Measurement of the exclusive $\gamma\gamma \to \mu^+\mu^-$ process in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS Collaboration

DOI
10.1016/j.physletb.2017.12.043

Publication date
2018

Document Version
Final published version

Published in
Physics Letters B

License
CC BY

Citation for published version (APA):

Download date: 27 Nov 2021
Measurement of the exclusive $\gamma\gamma \to \mu^+\mu^-$ process in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

1. Introduction

When proton–proton (pp) beams collide at the LHC, typically rare photon–photon induced ($\gamma\gamma$) interactions occur at perceptible rate and provide a unique opportunity to study high-energy electroweak processes [1]. Compared to other final states, the dilepton production is a standard candle process of the photon-induced production mechanism, thanks to its sizeable cross-section. Using pp collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV, measurements of $pp(\gamma\gamma) \to \mu^+\mu^- pp$ production (referred to as exclusive $\gamma\gamma \to \mu^+\mu^-$) were performed by the ATLAS and CMS collaborations [2,3]. The exclusive $\gamma\gamma \to e^+e^-$ process was also measured [3,4]. A similar experimental signature has been used to study the $\gamma\gamma \to W^+W^-$ reaction [5–7].

The exclusive $\gamma\gamma \to \mu^+\mu^-$ production process competes with the two-photon interactions involving single- or double-proton dissociation due to the virtual photon exchange (Fig. 1 (a–c)). The electromagnetic (EM) break-up of the proton typically results in a production of particles at small angles to the beam direction, which can mimic the exclusive process. However, the proton-dissociative processes have significantly different kinematic distributions compared to the exclusive reaction, allowing an effective separation of the different production mechanisms.

In general, the photon-induced production of lepton pairs contributes up to a few percent to the inclusive dilepton production at LHC energies [8–10].

In order to reproduce the data, the calculations of such photon-induced reactions, in particular exclusive $\gamma\gamma \to \mu^+\mu^-$ production, need to take into account the proton absorptive effects [3]. They are mainly related to additional gluon interactions between the protons (or proton remnants), shown in Fig. 1 (d), which take place in addition to the QED process. The size of the absorption is not expected to be the same for exclusive and dissociative processes; it may also depend on the reaction kinematics. These effects lead to the suppression of exclusive cross-sections (typically around 10–20%) by producing extra hadronic activity in the event besides the final-state muons. Recent phenomenological studies suggest that the exclusive cross-sections are suppressed, with a survival factor that decreases with mass [11,12].

In this paper, a measurement of exclusive dimuon production in pp collisions at $\sqrt{s} = 13$ TeV is presented for muon pairs with invariant mass 12 GeV $< m_{\mu^+\mu^-} < 70$ GeV. The differential cross-sections, $d\sigma / dm_{\mu^+\mu^-}$, are determined within a fiducial acceptance region. In the region 30 GeV $< m_{\mu^+\mu^-} < 70$ GeV, the minimum transverse momentum of each muon is required to be 10 GeV. For 12 GeV $< m_{\mu^+\mu^-} < 30$ GeV, the minimum muon transverse momentum is reduced to 6 GeV by taking advantage of the lower trigger thresholds available by making additional requirements on muon-pair topology. In addition, both muons are measured in the pseudorapidity range of $|\eta| < 2.4$. The measurements are compared to theoretical predictions both with and without corrections for absorptive effects.

2. ATLAS detector

The ATLAS experiment [13] at the LHC is a multi-purpose particle detector with a forward–backward symmetric cylindrical geometry.
ometry and nearly 4π coverage in solid angle.\footnote{ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring, and the y-axis points upward. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \), and \(\phi \) is the azimuthal angle around the beam pipe with respect to the x-axis. The angular distance is defined as \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \). The transverse momentum is defined relative to the beam axis.}

It consists of inner tracking devices surrounded by a superconducting solenoid, EM and hadronic calorimeters, and a muon spectrometer. The inner detector (ID) provides charged-particle tracking in the pseudorapidity range \(|\eta| < 2.5 \) and vertex reconstruction. It comprises a silicon pixel detector, a silicon microstrip tracker, and a straw-tube transition radiation tracker. The ID is surrounded by a solenoid that produces a 2 T axial magnetic field. Lead/liquid-argon (LAr) sampling calorimeters provide EM energy measurements with high granularity. A hadron (steel/scintillator-tile) calorimeter covers the central pseudorapidity range \(|\eta| < 1.7 \). The end-cap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to \(|\eta| = 4.9 \). The muon spectrometer (MS) is operated in a magnetic field provided by an air-core superconducting toroids and includes tracking chambers for precise muon momentum measurements up to \(|\eta| = 2.7 \) and trigger chambers covering the range \(|\eta| < 2.4 \).

A two-level trigger system [14] selects the events used in the analysis. The first level is implemented in custom electronics, while the second trigger level is a flexible software-based system.

3. Data, simulated event samples and theoretical predictions

This analysis uses a data set of pp collisions collected at a centre-of-mass energy \(\sqrt{s} = 13 \) TeV during 2015 under stable beam conditions. After applying data quality requirements, this data sample corresponds to an integrated luminosity of 3.2 fb\(^{-1}\).

Calculations of the cross-sections for exclusive \(\gamma\gamma \rightarrow \mu^+\mu^- \) production in pp collisions are based on the Equivalent Photon Approximation (EPA) [15,16]. The EPA relies on the property that the EM fields produced by the colliding protons can be treated as a beam of quasi-real photons with a small virtuality of \(Q^2 < 0.1 \) GeV\(^2\). This flux of equivalent photons is determined from the Fourier transform of the EM field of the proton, taking into account the EM form factors [17]. The cross-section for the reaction pp(\(\gamma\gamma \)) \rightarrow \mu^+\mu^- pp is calculated by convolving the respective photon fluxes with the elementary cross-section for the process \(\gamma\gamma \rightarrow \mu^+\mu^- \). The signal events for exclusive \(\gamma\gamma \rightarrow \mu^+\mu^- \) production were generated using the HERWIG 7.0 [18,19] Monte Carlo (MC) event generator, in which the cross-section for the process is computed by combining the pp EPA with the leading-order (LO) formula for \(\gamma\gamma \rightarrow \mu^+\mu^- \). It is found that the predictions for exclusive \(\gamma\gamma \rightarrow \mu^+\mu^- \) production from HERWIG are identical to those from LPAIR 4.0 [20] generator.

The dominant background, photon-induced single-dissociative (S-diss) dimuon production (Fig. 1 (b)), was simulated using LPAIR 4.0 with the Brasse [21] and Suri–Yennie [22] structure functions for proton dissociation. For photon virtualities \(Q^2 < 5 \) GeV\(^2\) and masses of the dissociating system \(m_{\gamma} < 2 \) GeV, low-multiplicity states from the production and decays of \(\Delta \) resonances are usually created. For higher \(Q^2 \) or \(m_{\gamma} \), the system decays into a variety of resonances, which produce a large number of forward particles. The LPAIR package was interfaced to JETSET 7.408 [23], where the LUND [24] fragmentation model is implemented.

The HERWIG and LPAIR generators do not include any corrections to account for proton absorptive effects. Hence the normalisation of these MC samples is further constrained by a data-driven procedure, as described in Section 6.

For double-dissociative (D-diss) reactions, PYTHIA 8.175 [25] was used with the NNPDF2.3QED [26] set of parton distribution functions (PDF). The NNPDF2.3QED set uses LO QED and next-to-next-to-leading-order (NNLO) perturbative QCD (pQCD) calculations to construct the photon PDF, starting from the initial scale \(\sqrt{s} = 2 \) GeV\(^2\). Additionally, two alternative PDF sets, CT14QED [27] and LUXqed17 [28] are considered. Depending on the multiplicity of the dissociating system, the default PYTHIA 8 string or mini-string fragmentation model was used for proton dissociation. The absorptive effects in D-diss MC events are taken into account using the default multi-parton interactions model in PYTHIA 8 [29].

The NLO pQCD POWHEG-BOX v2 [30–33] event generator was used with the CT10 [34] PDF to generate both the Drell–Yan (DY) \(Z/\gamma^* \rightarrow \mu^+\mu^- \) and \(Z/\gamma^* \rightarrow \tau^+\tau^- \) events. It was interfaced to PYTHIA 8.210 [25] applying the AZNLO [35] set of generator-parameter values (tune) for the modelling of non-perturbative effects, including the CTEQ6L1 [36] PDF set. The production of top-quark pair (tt) events was also modelled using POWHEG-BOX, interfaced to PYTHIA 6.428 [37]. The event generators used to model \(Z/\gamma^* \rightarrow \mu^+\mu^- \), \(Z/\gamma^* \rightarrow \tau^+\tau^- \) and tt reactions were interfaced to PHOTOS 3.52 [38,39] to simulate QED final-state radiation (FSR) corrections.

Multiple pp interactions per bunch crossing (pile-up) were accounted for by overlaying simulated minimum-bias events, generated with PYTHIA 8.210 using the A2 tune [40], and reweighting the distribution of the average number of interactions per bunch crossing in MC simulation to that observed in data. Furthermore, the simulated samples were weighted such that the z-position distribution of reconstructed pp interaction vertices matches the distribution observed in data. The ATLAS detector response was modelled using the GEANT4 toolkit [41,42] and the same event reconstruction as that used for data is performed.

The measured distribution of the exclusive \(\gamma\gamma \rightarrow \mu^+\mu^- \) process is compared with two models of absorptive corrections in Section 8.

In the finite-size parameterisation approach [11], the absorptive effects are embedded in the evaluation of the \(\gamma\gamma \) luminosity, taking the photon energy and impact parameter dependence into ac-
count. A simple exponential form of the proton’s transverse profile function, extracted from total and elastic pp and p̅p cross-section data, is used to suppress the two-photon luminosity when the impact parameter of the pp collision becomes small. It determines the probability that no inelastic interaction producing additional hadrons in the final state occurs [43]. Moreover, only photons produced outside the proton with an assumed radius of $r_p = 0.64$ fm are allowed to initiate the two-photon process. This particular feature reflects the finite transverse size of the proton and leads to further suppression of the cross-section.

In the approach implemented in the SuperCHIC2 event generator [12], the absorptive effects are included at the amplitude level differentially in the final-state momenta of scattered protons. As a result, the suppression of the cross-section in general depends on the helicity structure of the γγ → X sub-process and may also alter the kinematics of outgoing intact protons. Because some helicity amplitudes vanish for the γγ → μ+μ− process in the limit of massless muons, this effect plays a less significant role in the suppression of the pp(γγ) → μ+μ−pp cross-section. As in the model described above, the proton transverse profile function controls the reduction of the exclusive production cross-section when pp collisions become central. It is fitted using a two-channel eikonal model to describe a range of total, elastic and diffractive pp and p̅p data [44].

4. Event reconstruction, baseline selection and background estimation

Events were selected online by a set of dimuon triggers with a muon p_T threshold of 6 GeV or 10 GeV, and dimuon invariant mass 10 GeV < $m_{μ+μ−}$ < 30 GeV or $m_{μ+μ−}$ > 30 GeV respectively. Triggers with the lower transverse momentum requirement were enabled for data-taking with an instantaneous luminosity below 1.2×10^{34} cm$^{-2}$s$^{-1}$. These triggers were designed to collect exclusive dimuon events by employing an additional selection on the transverse momentum of the dimuon system, $p_T^{μ+μ−}$ < 2 GeV, to reduce contributions from DY and multijet production.

In each event, muon candidates are identified by matching complete tracks in the MS to tracks in the ID and are required to be in the region $|μ|p_T$ < 2.4. The Medium criterion, as defined in Ref. [45], is applied to the combined tracks. The muons are required to be isolated using information from ID tracks and calorimeter energy clusters in a cone around the muon using the so-called GradientLoose criteria [45]. For each muon, the significance of the transverse impact parameter, defined by the transverse impact parameter (d_0) of a muon track with respect to the beam line divided by its estimated uncertainty ($σ_{d_0}$), is required to satisfy $|d_0|/σ_{d_0}$ < 3.0.

Events are then required to have exactly one pair of oppositely-charged muons. Muons are required to form a pair with an invariant mass of 12 GeV < $m_{μ+μ−}$ < 30 GeV or $m_{μ+μ−}$ > 30 GeV with different $p_T^{μ}$ conditions. The offline $p_T^{μ}$ requirements are identical to the trigger-level requirements, since the trigger efficiencies are found to be constant in the relevant $p_T^{μ}$ range. Each of the two muons must also be matched to one of the muons reconstructed by the trigger.

In order to select exclusive events, the average longitudinal impact parameter of the two leptons is taken as the event vertex and is referred to as the dimuon vertex. The longitudinal impact parameter of each muon track with respect to the dimuon vertex multiplied by the sine of the track $θ$ angle, is required to be less than 0.5 mm.

After these baseline selection requirements, 2.9×10^6 dimuon candidates are found in the data.

The background to the exclusive signal includes contributions from S-diss and D-diss $γγ → μ^+μ^−$ production, as well as $Z/γ^* → μ^+μ^−$ or $Z/γ^* → τ^+τ^−$, with less significant contamination due to tt and multijet production. S-diss and D-diss background contributions are estimated using MC simulation, with additional data-driven normalisation of the S-diss contribution as detailed in Section 6. The $Z/γ^*$ and tt background contributions are also estimated from simulation, and normalised using the respective inclusive cross-sections calculated at NNLO in perturbative QCD [46,47]. The background from $γγ → W^+W^−$ and $γγ → τ^+τ^−$ processes contributes at a level below 0.2% of the expected signal [7] and is therefore neglected. The background contribution from W + jets production is also estimated to be negligible [8]. Scale factors are applied to the simulated samples to correct for the small differences between simulation and data in the muon trigger, reconstruction and identification efficiencies, as well as the momentum scale and resolution [45]. The efficiencies are measured using a tag-and-probe method combining results from $f/ψ → μ^+μ^−$, $τ → μ^+μ^−$, and $Z → μ^+μ^−$ events to cover a large range in the transverse momentum.

The multijet background is determined using data-driven methods, similarly to the previous ATLAS exclusive dilepton measurement [3]. It is extracted using same-charge muon pairs that satisfy the event selection criteria, except the requirement on muon charge. The normalisation of the multijet background is determined by fitting the invariant mass spectrum of the muon pair in the data to the sum of expected contributions, including MC predictions of the signal and the prompt muon backgrounds.

5. Exclusive selection

A typical signature of exclusive $γγ → μ^+μ^−$ events is the absence of charged-particle tracks, other than muon tracks [3,7]. In contrast, inclusive background candidates (like DY or multijet) are produced with extra particles that originate from the emission and hadronisation of additional partons [48,49]. Therefore, in order to select exclusive $γγ → μ^+μ^−$ candidates, a veto on additional charged-particle track activity is applied. This vertex isolation requirement requires no additional tracks with $p_T > 400$ MeV and $|μ| < 2.5$ near the dimuon vertex with $z_{μμ}^0 < 1$ mm, where $z_{μμ}^0$ is the longitudinal impact parameter of track with respect to the dimuon vertex. The value of 1 mm is optimised using the MC simulation and the expected signal significance. This value is identical to that used in Ref. [7].

Following the procedure described in Refs. [3,48], the shape of the charged-particle multiplicity distribution in simulated DY events is reweighted to match the spectrum observed in data. The uncorrected $Z/γ^*$ model overestimates the charged-particle spectrum observed in data by 50% for low-multiplicity events. In order to estimate the relevant weights, the events in the Z-mass region (defined as 70 GeV < $m_{μ+μ−}$ < 105 GeV) are used, since this region is expected to include a large DY contribution. The distribution of the number of tracks associated with the dimuon vertex after applying the charged-particle reweighting procedure to DY simulation is shown in Fig. 2 (a) for events in the Z-mass region. A small mismodelling of this distribution is due to the contribution from fake tracks and secondary particles [48], not taken into account in the correction procedure. Similarly to Ref. [50], the underlying event activity in DY events is found to be independent of the dimuon invariant mass, down to $m_{μ+μ−} = 12$ GeV. For this reason, the same weights are applied to simulated DY events outside the Z-mass region (Fig. 2 (b)), and the description of charged-particle multiplicity is found to be satisfactory. To cover differences observed between the data and simulation, a 10% global uncer-
tainty is assigned to DY MC simulation due to charged-particle multiplicity modelling.

The invariant mass distribution of muon pairs for events satisfying the 1 mm vertex isolation is presented in Fig. 2 (c). The contribution from DY events is further reduced by including only events with a dimuon invariant mass below 70 GeV. In order to further suppress the background from the S-diss process, the muon pair is required to have a transverse momentum, \(p_T^{\mu+\mu-} \), below 1.5 GeV. This is presented in Fig. 2 (d).

Table 1 presents the effect of each step of the selection on the data and the expected numbers of signal and background events.

6. Cross-section measurements

As in the previous ATLAS measurement [3], the exclusive \(\gamma\gamma \rightarrow \mu^+\mu^- \) contribution is extracted by performing a binned maximum-likelihood fit to the measured dimuon acoplanarity \((1 - |\Delta\phi_{\mu^+\mu^-}|)/\pi \) distribution. The acoplanarity variable is not af-
affected by the muon momentum scale and resolution uncertainties and provides a good separation of signal from background. Templates from MC simulation are used for the signal, DY, S-diss and D-diss processes. Contributions from other background sources are found to be negligible. The fit determines two parameters: the expected number of signal events and the expected number of S-diss events. The D-diss and DY contributions are fixed to their corresponding MC predictions in the fit procedure.

The dimuon acoplanarity distribution in data overlaid with the result of the fit to the shapes from MC simulation is shown in Fig. 3 for the fiducial region.

The cross-section measurements presented here correspond to the fiducial region defined in Table 2. The fiducial cross-section for the process $pp(\gamma\gamma) \rightarrow \mu^+\mu^- pp$ is determined according to

$$\sigma_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{excl. fid.}} = \frac{N_{\text{excl}}}{L \times C},$$

where N_{excl} is the total number of signal events extracted using the log-likelihood fit procedure, L is the integrated luminosity of the data sample and C is the overall correction factor that accounts for efficiencies and resolution effects. The C factor is defined as the ratio of the number of reconstructed MC signal events passing the selection to the number of generated MC signal events satisfying the fiducial requirements.

The cross-section for exclusive dimuon production is also measured differentially in four bins of $m_{\mu^+\mu^-}$ from 12 GeV to 70 GeV. The bin widths are chosen to ensure purity above 90%, where purity is defined as the fraction of reconstructed signal events in a given bin of $m_{\mu^+\mu^-}$ which were also generated in the same bin. The differential measurement is unfolded for resolution effects using the signal simulation sample and a bin-by-bin correction procedure. The differential fiducial cross-section as a function of the dimuon invariant mass is calculated as

$$\frac{d\sigma_{\text{excl}}^{\gamma\gamma \rightarrow \mu^+\mu^-}}{dm_{\mu^+\mu^-}} = \frac{N_i^{\text{excl}}}{L \times C_i \times (\Delta m)_i},$$

where N_i^{excl} is the number of signal events recorded in the i-th invariant mass bin, C_i is the correction factor in bin i and $(\Delta m)_i$ is the width of the bin.

7. Systematic uncertainties

The systematic uncertainties in the measurement enter the cross-sections determination through the calculation of the correction factors (C_i), the extracted number of signal events (N_i^{excl}), or the estimation of L_{int}.

The systematic uncertainties are classified as correlated or uncorrelated across the measurement bins. The correlated contributions are propagated by the offset method in which the values from each source are coherently shifted upwards and downwards by one standard deviation and the magnitude of the change in the measurement is computed. The sign of the uncertainty corresponds to a one standard deviation upward shift of the uncertainty source. The uncorrelated sources are propagated using the pseudo-experiment method in which the correction factors used to improve the modelling of data by the simulation are randomly shifted in an ensemble of pseudo-experiments according to the mean and standard deviation of the correction factor. The resulting uncertainty in the measured cross-sections is determined from the variance of the measurements for the ensemble.

Muon-related sources: Uncertainties related to the muon trigger and selection efficiencies are studied using the $J/\psi \rightarrow \mu^+\mu^-$, $\Upsilon \rightarrow \mu^+\mu^-$ and $Z \rightarrow \mu^+\mu^-$ processes, and a tag-and-probe method [14].

The muon trigger efficiency is estimated in simulation, with a dedicated data-driven analysis performed to obtain the simulation-to-data correction factors and the corresponding uncertainties. The uncertainty in the correction factors C_i in Eqn. (1) due to the statistical ($\Delta C_i^{\text{stat.}}$) and systematic ($\Delta C_i^{\text{syst.}}$) uncertainties in the trigger efficiency are around 0.3% and 0.9% respectively.

The muon selection efficiencies as determined from simulation are corrected with simulation-to-data correction factors, which have associated statistical and systematic uncertainties. These contributions to the systematic uncertainty also affect C_i, and are denoted by $\delta_{\text{stat.}}^{\text{excl.}}$ and $\delta_{\text{syst.}}^{\text{excl.}}$, respectively. The $\delta_{\text{stat.}}^{\text{excl.}}$ value is approximately 0.1% and the $\delta_{\text{syst.}}^{\text{excl.}}$ value is around 1.0%.

Uncertainties in the muon momentum calibration can cause a change of acceptance because of migration of events across the muon p_T thresholds and $m_{\mu^+\mu^-}$ boundaries. They are obtained from a comparison of the J/ψ and Z boson invariant mass distributions in data and simulation [45]. When propagated to the correction factors, this source is found to be below 0.5%. This contribution is denoted by $\delta_{\text{excl.}}^{\text{excl.}}$.

Vertex isolation efficiency: Since the dimuon vertex in each event occurs randomly within the Gaussian luminous region, the 1 mm dimuon vertex isolation efficiency is extracted from the data as follows: for each event i, a point z_i is randomly chosen from a Gaussian distribution corresponding to the longitudinal shape of the luminous region, excluding a range of 20 mm centred about the dimuon vertex. This region is excluded to ensure any activity around point z_i is unrelated to the dimuon vertex. In some events, the point z_i is near tracks.
caused e.g. by pile-up interactions. The vertex isolation efficiency is defined as the fraction of events for which \(z \) has no track within 1 mm. This efficiency, as measured in data, is compared with simulation in Fig. 4 as a function of the number of reconstructed vertices \(N_{\text{rec}} \). The average number of reconstructed vertices per event observed in data is approximately 9. In general, good agreement between the data and simulation is observed, with a small systematic difference of 1–2% observed in the region \(8 < N_{\text{rec}} < 12 \), which impacts the \(C_1 \) by 1.1% and this is taken as a systematic uncertainty. It was also checked that the vertex isolation efficiency is well modelled by simulation for arbitrary choice of vertex isolation size.

Modelling of the muon impact parameter resolution may affect the vertex isolation efficiency and can give rise to additional systematic effects. This is estimated by varying the muon impact parameter resolution in simulation to match the shapes observed in data, and the impact on the cross-sections is found to be 0.3%.

In total, the resulting uncertainty in the correction factors due to estimation of the vertex isolation efficiency is found to be \(\delta_{\text{vertex}} = 1.2\% \).

Pile-up description: The systematic effect related to the pile-up modelling is estimated from the comparison between data and simulation of the \(p_T \) and \(\eta \)-dependent density of tracks originating from pile-up, as in Refs. [3,48]. The resulting uncertainty in \(C_1 \) is found to be \(\delta_{\text{pile-up}} = 0.5\% \) and is fully correlated with \(\delta_{\text{vertex}} \).

Background: The uncertainty in the contribution of the DY process mainly accounts for disagreement between the data and simulation in charged-particle multiplicity modelling (10%). It also includes a 5% contribution due to the PDF and scale uncertainties [51]. An overall normalisation uncertainty of 20% is assigned to cover these effects. Because of the similar shapes of the DY and S-diss \(\gamma\gamma \rightarrow \mu^+\mu^- \) components in the fitted acoplanarity distribution, the uncertainty in the DY normalisation is partly absorbed by the S-diss contribution. The 20% uncertainty has typically a 0.7% effect on the extracted number of signal events.

In order to estimate the D-diss \(\gamma\gamma \rightarrow \mu^+\mu^- \) uncertainty, this contribution is varied according to the photon PDF uncertainties, defined at 68% confidence level and evaluated using NNPDF2.3QED replicas [26]. The D-diss background uncertainty produces an uncertainty of 0.2% in the cross-sections, which is consistent with the full difference between the predictions obtained with the NNPDF2.3QED, CT14QED [27] and LUXqed17 [28] central values.

The impact of the two background uncertainty sources is added in quadrature, yielding the uncertainty in \(N_{\text{excl}}^i \) (\(\delta_{\text{bkg}} \)), which is less than 0.8%.

Template shape: The default signal acoplanarity template is constructed using bare EPA predictions from HERWIG. When using the acoplanarity templates from SUPERChic2 or from Ref. [11], the extracted number of signal events is lower by 2–3%, which is taken as a systematic uncertainty. The impact of the proton elastic form-factor modelling on the signal acoplanarity template is evaluated in a similar way to Ref. [3] and takes into account differences between various parameterisations of proton EM form factors. This has a 0.4% effect on the extracted number of signal events.

The impact of the shape uncertainty in the S-diss template is evaluated by varying the \(p_T^{\mu^+\mu^-} \) requirement between 1 GeV and 2 GeV. The maximum deviation of \(N_{\text{excl}}^i \) from the nominal value is observed to be 0.8% and is taken as a systematic uncertainty. In order to assign uncertainty due to the choice of proton structure functions in LeptoK, an alternative set from Ref. [52] is used. This impacts the \(N_{\text{excl}}^i \) by about 2.0% and is taken as a systematic uncertainty.

When added in quadrature, these contributions are listed as \(\delta_{\text{shapes}} \).

LHC beam effects: The impact of the non-zero crossing angles of the LHC beams at the ATLAS interaction point is estimated by applying a Lorentz transformation to the generator-level lepton kinematics for signal MC events. This results in a negligible variation of the cross-sections. The LHC beam energy uncertainty is estimated to be 0.1% [53]. It affects the cross-sections by less than 0.1% and is considered to be a negligible effect.

Unfolding method: The bin-by-bin correction used in the calculation of the cross-sections is compared to an iterative Bayesian unfolding technique [54]. The differences between these two approaches are found to be negligible.

Luminosity: The uncertainty in \(L_{\text{int}} \) is estimated to be \(\delta_{\text{lumi}} = 2.1\% \). It is derived, following a methodology similar to that detailed in Ref. [55], from a calibration of the luminosity scale using \(x-y \) beam-separation scans performed in August 2015.

Other cross-checks: To check the impact of MC modelling of neutral particles in the background processes, the analysis is repeated at generator level by requiring no extra neutral particle with \(p_T > 400 \) MeV and \(|\eta| < 2.5 \), in addition to the charged-particle exclusive selection. This extra requirement shows negligible impact on the analysis. In similar generator-level studies, the \(p_T \) threshold for charged particles is lowered to 100 MeV. The MC event yields for the dominant S-diss and a smaller D-diss background processes remain unchanged. For DY background the yield is suppressed by 80%. No additional systematic uncertainty is, however, assigned as the DY contribution is constrained using Z-mass control region for a nominal selection with a total uncertainty of 20%.

A summary of all systematic uncertainties is given in Table 3.
Table 3
The measured exclusive $\gamma\gamma \rightarrow \mu^+\mu^-$ differential fiducial cross-sections, $d\sigma/dm_{\mu^+\mu^-}$. The extracted number of signal events ($N_{\text{excl.}}$) and correction factors (C_i) are also shown. The measurements are listed together with the statistical ($\delta_{\text{stat.}}$) and total systematic ($\delta_{\text{syst.}}$) uncertainties. In addition, the contributions from the individual correlated and uncorrelated systematic error sources are provided. The last row lists $d\sigma/dm_{\mu^+\mu^-}$ in the total fiducial region. The uncertainties in $N_{\text{excl.}}$ correspond to the combined statistical and systematic uncertainties. These are correlated across $m_{\mu^+\mu^-}$ bands.

<table>
<thead>
<tr>
<th>$m_{\mu^+\mu^-}$ [GeV]</th>
<th>$N_{\text{excl.}}$</th>
<th>C_i</th>
<th>$d\sigma/dm_{\mu^+\mu^-}$ [pb/GeV]</th>
<th>$\delta_{\text{stat.}}$</th>
<th>$\delta_{\text{syst.}}$</th>
<th>Correlated</th>
<th>Uncorrelated</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–17</td>
<td>1290 ± 60</td>
<td>0.333 ± 0.007</td>
<td>0.243 ± 0.013</td>
<td>3.4 ± 0.3</td>
<td>0.1 ± 0.0</td>
<td>0.9 ± 0.0</td>
<td>0.9 ± 0.0</td>
</tr>
<tr>
<td>17–22</td>
<td>1040 ± 50</td>
<td>0.398 ± 0.008</td>
<td>0.164 ± 0.010</td>
<td>3.7 ± 0.3</td>
<td>0.1 ± 0.0</td>
<td>0.9 ± 0.0</td>
<td>0.9 ± 0.0</td>
</tr>
<tr>
<td>22–30</td>
<td>830 ± 40</td>
<td>0.428 ± 0.009</td>
<td>0.076 ± 0.005</td>
<td>3.9 ± 0.2</td>
<td>0.1 ± 0.0</td>
<td>0.9 ± 0.0</td>
<td>0.9 ± 0.0</td>
</tr>
<tr>
<td>30–70</td>
<td>690 ± 40</td>
<td>0.416 ± 0.008</td>
<td>0.013 ± 0.001</td>
<td>4.9 ± 0.3</td>
<td>0.1 ± 0.0</td>
<td>1.0 ± 0.0</td>
<td>1.0 ± 0.0</td>
</tr>
<tr>
<td>12–70</td>
<td>3850 ± 160</td>
<td>0.387 ± 0.008</td>
<td>0.054 ± 0.003</td>
<td>2.1 ± 0.3</td>
<td>0.1 ± 0.0</td>
<td>0.9 ± 0.0</td>
<td>0.9 ± 0.0</td>
</tr>
</tbody>
</table>

Fig. 5. (a) The exclusive $\gamma\gamma \rightarrow \mu^+\mu^-$ differential fiducial cross-section measurements as a function of dimuon invariant mass $m_{\mu^+\mu^-}$. (b) Comparison of the ratios of measured and predicted cross-sections to the bare EPA calculations as a function of the average dimuon invariant mass scaled to the pp centre-of-mass energy used. Data (markers) are compared to various predictions (lines). Full circle markers represent the four mass points presented in this paper, while open circle, up-triangle and down-triangle depict the previous results obtained with $m_{\mu^+\mu^-} > 11.5$ GeV [2], $m_{\mu^+\mu^-} > 20$ GeV [3] and $m_{\mu^+\mu^-} > 45$ GeV [7] requirements on the dimuon invariant mass. The inner error bars represent the statistical uncertainties, and the outer bars represent the total uncertainty in each measurement. The yellow bands represent the theoretical uncertainty in the predictions. The bottom panel in (a) shows the ratio of the predictions to the data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

8. Results

The fiducial cross-section is measured to be

$$\sigma_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{excl. fid.}} = 3.12 \pm 0.07 \text{ (stat.)} \pm 0.14 \text{ (syst.) \, pb}.$$

This value can be compared to the bare EPA predictions from HERWIG, $\sigma_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{EPA, bare}} = 3.56 \pm 0.05$ pb, or to the EPA calculations corrected for absorptive effects using the finite-size parameterisation, $\sigma_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{EPA, corr.}} = 3.06 \pm 0.05$ pb, or to the SUPERChic2 predictions, $\sigma_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{SC2}} = 3.45 \pm 0.05$ pb. The theory uncertainties include uncertainties related to the knowledge of proton elastic form factors (1.5%), and those originating from the higher-order electroweak corrections [56] not included in the calculations (0.7%). These uncertainties are evaluated in a similar way as in Ref. [3].

The measured differential fiducial cross-sections as a function of dimuon invariant mass, together with the breakdown of the systematic uncertainties for the correlated and uncorrelated sources, are given in Table 3. The comparison between the measured cross-sections and the theoretical predictions is shown in Fig. 5 (a). The EPA predictions corrected for absorptive effects are in good agreement with the measured cross-sections. The total systematic uncertainty of the measurement is dominated by shape modelling uncertainties, which can be reduced by tagging outgoing protons with dedicated forward detectors [57,58].

It is expected that absorptive effects in two-photon interactions in pp collisions depend on the proton energy fractions passed to the quasi-real photons (denoted by x_1 and x_2) [11,12]. Therefore, it is interesting to study the evolution of the survival factor, defined as the ratio of measured cross-section to the bare EPA predictions, as a function of the average dimuon invariant mass. Indeed, since $m_{\mu^+\mu^-}^2/s = x_1x_2$, where s is the pp centre-of-mass energy squared, the average values can be obtained:

$$\langle x \rangle \approx \langle m_{\mu^+\mu^-} \rangle / \sqrt{s},$$

since at mid-rapidity ($\langle m_{\mu^+\mu^-} \rangle \approx 0$) one has $x_1 \approx x_2$.

Fig. 5 (b) shows the evolution of the survival factor as a function of the average dimuon invariant mass scaled by a given pp centre-of-mass energy. Exclusive two-photon production of muon pairs in pp collisions at the LHC has been studied by the CMS experiment at $\sqrt{s} = 7$ TeV for $m_{\mu^+\mu^-} > 11.5$ GeV [2]. The ATLAS experiment measured exclusive production of muons at $\sqrt{s} = 7$ TeV in the region $m_{\mu^+\mu^-} > 20$ GeV [3] and $m_{\mu^+\mu^-} > 45$ GeV [7]. The measured invariant mass region in this case is $m_{\mu^+\mu^-} > 45$ GeV. The $(m_{\mu^+\mu^-})$ for different measurements is calculated using the HERWIG generator and corresponding fiducial region definitions. The deviations from unity of the ratios of measured cross-sections to the bare EPA-based predictions from HERWIG increase slightly with
the energy scale $(m_{\gamma \gamma}^2 - m^2)/\sqrt{s}$. This indicates that the size of the absorptive corrections tends to increase with $(m_{\gamma \gamma}^2 - m^2)/\sqrt{s}$.

The measurements are also compared to two model predictions that differ in the implementation of the absorptive corrections. While the finite-size parameterisation of absorptive effects describes the data reasonably well, mismodelling at the level of 10–20% is observed with SUPERChic2. Moreover, at large masses, SUPERChic2 predicts less steeper decrease of the survival factor as a function of χ. For example, the survival factor for fully exclusive $\gamma \gamma \rightarrow W^+ W^-$ production at $\sqrt{s} = 13$ TeV is 0.82 [12] or 0.65 [11], respectively. A larger suppression of the EPA cross-sections in the finite-size approach is obtained by requiring that only photons outside the proton (with $r_p = 0.64$ fm) can initiate the exclusive photon-induced process.

9. Summary

A measurement of the cross-sections for exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ production in pp collisions at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC is presented. The measurement uses a data set corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The fiducial cross-section in the dimuon invariant mass range of 12 GeV < $m_{\mu^+ \mu^-}$ < 70 GeV is measured to be $\sigma_{\gamma \gamma \rightarrow \mu^+ \mu^-} = 3.12 \pm 0.07$ (stat.) ± 0.14 (syst.) pb. The differential cross-sections as a function of the dimuon invariant mass are also measured.

The cross-sections are compared to theoretical predictions which include corrections for absorptive effects. The finite-size parameterisation of absorptive corrections provides a good description of the data, yielding $\sigma_{\gamma \gamma \rightarrow \mu^+ \mu^-} = 3.06 \pm 0.05$ pb. It is observed that the absorptive corrections tend to increase with the energy fraction of protons passed to the initial-state photons. The precision of the measurement can be improved by using dedicated forward proton detectors.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria;anas, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CF, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COCIENTIAS, Colombia; MSM 1 CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GANP, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MINERv, and NCN, Poland; FCT, Portugal; MNEI/FPA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINCOP, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [59].

References

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States
7 Department of Physics, University of Arizona, Tucson AZ, United States
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States
9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin TX, United States
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Instituto de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (d) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 physicakliches Institut, University of Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston MA, United States
25 Department of Physics, Brandeis University, Waltham MA, United States
26 (a) Universidade Federal do Rio De Janeiro COPPE/EEF, Rio De Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFJF), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton NY, United States
28 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania
29 Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States
34 (a) Departamento de Fisica, Pontificia Universidad Catolica de Chile, Santiago; (b) Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile
35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Physics, Nanjing University, Jiangsu; (c) Physics Department, Tsinghua University, Beijing 100084, China
36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics, Shandong University, Shandong; (c) Department of Physics and Astronomy, Key Laboratory for Particle Physics and Astrophysics, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai(also at PKU-CEP), China
37 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
38 Nevis Laboratory, Columbia University, Irvington NY, United States
39 Niels Bohr Institute, University of Copenhagen, Kopenhagen, Denmark