t Schemas

Att the VE creation time, the task of defining initial export schemas for every VE
partnerr can be automated to a great extent in some specific cases. Based on the
functionalityy offered by the ESM of DIMS and on VE contract-related information,
aa specific procedure can be developed that takes advantage of this information and
thatt automatically generates the export schemas for every VE partner. In order to
seee how this could be supported, it is necessary to reference some of the steps involved
inn the VE creation phase, as described in [39].

Pleasee notice that the definition of access rights based on the concept of roles given
inn Section 4.4, corresponds in reality to the definition of the proper export schema set
forr every other partner. Also, notice that the supervision clauses that are distributed
byy the VE coordinator (see Section 4.4.1), can be formally and precisely modeled by
dataa structures, and they can be distributed for example, as a text file that can be
parsedd locally at every node. For instance, the data associated with a supervision

Exportt Schema Set
Templatee definition

InstanceTemplateInstanceTemplate ("TS1", "ve12", "clientl")

(EXPP Schema template)

tableName:: Order
templateName:: T1
selectSpec: :
fromSpec:: Order
whereSpec:: ve=<VEID>
andd clientld = <CLIENTID> /

/ (E X PP Schema template) ~\

tableName:: Product
templateName:: T2
selectSpec:: *
fromSpec:: Product
whereSpec:: id in

ii (select productld from T1)

(Singlee Schema Set Template)

Parameters:: <VEID>, <CLIENTID>)
jemplateSetName:: TS1

Exportt Schema
Sett Instance

TT (EXP Schema) J

tableName:: Order
physicalViewName:: tv1
selectSpec:: *
fromSpec:: Order
whereSpec:: ve=’ve12’
andd client = ’clientl’ j

ff (EXP Schema)

tableName:: Product
physicalViewName:: tv2
selectSpec:: *
fromSpec:: Product
whereSpec:: id in (select

V^productldd from tv1) y

ff (Single Schema S e t T \
((PCLViewID: pvl J

Figuree 4.27: Export Schema Set template instantiation example.

146 6 Designn and Implementation of the Federated Information Management System for VEs

clausee for a specific production order could indicate the information that needs to be
madee available to the VE coordinator (see also [99]). This information can include
thee identifier of the production order, the real and planned dates for starting and
endingg the production, the delivery date, the status of the order production (e.g. in
progress,, delayed, completed), etc. Therefore, the supervision clause for a production
orderr can be modeled by a C-like structure as shown in Figure 4.28.

Inn general, if the data structures describing the supervision clauses are commonly
definedd in advance and are well-known to all partners of a given VE, it is possible to
createe a set of predefined export schema templates (see previous section) for specific
typess of supervision clauses. These templates can be instantiated with parameters
whichh values are extracted from the supervision clauses’ information. For instance,
iff the supervision clause specifications are distributed as a text file, then this file can
bee parsed and processed to determine the parameters for the construction functions
associatedd to specific "export schema templates". Subsequently, when the templates
aree instantiated, the actual export schema sets for every VE partner are created
automatically.. Once the export schema sets are defined, the operation phase of the
VEE can start since the proper visibility levels for information are already properly
definedd according to the contract and supervision clauses. Clearly, if it becomes
necessary,, a human operator can modify the generated export schemas at any time
duringg the VE life cycle. This feature is mandatory to be provided for VE evolution.

4.99 Conclusions

Inn order to support the wide variety of distributed information management require›
mentss identified after the extensive analysis of the VE paradigm, the federated ar›
chitecturee of the DIMS has proven to properly support the cooperative information
sharingg and exchange, the enterprise autonomy, and the visibility levels and access
rightss for exchanged data among the VE partners. In this way, the general federated
databasee architecture concepts and principles have been specifically tailored in the
DIMSS design to handle the complex interoperability and information management
requirementss set by industrial manufacturing VEs and their associated SMEs.

Inn this chapter, the major components of the DIMS architecture were described
inn details, namely: the federated VCL integrated schema, the DIMS Export Schema

typede ff struc t
{ {

Identifie rr VEid ;
Identifie rr VEPartnerld ;
Iden tt i f ie r iden t i f ierReque s tedOrde r , -
Boolea nn requiresDeliveryDate ;
Boolea nn requiresPlannedStartDate ;
Boolea nn requiresRealStartDate ;

}} RequestedOrderSupervisionClause ;

Figuree 4.28: Partial data structure definitions for requested-order supervision clauses.

4.9.. Conclusions 147 7

Managerr Tool (ESMT), the Federated Query Processor (FQP) and the DIMS Server
Agentt component. In particular, it was described how these components of DIMS
togetherr support the secured import /export of information among the federated nodes
inn virtual enterprises. Some conclusions about these components follow below:

•• The VCL integrated schema of the DIMS federated architecture properly
achievess the common representation and integration of both local and dis
tributedd VE information, while supporting the expected data location trans
parencyy for end user, the site autonomy, and the access security among other
requirements. .

Thee Export Schema Manager Tool properly supports the definition of fine
grainedd visibility levels and access rights defined locally at every node to de
terminee which other VE partners are allowed to access which part of the local
information.. The export schema hierarchy used by ESMT adequately supports
thee definition of information access rights based on the partner roles and rela
tionshipss established in the VE through legal contracts or bilateral agreements
amongg VE partner enterprises. In addition, the ESMT incorporates advanced
userr interface graphic elements and provides a comprehensive and friendly en
vironmentt for the end users.

•• The federated query processing mechanism developed for the DIMS provides
controlledd access to data spread over the nodes of the VE network, with proper
respectt of the exported data definitions (export schemas) and the hierarchy
off roles played by each VE node. The FQP is a generic DIMS feature that
provedd to adequately support the complex management of distributed business
processs information involving several VE enterprises, which is required for VE
coordinationn and monitoring purposes.

•• The DIMS Server Agent component defines and implements an interoperability
approach,, which properly supports the interaction between the DIMS kernel and
thee other VCL modules and enterprise internal systems. Since the DIMS Server
Agentt was implemented using Remote Procedure Call capabilities, it provides
aa high degree of flexibility for future extensions, and at the same time it allows
thee invocation of the DIMS services from physically distributed machines.

Thee application of these components in real case scenarios was presented, con
sideringg the general PRODNET VE demonstration scenario. Please notice that all
thee DIMS components and functionalities presented in this chapter were fully devel
opedd at the CO-IM group of the University of Amsterdam, and were also tested and
successfullyy integrated with the other VCL components.

Itt can also be mentioned that the combination of the approaches for feder
ated/distributedd database information management and workflow management tech
nologyy substantially contributed to tackle the complex interactions among and inside
thee VCL nodes to support the VE functionalities. For example, a few specific scenar
ioss were described in this chapter, addressing how the implementation of the DIMS

148 8 Designn and Implementation of the Federated Information Management System for VEs

federatedd architecture can benefit from workflow plan specifications. Conversely,
thee workflow management engine can also benefit from the distributed information
managementt services offered by systems such as the DIMS.

Furthermore,, the current DIMS implementation provides support for a large num›
berr of services for different VCL components and internal enterprise system. There›
fore,, the DIMS acts as a real data backbone supporting the diverse VCL functionalities,
andd ultimately supporting the global VE operation itself.

Inn addition, some directions in terms of future work regarding the ESMT com›
ponentt were introduced in this chapter, including the management of export schema
templates,, and the automatic creation of enterprise export schemas. These extensions
wouldd greatly facilitate the task of defining individual export schemas for each VE
partner. .

Finally,, it can be mentioned that the implemented DIMS module satisfies the large
sett of information management requirements that were identified within the context
off the PRODNET project and its target SMEs, and provides a solid platform that
cann also be extended in order to address future VE life-cycle support enhancements
inn addition to the current reference scenarios.

