Approximation on a disk IV

de Paepe, P.J.I.M.

Published in:
Indagationes Mathematicae

DOI:
10.1016/0019-3577(96)81761-7

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Indag. Mathem., N.S., 6 (4), 477–479

December 18, 1995

Approximation on a disk IV

by P.J. de Paepe

Faculteit Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, the Netherlands

Communicated by Prof. J. Korevaar at the meeting of January 30, 1995

ABSTRACT

It is shown that on closed disks D around the origin in the complex plane and for every integer $m \geq 2$, not every continuous function on D can be approximated uniformly on D by polynomials in z^m and $(z/(1 + z))^m$.

In a series of papers [1], [2], [3] the following situation is investigated. Let the function g be defined in a neighborhood of the origin in the complex plane, of class C^1, with $g(0) = 0$, $g_z(0) = 0$, $g_z(0) = 1$, and such that z^m and g^m separate points near 0 for some $m \geq 2$. Let D be a small closed disk in the plane, centered at the origin. Is it possible to approximate every continuous function on D uniformly on D by polynomials in z^m and g^m? In [2] we have shown that the answer no is possible for $m = 2$. For a large class of functions g the answer is yes ($m = 2$ in [1], generalized in [3] for arbitrary m). In this paper we show that for arbitrary m the answer no also is possible.

Theorem. Let D be a closed disk in the plane, centered at the origin with radius less than 1. Let $[z^m, (z/(1 + z))^m : D]$ be the uniform closure in $C(D)$ of the polynomials in z^m and $(z/(1 + z))^m$.

Then $[z^m, (z/(1 + z))^m : D] \neq C(D)$ for $m = 2, 3, \ldots$

Note that it is enough to give a proof for sufficiently small disks D. Also note that it may happen that points of D are not separated by the two generators (in
which case the statement of the theorem is trivial) but if D is small enough (radius of D less than $\sin \pi/m$) points are separated.

The case $m=2$ is the main result of [2]. The essential ingredient, writing
\[
g_a(z) = \frac{\bar{z}}{1 + a\bar{z}}
\]
and
\[
X_a = \{(z, g_a(z)) : z \in D\}
\]
is that $X_1 \cup X_{-1}$ is not polynomially convex if D is a (small) disk centered at 0. This is shown by looking at the intersection of $X_1 \cup X_{-1}$ and the analytic variety V in \mathbb{C}^2 defined by the equation
\[
\zeta_1 \zeta_2 - t\zeta_1 - t\zeta_2 = 0
\]
(t a small nonzero real number).

We modify the definition of V to show:

Proposition. If p and q are two different complex numbers then $X_p \cup X_q$ is not polynomially convex if D is any (small) disk centered at 0.

Proof. Let D be so small that this disk misses the singular points of g_p and g_q. Let $\alpha \in \mathbb{C}$, $t \in \mathbb{C}$, t nonzero, and define the variety V in \mathbb{C}^2 by the equation
\[
\zeta_1 \zeta_2 (1 + i\alpha) - t\zeta_2 - i\zeta_1 = 0.
\]
Note that if $\zeta_1 \neq t/(1 + i\alpha)$ the value of ζ_2 is uniquely determined by ζ_1.

The fact that the point $(z, z/(1+p\bar{z}))$ belongs to V means that
\[
z\bar{z}(1 - i(p - \alpha)) - t\bar{z} - iz = 0.
\]
Now choose $\alpha = (p + q)/2$, then $p - \alpha = -(q - \alpha)$, and choose t a small nonzero complex number such that $i(p - \alpha)$ and $i(q - \alpha)$ are both real-valued, of opposite sign.

So if t is sufficiently small, then:

\[
X_p \cap V = \left\{(z, g_p(z)) : \left|z - \frac{t}{1 - i(p - \alpha)}\right| = \frac{|t|}{1 - i(p - \alpha)}\right\}
\]
and
\[
X_q \cap V = \left\{(z, g_q(z)) : \left|z - \frac{t}{1 - i(q - \alpha)}\right| = \frac{|t|}{1 - i(q - \alpha)}\right\}.
\]

Note that the exceptional point $z = t/(1 + i\alpha)$ belongs (for small t) to the interior of both circles $|z - t/(1 \pm i(p - \alpha))| = |t|/(1 \pm i(p - \alpha))$.

The polynomially convex hull of $X_p \cup X_q$ contains the open subset O of V bounded by the two closed curves $X_p \cap V$ and $X_q \cap V$, so $X_p \cup X_q$ is not polynomially convex.

Remark. Note that for all complex numbers a and b the intersection of the disk
\[
X = \{(z, bg_a(z)) : z \in D\}
\]
where D does not contain the singular point of g_z, and the variety V (t small and $\neq 0$) is either a simple closed curve, which projects onto a circle in the ζ_1-plane, or else consists of at most two points.

Proof of the theorem. We give the proof for $m = 3$. The modifications for the case of an arbitrary value of m will be obvious.

We assume that the radius of D is less than $\frac{1}{2}\sqrt{3}$, so z^3 and $(\bar{z}/(1 + \bar{z}))^3$ separate the points of D. Let $X = \{(z^3, (\bar{z}/(1 + \bar{z}))^3) : z \in D\}$, let $1, \rho = e^{2\pi i/3}, \rho^2 = \bar{\rho}$ be the cubic roots of unity and let $\Pi : \mathbb{C}^2 \to \mathbb{C}^2$ be defined by $\Pi(\zeta_1, \zeta_2) = (\zeta^3_1, \zeta^3_2)$.

Then $\Pi^{-1}(X) = X_1 \cup \ldots \cup X_9$ with

\[
X_1 = \left\{(z, \frac{\bar{z}}{1 + \bar{z}}) : z \in D\right\} = \left\{(w, \frac{\bar{w}}{1 + \bar{w}}) : w \in D\right\}
\]

\[
X_2 = \left\{(\rho z, \frac{\bar{\rho} \bar{z}}{1 + \bar{z}}) : z \in D\right\} = \left\{(w, \frac{\bar{w}}{1 + \bar{w}}) : w \in D\right\}
\]

\[
X_3 = \left\{(\bar{\rho} z, \frac{\rho \bar{z}}{1 + \bar{z}}) : z \in D\right\} = \left\{(w, \frac{\bar{w}}{1 + \bar{w}}) : w \in D\right\}.
\]

The disks X_4, X_5, X_6 are obtained by multiplying the second coordinates in X_1, X_2, X_3 by ρ while X_7, X_8, X_9 are gotten similarly by multiplication by $\bar{\rho}$.

From the proof of the proposition with $p = 1$ and $q = \rho$, it follows that $X_1 \cup X_2$ is not polynomially convex because its hull contains an open subset O of the appropriate variety V. By the remark above O is not contained in $X_3 \cup \ldots \cup X_9$, so $\Pi^{-1}(X) = X_1 \cup \ldots \cup X_9$ is not polynomially convex. It follows that X is not polynomially convex, hence $P(X) \neq C(X)$ which is equivalent to $[z^3, (\bar{z}/(1 + \bar{z}))^3] : D] \neq C(D)$. □

ACKNOWLEDGEMENT

The author likes to thank the referee for suggesting a simplification in the original proof of the theorem.

REFERENCES

