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Abstract 
Modeling of fluid mechanics for the vascular system is of great value as a source of knowledge about 
development, progression, and treatment of cardiovascular disease. Full three-dimensional simulation 
of blood flow in the whole human body is a hard computational problem. We discuss parallel 
decomposition of blood flow simulation as a graph partitioning problem. The detailed model of full 
human arterial tree and some simpler geometries are discussed. The effectiveness of coarse-graining as 
well as pure spectral approaches is studied. Published data can be useful for development of parallel 
hemodynamic applications as well as for estimation of their effectiveness and scalability. 
 
Keywords: hemodynamics, vascular net, scalability, graph partitioning, coarse-graining, spectral methods, hill-
climbing 

1 Introduction 
Computational modelling is being increasingly used for biomedicine applications (Winslow, 

Miller, 2012). One important set of applications is modelling the heart and the vascular system 
(Wootton, 1999; Taylor, 2004). Many highly advanced examples, which are at the same time close to 
clinical practice, related to the development, progression, and treatment of cardiovascular disease can 
be found among them (Tarbell, 2003; Vieira, 2015). The key role of fluid mechanics for vascular 
system models renders computational hemodynamics a vast and growing field (Sforza, 2009; Taylor, 
2013). Many biologically significant features of blood flow cannot be reproduced by approximated 
hemodynamic models (Reymond, 2013) and full 3D blood flow simulations are required. Possible 
restrictions on the time of solving in some medical applications make modelling of the heart and 
vascular system an advanced computational problem. Building multiscale models (Lee, 2012) can be a 
possible way of improving computational efficiency, however, on the other hand, since the particular 
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task of simulating blood flow can be considered as a problem of PFLOPS scale (Grinberg, 2012), 
effective use of parallel computational resources becomes a critical part of the problem. 

Blood flow modelling is different from many conventional hydrodynamics simulations in the sense 
that the flow domain is often very complex, that is, highly tortuous with many branches and several 
inlets and outlets. A space decomposition of hydrodynamics problem on such complex domain can 
results in a very suboptimal configuration with high communication costs and load imbalances. This 
happens even for relatively simple flow domains like aneurisms (Chopard et al., 2010), and for a full-
body model the result should be even worse. For aneurisms though, covering the flow domain with 
cubic block structure can result in a rather good partition. However, heterogeneity of whole-body 
networks makes this approach futile. 

In this study we discuss the formulation of the problem of parallel decomposition of blood flow 
simulation domain as graph partitioning problem. We reduce the 3D mesh of vascular system to 1D 
network, which is then interpreted as a graph, partitioned in a way that minimizes communication and 
assigned to the processors to compute blood dynamics.  

2 Related work 
The problem of graph partitioning is a well known. Theoretically it is itself an NP-complete 

problem (Garey et al, 1976). However, a lot of heuristic algorithms which show reasonably good 
results on many graphs from different real-life domains were suggested and applied (Safro et al, 2012; 
LaSalle et al, 2015; Karypis et al, 1988). Some major types of partitioning methods can be 
distinguished (Buluç, 2013).  

The main approaches are coarse-graining the graph to solve the partitioning problem for a smaller 
number of nodes and then refine it (Safro et al, 2012; Karypis et al, 1988); geometrical methods, 
which split the graph according to spatial coordinates of the nodes (if such coordinates exist) (Gilbert 
et al, 2007); spectral methods, which are often used as an intermediate step of coarse-grained schemes; 
and genetic algorithms (Steenbeek et al, 1998). Some attempts are made to utilize max-flow min-cut 
theorem to find minimal cut via flow. This approach ignores balance completely, but it can produce 
good results for regular random graphs (Bui et al, 1987). Also, for some classes, for example planar 
graphs, exact solutions can be found in polynomial time (Seidel, 2005). 

All methods are well represented in studies and the features of applying them to various types of 
graph are known in general. Despite that, we believe that the issue of partitioning the arterial network 
has to be considered separately. First of all, the graph based on 1D arterial network has some 
noticeable features, which cannot be recognized using the common characteristics of graphs such as 
average degree of vertex, centrality, diameter and etc. While the effectiveness of partition algorithms 
for various types of graphs is usually classified by these characteristics (LaSalle et al, 2015), 
extrapolation of these results to the arterial graph is hardly possible. Additionally the common major 
objectives of developing partitioning algorithms are different from ours. Whereas the performance and 
parallelization of algorithms is often critical (Benlic, 2011; LaSalle, Karypis, 2015), our graphs are 
small enough (thousands of vertices) to neglect this issue. Quality of partitioning and its imbalance, on 
the other hand, are absolutely critical for the obtainable parallel effectiveness of the hypothetical 
calculation performance. 

We apply graph partitioning techniques to anatomical arterial structures to obtain balanced 
partitions with minimal interconnections. In biomedical disciplines, the graph partitioning problem 
usually comes up in the context of image recognition and area detection (see for example (Song et al., 
2015; Almasi et al., 2014)). When vascular trees have to be partitioned for various purposes, it is 
usually done by hand or semi-automatically, based on anatomical classification (Malossi et al, 2012; 
Passerini et al, 2009; Reymond et al, 2009). We aren't aware of any systematic studies of automatic 
partitioning of large vascular trees. 
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However, the wide and well studied range of graph partitioning methods allows us to choose some 
of the most effective among them with the account to the main features of the vascular network. Thus 
we assume three main features of the considered network: global symmetry (left-right), strong 
heterogeneity of scales (compare vascular networks in the thigh and in the brain), and weak 
connectivity.  Heterogeneity and hierarchy of scales suggest that using the coarse-graining (CG) 
approach is a sensible choice. We consider a typical but recent coarsening scheme suggested by Safro 
et al. (Safro et al, 2014).  Spectral partitioning methods look more suitable for our problem (Mohar, 
1991; Spielman, Teng, 2007) than geometric ones (Gilbert et al, 2007) since general symmetry and 
hierarchy can be taken into account in spectral approach. The refinement hill-scanning method 
(LaSalle, 2015) was chosen because it is a recent and deterministic algorithm which makes analysis 
easier. Additionally, a clearly adjustable level of greediness is desirable for applying it to weakly 
connected graphs. 

 

 
a) 

 
b) 

 
c) 

Figure 1: Considered arterial models: (a) high-resolution whole body network; (b) low-
resolution whole body network; (c) high-resolution head and neck vessels. The best found 

partitioning on 8 parts is illustrated by color 

3 Methodology 

3.1 One-dimension representation of vascular networks 
The vessel geometry was obtained from anatomical three-dimension networks. The base model 

was taken from (Karsakov, 2014). In these networks, first the centerline was detected, and then the 
vertices were placed on this geometry to split it into fragments suitable for computing the flow. The 
size of the fragments was aligned. It can be noted that results of decomposition of such linear 
geometry can be used for 1D approaches as well as for 3D calculations. Volumetric domains are 
obtained by inverse transform procedure for centerline model. 

We have used three different vascular domains for our computations: a high-resolution whole body 
network (HRWB) of 21312 vertices, a low-resolution whole body network (LRWB), 2129 vertices, 
and a high-resolution head and neck vessels (HRH), 3278 vertices. The models are shown in Figure 1. 
For HRWB the distance between vertices of the graph equals 2.5 mm, for LRWB the same distance is 
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10 mm. The high-resolution whole body network is a highly heterogeneous domain with hierarchical 
structure which includes complex clusters of small arteries (like for the head) connected by small 
number of large arteries (such as the aorta). It reduces the amount of effective cuts (with small 
edgecut) and presents the challenge to a partitioning algorithm. For comparison, we separately use the 
head vessels, which have a much smaller scale difference between them. Also, the simplified whole 
body model has been tested. First, this model brings us closer to the current whole-body flow 
simulations (Mynard, 2008) which do not model small vessels explicitly. Second, the scale of the 
vessels is even more uniform for this geometry than for the high-resolution head model, and third, the 
low-resolution geometry serves well to demonstrate and analyze regions that cause most problems for 
partitioning algorithms. 

3.2 Algorithms 
Since multi-step heuristic algorithms seem to be the most effective, we explore three typical levels 

of such algorithms. For coarse-graining we use a single recent method, which is based on utilizing the 
Galerkin operator (Safro et al., 2014). Two main ideas that cause this coarsening algorithm to yield 
good results are: the AMG approach, which works well with complex graphs, which are placed in the 
second and the third sets; a specific way to calculate connectivity strength between nodes, that leads to 
better quality of partitioning at the cost of increased running time (Safro et al., 2014; Ron et al, 2011). 

The CG algorithm we use has following parameters. Parameters of algebraic distance calculation 
factor in relaxation matrix formula α=0.5, count of test vectors R=5, count of relaxation iterations 
k = 20. Another parameter relates to the AMG part of the algorithm and denotes coupling strength 

 = 0.5. The imbalance factor is (Safro et al., 2014). 
For the second stage, two different spectral methods were used.  
The basic spectral algorithm consists of computing the discrete graph Laplacian L, 2nd-smallest 

eigenvalue of L and its associated eigenvector f (Fiedler vector). The graph is split so that the vertices 
associated with small values in f are in one part, and those associated with large values are in another 
one (Mohar, 1991; Spielman, Teng, 2007). The median value in f was chosen as the splitter, so that the 
resulting parts were balanced.  

This algorithm can only split the network in two parts. It can be extended to obtain a larger amount 
of parts in two different ways. 

Cascade partitioning is the first one. Its idea is to apply spectral bisection recursively to each part 
produced by the previous iteration, until the required amount of parts is obtained.  

The second one is a generalization of spectral octasection (Hendrickson, Leland, 1995). Instead of 
using the Fiedler vector, this algorithm uses the k eigenvectors corresponding to k smallest eigenvalues 
(starting from the 2nd-smallest) to assign the vertices to 2k parts. The drawback of this method is that 
we cannot use the eigenvector coordinates directly. Instead, to optimally assign the vertices to 2k parts, 
we have to solve a minimal cost assignment problem in k-dimensional space (Tokuyama, Nakano, 
1991). The strength of this algorithm is that it assigns all vertices in one iteration. 

The last step is the refinement of the coarse splitting. One of the most recent algorithms is given by 
(LaSalle et al, 2015) and was chosen for being deterministic and its ability to regulate its greediness. 
This approach allows for breaking out of local minima by moving vertices that increase the edgecut 
(weight of the edges that connect different parts of the graph) on their own, but decrease it when these 
vertices are moved as a whole. This capability is known as hill-climbing. The capabilities of the 
chosen algorithm are depicted in Figure 2. Case (a) is a result of partitioning of low-resolution whole 
body network by cascade spectral algorithm before refinement. Fourth part is located mostly in legs 
(isn't shown) and is colored green. The "bad" part of it is clearly visible on the right side of the chest, 
but is fully corrected by the refinement procedure. 
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a) 

 
b) 

Figure 2: Partitioning of low-resolution whole body network: (a) before refinement 
procedure; (b) after refinement procedure (4th part placed below and isn't shown) 

4 Calculations 
Some combinations of the listed algorithms were used for computational experiments. The special 

notation used for their designation is described here. The coarse-grain procedure is denoted by CG-X, 
where X is the maximum number of CG blocks (the real number is usually a little lower). The 
algorithm based on spectral octasection is denoted by SO-Y, where Y is the number of parts. Due to the 
restriction of the partition procedures Y equals to 2k, where k is a natural number. Cascade spectral 
partition procedure is denoted by CAS-Y, and RF denotes the refinement procedure. Thus, for 
example, the combination CG-512 CAS-32 RF means that the original vascular network was coarse-
grained with the upper bound of 512coarse-grained vertices, divided into 32 parts and then the 
refinement procedure was applied. 

4.1 Low-resolution whole body network 
The results of applying CAS-Y partition algorithm to the low-resolution whole body network are 

presented in Table 1. The "+" sign in the RF column denotes the application of the refinement 
procedure. 

 
Number of 

partitions, Y 
Average size of 

a partition, N 
Standard 

deviation of  N 
Average 

edgecut C 
Standard 

deviation of C 
RF 

4 532.5 
 

0.1% 9.00 16.2% - 
0.1% 6.75 32.8% + 

8 266.3 4.8% 6.88 27.4% - 
6.8% 4.63 48.9% + 

16 133.1 1.1% 8.06 40.3% - 
8.4% 4.31 40.3% + 

32 66.6 8.4% 5.19 58.5% - 
13.0% 3.50 44.1% + 

64 33.3 8.5% 3.84 31.8% - 
13.3% 2.83 54.7% + 

Table 1:Application of CAS-Y partition to the low-resolution whole body (LRWB) model 
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The results of applying the CG-512 SO-Y partition algorithm to the low-resolution whole body 
network are collected in Table 2. 

 
Number of 

partitions, Y 
Average size of a 

partition, N 
Standard 

deviation of  N 
Average 

edgecut C 
Standard 

deviation of C 
RF 

4 532.5 
 

4.4% 9.00 32.7% - 
4.1% 5.00 36.5% + 

8 266.3 6.2% 7.88 46.7% - 
6.2% 3.63 46.7% + 

16 133.1 8.9% 7.13 42.5% - 
12.2% 4.25 54.0% + 

32 66.6 14.8% 6.72 47.1% - 
10.0% 3.66 37.2% + 

64 33.3 16.1% 5.77 48.1% - 
9.1% 3.09 50.4% + 

Table 2: Application of CG-512 SO-Y partition to the LRWB model 

4.2 High-resolution whole body network 
The results of applying the CAS-Y partition algorithm to the high-resolution whole body (HRWB) 

network are collected in Table 3. Table 4 collects the results of applying the CG-4096 CAS-Y, and 
Table 5 shows the CG-X-SO-Y algorithm. The number of blocks X is shown in an additional column 
in Table 5. 

 
Number of 

partitions, Y 
Average size of a 

partition, N 
Standard 

deviation of  N 
Average 

edgecut C 
Standard 

deviation of C 
RF 

128 166.5 
 

8.1% 7.01 45.1% - 
10.1% 3.90 48.1% + 

256 83.2 
 

12.2% 6.35 42.0% - 
12.0% 3.15 46.8% + 

512 41.6 12.5% 5.06 48.1% - 
12.0% 2.25 49.5% + 

Table 3: Application of CAS-Y partition to the HRWB model 

Number of 
partitions, Y 

Average size of 
a partition, N 

Standard 
deviation of  N 

Average 
edgecut C  

Standard 
deviation of C 

RF 

256 83.2 
 

13.6% 6.63 43.0% - 
11.2% 3.16 45.7% + 

512 41.6 18.7% 5.28 45.1% - 
14.9% 2.46 47.6% + 

Table 4: Application of CG-4096 CAS-Y partition to the HRWB model 

4.3 High-resolution head arterial network 
Tables 6, 7 and 8 collect the results of applying partition procedures to high-resolution head 

arterial network.   
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Num. of 
partitions, Y 

Av. size of a 
partition, N 

Min. num. of 
CG blocks 

Standard 
deviation of  N 

Average 
edgecut C 

Standard 
deviation of C 

RF 

4 5326.8 512 7.1% 10.50 41.0% - 
6.0% 5.75 47.2% + 

8 2663.4 
 

512 8.2% 9.06 60.9% - 
8.1% 4.75 51.3% + 

16 1331.7 
 

512 11.8% 7.59 48.6% - 
10.0% 4.59 44.7% + 

32 665.8 
 

512 19.2% 6.66 56.3% - 
9.5% 4.58 52.0% + 

64 332.9 
 

2048 10.3% 6.60 45.1% - 
10.3% 3.90 42.4% + 

128 166.5 
 

2048 18.6% 5.81 45.1% - 
9.2% 3.50 44.7% + 

256 
83.2 2048 7.1% 10.50 41.0% - 

6.0% 5.75 47.2% + 
Table 5: Application of CG-X SO-Y partition to HRFB model. The partition corresponding to the gray-filled 

values is shown on the Figure 1a. 

Number of 
partitions, Y 

Average size of 
partition, N 

Standard 
deviation of  N 

Average 
edgecut C 

Standard 
deviation of C 

RF 

8 
 

409.9 
 

3.9% 6.50 28.5% - 
7.2% 4.13 39.8% + 

32 
 

102.5 
 

2.3% 5.19 47.3% - 
5.9% 3.38 57.2% + 

64 
 

51.2 
 

15.3% 3.86 41.8% - 
17.2% 2.64 56.2% + 

128 25.6 6.2% 3.73 32.8% - 
10.6% 2.45 46.4% + 

Table 6: Application of CAS-Y partition to HRH model. The partition corresponding to the gray-filled values 
is shown on the Figure 1b. 

Number of 
partitions, Y 

Average size of 
partition, N 

Standard 
deviation of  N 

Average 
edgecut C 

Standard 
deviation of C 

RF 

32 
 

102.5 
 

7.7% 6.06 49.7% - 
4.6% 4.41 49.5% + 

64 51.2 13.7% 4.63 47.9% - 
9.1% 3.45 47.0% + 

Table 7: Application of CG-512 CAS-Y partition to HRH model 

Number of 
partitions, Y 

Average size of 
partition, N 

Standard 
deviation of  N 

Average 
edgecut C 

Standard 
deviation of C 

RF 

8 
 

409.9 
 

11.7% 6.13 42.2% - 
14.0% 3.75 48.9% + 

32 
 

102.5 
 

11.4% 6.66 46.8% - 
4.2% 4.31 48.7% + 

64 51.2 19.4% 4.47 47.7% - 
16.4% 2.69 47.8% + 

Table 8: Application of CG-512 SO-Y partition to HRH model. The partition corresponding to the gray-filled 
values is shown on the Figure 1c. 
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5 Discussion 
First of all we can determine the general behaviour of the partitioning procedures in dependence on 

the number of partitions andthe average partition size. Figures 3 a) and b) show the standard deviation 
of the average partition size and the average edgecut as functions of the number of partitions. We can 
note the decreasing trend in the edgecut and assume that it approaches the average degree of a vertex 
as the number of partitions increases and approaches the number of vertices (see additionally Tables 6 
and 8). In our case, many vertices lie on linear sites (without bifurcations) of the arterial network, so 
the average degree of a vertex is close to 2. The dynamic of the standard deviation of the average 
partition size has aneven more interesting appearance. There is a maximum average size of a partition 
(~ 300 vertices for HRWB, 50 vertices for HRH, 40 vertices or less for LRWB) after which the 
unbalance of partitions decreases. 

Based on the obtained data an analysis of each implemented algorithm can be conducted. For the 
pure partitioning without final refinement we can notice some benefit of the cascade partitioning 
algorithm in spite of our expectations. For example, compare CG-512 SO-64 and CG-512 CAS-64 on 
the HRH model, or CAS-64 and CG-512 SO-64. The benefit of cascade approach is not so definite for 
the case of the HRWB model, where heterogeneity of scales is stronger. SO algorithm produces better 
balance especially for small partitions (CG-2048 SO-256, CG-2048 SO-128), while cascade approach, 
on the other hand, minimizes the edgecut value. 

The results of applying the refinement procedure are of special interest. It turns out that the 
refinement stage is critically important for the quality of the final partitioning and all noticed features 
of CAS and SO procedures become rather negligible after the refinement step. In most cases, the RF 
procedure trades the balance of the partition for a decrease in edgecut, especially if the initial 
partitioning was good. However, we have found that thorough adjustment of RF parameters frequently 
allows for an improvement in both of these characteristics (CG-512 CAS-64, CG-2048 SO-512 for 
example). The depth of the search is the most important parameter for this (LaSalle et al., 2015). 

The contribution of CG procedure to the final quality of the partition is not very clear. The 
situation is complicated because a direct application of SO procedure without initial coarse-graining is 
too computationally hard. For the case of cascade approach,comparing the Tables 3 and 4 on one hand 
and Tables 6 and 7 on the other gives opposite outcomes. Anyway, there is no doubt about the 
computational efficiency of the initial coarse-graining procedure. 

 

 
a) 

 
b) 

Figure 3: The standard deviation of the average partition size and the average edgecut as functions 
of the number of partitions for LRWB and HRWB models 
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6 Conclusions 
In this paper we have presented the results of testing different partitioning schemes for real-life 

vascular networks. We utilize three types of algorithms in the CG multistep partition approach: coarse-
graining, partition, and refinement. Two spectral methods were implemented for partitioning. We have 
shown that graph partitioning approach is applicable for these networks. Remarkable, that spectral 
methods take in account the anatomical structure of vascular net, that is especially noticeable for 
partitioning into a small amount of parts. 

The cascade spectral method has turned out to produce slightly better results than the direct 
method, but the refinement levels most of the differences. A combination of the cascade method with 
refinement produces a slightly smaller cut, and the direct method results in slightly more balanced 
partitions after refinement. It turns out that the refinement stage is critically important for the quality 
of the partitioning. The effectiveness of the chosen refinement method (so called hill-climbing 
approach) additionally was shown. Using the initial coarsening does not worsen the result, and in 
some cases can even improve it. 

The amount of inter-part edges per part decreases and approaches the average degree of a vertex 
with the increase in the amount of parts. The dependency of the balance on the number of partitions is 
interesting but intuitively clear too. The standard deviation has a maximum for some average value of 
the partition size and decreases with further decrease of partition size. Generally a standard deviation 
of 10% is typical for the number of vertices per part. Attempts to decrease this deviation lead to a fast 
increase in connectivity. 

Because of all this, one can presume a sublinear growth of communication expenses with the 
increase in the number of processing cores, which makes the task of parallelizing whole-body flow 
simulations a promising one. 
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