Highly active antiretroviral therapy for HIV-1 infection: patients' quality of life and treatment adherence

Nieuwkerk, P.T.

Citation for published version (APA):
Nieuwkerk, P. T. (2006). Highly active antiretroviral therapy for HIV-1 infection: patients' quality of life and treatment adherence

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Quality of life in asymptomatic- and symptomatic HIV infected patients in a trial of ritonavir/saquinavir therapy

Abstract

Objective: To compare the impact on quality of life (QoL) of treatment with ritonavir (RTV) /saquinavir (SQV) versus RTV/SQV/stavudine (d4T) in asymptomatic- (CDC A) and symptomatic HIV-infected patients (CDC B and C) who did or did not receive antiretroviral therapy (ARVT) before entry into the study.

Design: Multicenter randomized clinical trial.

Patients: Protease inhibitor- and d4T naive patients allocated to RTV/SQV (n = 84) versus RTV/SQV/d4T (n = 83).
Main outcome measure: Changes from baseline in QoL assessed by the Medical Outcomes Study Health Survey for HIV (MOS-HIV) and a symptom-checklist administered at baseline and after 12, 24, 36 and 48 weeks.

Results: Changes in QoL were comparable in both treatments, although more neuropathy was reported in the RTV/SQV/d4T group. QoL improved significantly in both groups regarding health distress, energy/fatigue, mental health, health perceptions, physical function and overall QoL, despite an increase in reported symptoms. More favourable changes in cognitive- and social function were observed in symptomatic compared with asymptomatic patients, with symptomatic patients showing improvement and asymptomatic patients showing decline in function after baseline. ARVT-naive patients showed more favourable changes in mental health, health distress and social function compared to patients with previous ARVT.

Conclusions: RTV/SQV and RTV/SQV/d4T were equally effective in improving the QoL of patients over 48 weeks, despite an increase in reported symptoms. Symptomatic patients reported more QoL benefit than asymptomatic patients, and ARVT-naive patients benefitted more than those with previous ARVT. The impact on patients’ QoL should be considered in the search for the optimal management of HIV-infection.
Introduction

Antiretroviral combination therapy consisting of two nucleoside reverse transcriptase inhibitors (NRTI) and a protease inhibitor (PI) has been shown to be effective with respect to viral suppression and to provide clinical benefits in terms of delaying disease progression and prolonging survival in the treatment of HIV infection [1-4].

Besides providing health benefits, PI-containing regimens may have a negative impact on patients' quality of life (QoL). PI require strict patient adherence in order to assure a durable antiretroviral effect, which may interfere with the patients' daily activities. In addition, PI-containing regimens have the potential to cause short- and long-term toxicities. In patients with HIV related symptoms or AIDS, these adverse effects of highly active antiretroviral therapy (HAART) may be off set by an evident clinical benefit. Several studies [5-7] have indeed demonstrated improved or stable QoL in patients with advanced HIV infection who were treated with PI-containing regimens. However, in patients who are still asymptomatic the toxicities and constraints inflicted by HAART may reduce patients QoL without providing an apparent short-term clinical benefit. This is the first study that reports on the impact of HAART on QoL in asymptomatic patients compared with symptomatic patients.

We studied the impact on patients' QoL of two ritonavir (RTV) and saquinavir (SQV)-containing regimens in a randomized clinical trial (RCT), the Prometheus Study [8]. Patients were stratified at randomization according to their use of antiretroviral therapy (ARVT) before entry into the study. We therefore additionally looked into the effect on QoL of previous ARVT.

The objective of this study was to compare the impact on patients' QoL of RTV/SQV versus RTV/SQV/stavudine (d4T), and to compare the changes in QoL in asymptomatic patients versus symptomatic patients with and without previous ARVT.

Methods

Patients

From January 1997 to January 1999, an open-label RCT was performed comparing RTV 400 mg bid/SQV 400 mg twice a day with RTV 400 mg/SQV 400 mg/ d4T 40 mg twice a day, in 10 hospitals in The Netherlands and four hospitals in Belgium. Eligible patients were HIV-infected individuals with an indication for initiation or change of antiretroviral treatment: they were PI and d4T naive. The primary outcome measure was the proportion of patients with a serum HIV-RNA below 400 copies/ml at week 48. In patients with a
serum HIV-RNA above 400 copies/ml at week 12 and week 18, therapy was intensified with NRTIs.

The impact on the QoL of patients was a secondary outcome. Patients were eligible for the QoL substudy if they were able to complete a Dutch, English, or French self-report questionnaire. Enrolment of the QoL substudy started at February 25, 1997. The study was approved by the Institutional Review Board of all participating centers. All patients gave written informed consent. Details of the design and clinical results of this trial have been reported separately [8].

QoL measurement

QoL was assessed with a self-report questionnaire consisting of two parts: the Medical Outcomes Study Health Survey for HIV (MOS-HIV) and a symptom-checklist. The MOS-HIV is a widely used questionnaire of health-related QoL in HIV/AIDS with established reliability and validity [9-11]. It consists of 10 subscales: physical-, role-, social-, and cognitive function, mental health, energy/fatigue, health distress, health perceptions, pain, and overall quality of life [9-11]. Subscale scores range from 0 to 100 with higher scores indicating a better QoL.

The symptom-checklist consists of 28 items referring to symptoms related to HIV infection or antiretroviral therapy. These items were derived from the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30, and an HIV/AIDS-specific questionnaire [12,13]. The symptom-checklist includes five subscales: fever (3 items), neuropathy (2 items), skin problems (2 items), shortness of breath (2 items), and nausea and vomiting (2 items). The remaining single items pertain to: trouble sleeping, lack of appetite, diarrhoea, constipation, chest pain, headaches, abdominal pain, stomach pain, sore muscles, pain in legs, pain when urinating, pain when swallowing, dry mouth, tingling feeling around the mouth or tongue, taste disturbances, dizziness, and difficulty seeing. Symptoms were scored on a four point scale with the response categories 'not at all', 'a little', 'quite a bit', and 'very much'.

The QoL questionnaire was administered at the start of treatment and after 12, 24, 36 and 48 weeks of follow-up. Patients received the questionnaire from their AIDS counselling nurse or their physician when attending the outpatient clinic for scheduled study visits. The questionnaire was completed at the outpatient clinic or at home, depending on the choice of the patient and the outpatient clinic facilities. Completed questionnaires were returned in a sealed envelope.
Statistical analysis

Patients were included in the analysis if a baseline measurement and at least one follow-up measurement was available. Baseline characteristics were compared between both treatment groups, and between patients included in the QoL substudy and patients not included in the QoL substudy, using Student's t-tests for continuous variables and Chi-square- or Fisher's exact-tests for categorical variables.

For the MOS-HIV subscales, we calculated changes from baseline by subtracting baseline scores from 12-, 24-, 36 and 48-week scores. Mean changes from baseline were compared between both treatment groups using repeated measures analysis of variance (ANOVA), including treatment group as a between-subject factor, and time as a within-subject factor, adjusting for baseline HIV-RNA, CD4 cell count and use of ARV before study entry (yes or no).

We dichotomized the responses on the symptom checklist into 'not at all' versus 'a little bit' to 'very much'. We computed the mean area under the curve minus baseline (AUCMB) to 48 weeks for the subscales and single items of the symptoms checklist, using the trapezoidal rule [14]. The AUCMB indicates the change in the proportion of patients reporting symptoms from baseline through 48 weeks. The mean AUCMB was compared between both treatment groups using ANOVA.

We categorized patients classified at baseline as category A, according to the 1993 Centers for Disease Control (CDC) classification system of HIV infection, as 'asymptomatic', and patients who were classified as category B or category C as 'symptomatic'. A second ANOVA was performed on the mean changes from baseline on the MOS-HIV subscales using two between-subject factors consisting of asymptomatic versus symptomatic, prior ARV versus ARV naive, and using time as within-subject factor.

Two-sided \(P\) values < 0.05 were considered to indicate statistical significance. The individual between-group or within-group effects were calculated in means and 95% confidence intervals (CI), and were interpreted only if the overall test statistic was found to be statistically significant.

For the handling of missing data we used the last-observation-carried-forward approach. Analysis was by intention-to-treat. Data analysis was conducted using the SPSS software package (SPSS, Systat, Chicago, Illinois, USA).
Results

Patient accountability and response

A total of 208 patients were enrolled in the RCT. 104 patients were allocated to RTV/SQV and 104 patients to RTV/SQV/d4T. Forty-one of these patients (20 allocated to RTV/SQV and 21 to RTV/SQV/d4T) were not entered in the QoL substudy. Fifteen of these patients were enrolled in the RCT before the QoL substudy had started and therefore did not have a baseline QoL assessment. Nine patients were unable to complete questionnaires due to insufficient language skills (n = 8) or neurological impairment (n = 1). Seventeen others did not participate because they never started their allocated treatment (n = 5), they never returned a baseline questionnaire (n = 7), or were lost to follow-up after baseline (n = 5). Thus, 167 patients were included in the QoL study, of whom 84 were allocated to RTV/SQV and 83 to RTV/SQV/d4T. For this sample, the response rates were: 96% (161/167) at week 12, 92% (154/167) at week 24, 87% (146/167) at week 36, and 92% (153/167) at week 48.

Baseline characteristics

There were no statistically significant differences between both treatment groups of patients enrolled in the QoL study (Table 1). At baseline, participants in the QoL study were comparable with patients not participating in the QoL study with respect to treatment allocation, median log_{10} HIV-RNA (copies/ml), median CD4 count (cells/mm^3), and baseline CDC classification of HIV infection (data not shown). QoL study patients were more likely to be ARVT naive (56% versus 39%, P = 0.05), male (88% versus 63%, P < 0.01), homosexual (73% versus 38%, P < 0.01), and were older (39 years versus 35 years, P=0.02).

<table>
<thead>
<tr>
<th>Table 1: Baseline characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTV/SQV (n=84)</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Mean age (years) (SD)</td>
</tr>
<tr>
<td>Homosexual</td>
</tr>
<tr>
<td>Prior antiretroviral therapy</td>
</tr>
<tr>
<td>Median (IQR) log_{10} HIV-RNA (copies/ml)</td>
</tr>
<tr>
<td>Median (IQR) CD4 count (cells/mm^3)</td>
</tr>
<tr>
<td>HIV disease stage:</td>
</tr>
<tr>
<td>CDC A</td>
</tr>
<tr>
<td>CDC B</td>
</tr>
<tr>
<td>CDC C</td>
</tr>
</tbody>
</table>

CDC: Centers for Disease Control; RTV: ritonavir; SQV: saquinavir; d4T: stavudine.
Comparison of changes in QoL between both treatment groups

MOS-HIV

At baseline, MOS-HIV subscale scores were comparable for the treatment groups (Table 2). There were no statistically significant differences between both treatment groups in mean changes on the MOS-HIV subscales from baseline, and no statistically significant treatment group by time interaction indicating a similar pattern of changes over time in both groups. Combining the two treatment groups, there were statistically significant improvements from baseline with respect to: physical function, mental health, energy/fatigue, health perceptions, and overall quality of life. QoL remained stable on the other MOS-HIV subscales.

<table>
<thead>
<tr>
<th>MOS-HIV scales</th>
<th>MOS-HIV baseline scores<sup>a</sup></th>
<th>Between group difference (95% CI)<sup>b</sup></th>
<th>Change from baseline (95% CI)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical function</td>
<td>83.6 (2.3)</td>
<td>-4.4 (-10.1 to 1.3)</td>
<td>4.2 (1.4 to 7.0)*</td>
</tr>
<tr>
<td>Role function</td>
<td>79.5 (3.7)</td>
<td>-2.8 (-12.3 to 6.6)</td>
<td>2.1 (2.5 to 6.7)</td>
</tr>
<tr>
<td>Social function</td>
<td>82.0 (2.6)</td>
<td>-3.5 (-9.5 to 2.5)</td>
<td>1.9 (-0.9 to 5.0)</td>
</tr>
<tr>
<td>Cognitive function</td>
<td>77.0 (2.2)</td>
<td>-3.7 (-8.2 to 0.7)</td>
<td>1.6 (0.6 to 3.7)</td>
</tr>
<tr>
<td>Mental health</td>
<td>65.5 (2.3)</td>
<td>0.4 (4.7 to 4.6)</td>
<td>3.4 (1.5 to 6.2)*</td>
</tr>
<tr>
<td>Energy/fatigue</td>
<td>63.5 (2.1)</td>
<td>-2.5 (-7.5 to 2.6)</td>
<td>3.2 (0.7 to 5.7)*</td>
</tr>
<tr>
<td>Health distress</td>
<td>70.1 (2.8)</td>
<td>2.5 (2.2 to 7.3)</td>
<td>6.4 (3.5 to 8.7)*</td>
</tr>
<tr>
<td>Health perceptions</td>
<td>51.7 (2.8)</td>
<td>-2.1 (7.3 to 3.1)</td>
<td>4.3 (1.7 to 6.9)*</td>
</tr>
<tr>
<td>Pain</td>
<td>82.6 (2.0)</td>
<td>-2.5 (-8.7 to 3.6)</td>
<td>1.3 (-1.8 to 4.3)</td>
</tr>
<tr>
<td>Overall quality of life</td>
<td>66.3 (2.6)</td>
<td>2.4 (-4.4 to 9.1)</td>
<td>6.3 (2.9 to 9.6)*</td>
</tr>
</tbody>
</table>

CI, confidence interval; MOS-HIV, Medical Outcomes Study HIV; RTV, ritonavir; SQV, saquinavir; d4T, stavudine.

^a Values are means ± standard errors.

^b Values are mean differences between RTV/SQV compared to RTV/SQV/d4T in the change from baseline over all timepoints, adjusted for baseline HIV-RNA, CD4 cell count, and previous ARVT. Scores below zero indicate a better quality of life (QoL) in the RTV/SQV group whereas scores higher than zero indicate a better QoL in the RTV/SQV/d4T group. Scores below zero indicate improvement in QoL compared to baseline, whereas scores above zero indicate decline in QoL.

^c Values are mean changes from baseline over all timepoints for both treatment groups combined. Scores below zero indicate improvement in QoL compared to baseline, whereas scores above zero indicate decline in QoL.

Symptom checklist

There was a statistically significant difference between both treatment groups in the change in the proportion of patients reporting neuropathy (data not shown). In the RTV/SQV group, neuropathy decreased with 3% relative to baseline whereas in the RTV/SQV/d4T group there was an increase from baseline with 12% (difference: 15%, 95% CI of difference: 2% to 28%).

There was an increase of at least 10% in both treatment groups in the proportion of patients reporting diarrhoea (RTV/SQV: 41% and RTV/SQV/d4T: 47%, difference 6%, 95%
CI of difference: -10% to 21%), perioral tingling (RTV/SQV: 25% and RTV/SQV/d4T: 34%, difference 9%, 95% CI of difference: -6% to 25%), and abdominal pain (RTV/SQV: 15% and RTV/SQV/d4T: 13%, difference 2%, 95% CI of difference -11% to 16%).

Impact of HIV disease stage and prior ARVT on changes in QoL
As expected, asymptomatic patients (CDC A) had higher baseline MOS-HIV scores, indicating a better QoL, compared with symptomatic patients (CDC B and C) (Table 3). Baseline MOS-HIV scores were comparable in patients who had received ARVT before study entry and patients who were ARVT naive (data not shown).

No statistically significant interaction was found between disease stage and previous ARTV, indicating that prior ARTV had a similar impact on changes in QoL in asymptomatic-compared to symptomatic patients.

We found a statistically significant difference in the changes from baseline in social- and cognitive function in asymptomatic patients compared with symptomatic patients. Asymptomatic patients reported more limitations in social activities as a result of health problems relative to the start of treatment, whereas symptomatic patients reported fewer limitations. We found the same pattern for cognitive function: asymptomatic patients reported a worsening in cognitive function compared with baseline, whereas symptomatic patients reported an improvement.

<table>
<thead>
<tr>
<th>MOS-HIV scales</th>
<th>MOS-HIV baseline scores</th>
<th>Asympt versus sympt (95% CI)</th>
<th>Prior ARVT versus naive (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>asympt. (n=75)</td>
<td>sympt. (n=92)</td>
<td></td>
</tr>
<tr>
<td>Physical function</td>
<td>85.8 (2.4)</td>
<td>77.3 (2.2)</td>
<td>-3.8 (-9.5 to 2.0)</td>
</tr>
<tr>
<td>Role function</td>
<td>80.3 (3.9)</td>
<td>70.1 (4.2)</td>
<td>-3.1 (-12.5 to 6.6)</td>
</tr>
<tr>
<td>Social function</td>
<td>87.3 (2.5)</td>
<td>75.8 (2.5)</td>
<td>-1.8 (-14.0 to -2.0) *</td>
</tr>
<tr>
<td>Cognitive function</td>
<td>80.5 (2.0)</td>
<td>72.1 (2.2)</td>
<td>-8.5 (-12.7 to -4.0) *</td>
</tr>
<tr>
<td>Mental health</td>
<td>66.0 (2.6)</td>
<td>65.1 (1.7)</td>
<td>0.4 (-4.4 to 5.1)</td>
</tr>
<tr>
<td>Energy/fatigue</td>
<td>64.7 (2.5)</td>
<td>59.8 (1.8)</td>
<td>-1.9 (-7.0 to 3.3)</td>
</tr>
<tr>
<td>Health distress</td>
<td>71.2 (2.8)</td>
<td>70.1 (2.4)</td>
<td>1.2 (-3.7 to 6.6)</td>
</tr>
<tr>
<td>Health perceptions</td>
<td>56.8 (2.9)</td>
<td>43.9 (2.3)</td>
<td>-4.1 (-9.5 to 1.3)</td>
</tr>
<tr>
<td>Pain</td>
<td>84.9 (2.2)</td>
<td>78.6 (2.0)</td>
<td>-2.7 (-9.0 to 3.6)</td>
</tr>
<tr>
<td>Overall quality of life</td>
<td>68.7 (2.8)</td>
<td>64.5 (2.1)</td>
<td>-4.8 (-11.7 to 2.2)</td>
</tr>
</tbody>
</table>

Asympt, asymptomatic; sympt, symptomatic; ARVT, antiretroviral therapy; MOS-HIV, Medical Outcomes Study HIV. Asympt = asymptomatic. Sympt = symptomatic. ARVT= antiretroviral therapy.

* P < 0.05.

Values are means ± standard errors.

Values are mean differences between asymptomatic compared with symptomatic patients in changes from baseline in quality of life (QoL) over 48 weeks. Scores below zero indicate less favourable changes in QoL for asymptomatic patients compared with symptomatic patients.

Values are mean differences between patients with previous ARVT compared with naive patients in changes from baseline in QoL over 48 weeks. Scores below zero indicate less favourable changes in QoL for patients with previous ARVT compared with naive patients.
We observed a statistically significant difference in changes from baseline in MOS-HIV scores in patients with previous ARVT compared with patients who were ARTV naive with respect to social function, mental health and health distress. These dimensions improved in the ARVT naive patients. With respect to social function, there was an average decline from baseline in patients with previous ARVT. Mental health and health distress remained stable in patients with previous ARVT. The effects of disease stage and previous ARVT on the mean changes over 48 weeks in social function, cognitive function, mental health and health distress are illustrated in Fig.1 (a-d).

Figure 1: Effect of HIV disease stage and previous antiretroviral therapy on the mean change from baseline over 48 weeks in quality of life

Values above the zero line indicate improvement in quality of life, whereas values below the zero line indicate worsening. ARVT = antiretroviral therapy. Effects are adjusted for the other factor.

Discussion

The QoL study was set up alongside a clinical trial, the Prometheus Study. This RCT showed no difference in the proportion of patients with a serum HIV-RNA below 400 copies/ml at 48 weeks between the group starting with RTV/SQV alone, and intensifying when indicated, versus those who were treated with immediate triple therapy [8]. The present study showed that both treatment strategies were equally effective in maintaining and improving patients' QoL, despite an increase in reported symptoms. Although patients allocated to RTV/SQV/d4T reported more neuropathy, this did not result in a measurably diminished functioning or well-being. Taken the comparable impact into account, QoL is not a decisive factor in the choice between these two treatment strategies.
This is the first study that reports on the impact of HAART on the QoL of patients with an asymptomatic HIV infection. It has recently been called into question whether the potential advantages of initiating PI containing regimens in early HIV infection outweigh the potential disadvantages [15, 16]. There is a need for studies evaluating the long term clinical effectiveness, adverse effects, adherence, and effects on quality of life of antiretroviral therapy in early HIV infection [17]. The present study showed a decline in functioning in asymptomatic patients after the start of therapy, and an improvement in functioning in symptomatic patients. Although this effect was limited to cognitive and social function, these may be considered highly relevant aspects of an individual's QoL.

We found more favourable changes in mental health, health distress and social function in ARVT naive patients compared with patients with previous ARVT. The proportion of patients with HIV-RNA below 400 copies/ml was consistently higher after week 12 among patients who were ARVT naive compared with those who had had ARVT before entry into the study [8]. The more favourable QoL outcomes in ARVT-naive patients were probably associated with this better efficacy.

Forty-one patients enrolled in the RCT did not participate in the QoL study. Because baseline characteristics were equally distributed between both treatment groups in patients who participated in the QoL study, it is unlikely that this selection affected the comparison of the impact on QoL between both treatment groups. However, our results may not be generalized to populations with baseline characteristics that substantially diverge from our study sample. Furthermore, results from this study may not unconditionally be generalized to other antiretroviral combination therapies. Other regimens may be associated with different toxicities, and may differ with respect to ease of administration. This study used a relatively convenient twice-daily dosing of the medication, taken together with food or after a meal. More or less convenient regimens may result in a different impact on patients' QoL. Finally, the follow-up of this study was only 48 weeks. Recently, long term side effects of ARVT, such as peripheral lipodystrophy, have been reported that usually occur after 48 weeks [18]. The impact of such long term toxicities on QoL remains to be studied.

Information from the present study about the possible effects of treatment on QoL may be used to inform patients and clinicians when starting combination therapy with RTV and SQV is being considered, and may contribute to trade-offs between the potential burden and benefit of therapy.
Conclusion

RTV/SQV and RTV/SQV/d4T were equally effective in maintaining and improving patients' QoL over 48 weeks despite an increase in reported symptoms. Symptomatic patients reported more benefits in QoL than asymptomatic patients, and ARVT naive patients benefitted more than those with previous ARVT. The impact on patients' QoL should be considered in the search for the optimal management of HIV-infection.

Acknowledgements

The authors would like to thank the participants in this study.

Appendix

References

