MIBG causes oxidative stress and up-regulation of anti-oxidant enzymes in the human neuroblastoma cell line SK-N-BE(2c)

Cornelissen, J.; van Kuilenburg, A.B.P.; Voûte, P.A.; van Gennip, A.H.

Publication date
1997

Published in
International journal of cancer

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
MIBG CAUSES OXIDATIVE STRESS AND UP-REGULATION OF ANTI-OXIDANT ENZYMES IN THE HUMAN NEUROBLASTOMA CELL LINE SK-N-BE(2C)

Jan Cornelissen, André P. B. Van Kuijlenburg, P. A. Voûte and Albert H. Van Gennip*

Academic Medical Centre, Departments of Paediatrics and Clinical Chemistry, PO Box 22700, 1100 DE Amsterdam, The Netherlands

We report the effects of meta-iodobenzylguanidine (MIBG), a neuroblastoma-seeking agent, on cell proliferation and several oxidative-stress-related parameters in the human neuroblastoma cell line SK-N-BE(2c). MIBG inhibited the proliferation of this cell line in micromolar concentrations. Measurements of the malondialdehyde (MDA) concentrations (a measure of the extent of lipid peroxidation) of cells treated with MIBG showed that increasing concentrations of MIBG led to an increase in MDA levels of the cells. This effect was most pronounced after one day of cellular exposure to MIBG and disappeared after 3 days. Disappearance of the elevated MDA levels caused by MIBG is probably the result of increased enzyme activity of the H2O2 detoxifying enzymes, catalase and glutathion peroxidase (GPx). The catalase- and GPx-enzyme activities of cells exposed to MIBG steadily increased with time, reaching a maximum after 4 days. Oxidative stress caused by MIBG at first led to cellular damage (lipid peroxidation) but over a longer period does not lead to decreased proliferation rate of the cells, most likely because of cellular adaptation to increased oxidative stress by up-regulation of the H2O2 detoxifying enzymes catalase and GPx.

MATERIAL AND METHODS

Cell culture

The human neuroblastoma cell line SK-N-BE(2c) was cultured at 37°C in a humidified atmosphere of 95% air and 5% CO2. DMEM (Bio Whittaker, Verviers, Belgium) supplemented with 10% FCS (Sebak, Aidenbach, Germany), 10 mM L-glutamine, 100 IU/ml streptomycin and 0.1 mg/ml penicillin (GIBCO, Paisley, UK) was used as culture medium. The cells were cultured in the continuous presence of adequate concentrations of MIBG (EMKA-Chemie, Markgröningen, Germany) for 1 to 5 days, in order to study the effects on cell proliferation, lipid peroxidation and catalase/GPx activities of the cells. Cell proliferation was studied by culturing the cells in the presence of MIBG, harvesting the cells every 24 h and determining of the protein content of the cultures.

Lipid peroxidation in SK-N-BE(2c) cells

Lipid peroxidation was measured by determination of the malondialdehyde (MDA) content of the cells by the thiobarbituric acid-protein method (Wasowiczy et al., 1993). The effect of MIBG and radical scavengers on MDA concentrations was studied by adding MIBG (1–25 µM), vitamin E (100 µM) or reduced glutathion (GSH) (1.5 mM) to the culture medium, 1 (scavengers) or 1–3 days (MIBG) before MDA concentrations were measured.

Measurement of H2O2 detoxifying enzymes in SK-N-BE(2c)

Measurement of catalase and glutathion peroxidase (GPx) activities occurred with cells that were cultured for up to 5 days in the continuous presence of various concentrations of MIBG. Before measurement of the enzyme activity, cells were harvested and dissolved in PBS/0.1% Triton X-100. For each assay, 20 µg cellular protein was used.

Catalase activity in SK-N-BE(2c) cells was studied by measuring the conversion rate of H2O2 and ethanol to water and ethanol by

It seems likely that the proliferation rate of neuroblastoma cells can be affected by oxidative stress, to which these cells are especially sensitive. The reason for this sensitivity lies in their high abundance of iron holding protein ferritin (Iancu et al., 1988), and high intra-cellular concentrations of hydrogen peroxide due to low levels of catalase and glutathion peroxidase (Steinkühler et al., 1988). Because of these properties, neuroblastoma cells contain all components required for the Fenton reaction, which results in the formation of highly reactive hydroxyl radicals and thus cellular damage.

To determine whether inhibition of complex I of the respiratory chain by MIBG does in fact lead to oxidative stress in intact cells and subsequently to a decreased proliferation rate of the cells, we studied the effects of MIBG on cell proliferation and several oxidative-stress-related parameters in the human neuroblastoma cell line SK-N-BE(2c).

Received 6 December 1996; revised 27 March 1997

Contract grant sponsor: Stichting Kindergeneeskundig Kankeronderzoek; Contract grant number: 92-03.

*Correspondence to: Fax: +31-20-6962596.
E-mail: a.h.vangennip@amc.uva.nl
catalase. The ethanal formed in this reaction was subsequently converted to acetic acid by aldehyde dehydrogenase (ADH) (Boehringer, Mannheim, Germany), which simultaneously reduces NAD$^+$ to NADH. Assay conditions for the reactions were: 100 mM K$_2$HPO$_4$/KH$_2$PO$_4$ (pH 7.4), 0.05% Triton X-100, 10% ethanol, 1 mM 4-methyl pyrazol (an inhibitor of ethanol dehydrogenase) (Sigma, St. Louis, MO), 1 mM NAD$^+$ and 10 U/ml ADH. The catalase activity was measured by following the increase in absorbance due to the reduction of NAD$^+$ at 340 nm. Measurement of GPx activity in SK-N-BE(2c) cells was performed with the use of the Ransel enzyme kit (Randox, Crumlin, UK). The conversion of cumene hydroperoxide to hydroxycumene by GPx and the simultaneous oxidation of GSH to GSSG (oxidized glutathion) could be measured by following the decrease in absorbance due to the oxidation of NADPH at 340 nm. NADPH is oxidized when the reduction of GSSG to GSH by the enzyme glutathion reductase takes place.

RESULTS

Figure 1 shows the proliferation-inhibiting effect of MIBG on the human neuroblastoma cell line SK-N-BE(2c). As observed before (Cornelissen et al., 1995a), increasing concentrations of MIBG led to a decreased proliferation rate of the cells, as illustrated by the reduced increase of the protein content of the cell cultures. In order to support our hypothesis on the oxidative-stress-inducing properties of MIBG, we measured MDA concentrations (a measure of lipid peroxidation) in SK-N-BE(2c) cells exposed for one day to various concentrations of MIBG. As is shown in Figure 2, addition of increasing concentrations of MIBG led to a dose-dependent increase of the MDA concentration in the cells. At an MIBG concentration of 25 µM, the MDA concentration was almost maximal, and more than 2-fold higher than control values (0.46 and 0.18 nmol/mg protein respectively).

Little or no increase in the MDA concentrations could be observed when radical scavengers (100 µM vitamin E or 1.5 mM GSH) were present during overnight incubation with MIBG (Fig. 3). Of the 2 scavengers used, vitamin E proved to be the more effective. Despite the protecting effect of the scavengers against MIBG-induced increase in MDA levels, no increase in proliferation rate could be observed when cells were cultured for 5 days in the presence of 25 µM MIBG plus vitamin E or GSH (in comparison with cells that were treated with only 25 µM MIBG) (data not shown).

Measurement of the cellular MDA concentrations after 1, 2 and 3 days of exposure to MIBG (Fig. 4) revealed that the MDA levels were maximal after one day of exposure, but gradually declined to control levels during days 2 and 3.

The cellular enzymatic defence system against oxidative stress consists of superoxide dismutase (SOD), which converts superoxide to H$_2$O$_2$ (a substrate of the Fenton reaction, therefore still harmful for the cell) and GPx and catalase that convert H$_2$O$_2$ to water and oxygen. In the experiment reported in Figure 5, we measured the activity of the enzymes responsible for the last detoxifying step (GPx and catalase) in cells exposed to MIBG for 4 days. By doing this we hoped to find out whether the normalization of the MDA levels in cells exposed to MIBG was due to an increase in the activity of these enzymes. Exposure of the SK-N-BE(2c) cells to increasing concentrations of MIBG did indeed lead to a
A dose-dependent increase in the activity of these enzymes. At a MIBG concentration of 25 µM, the increase in catalase and GPx activity was maximal (180 and 260% of control values respectively). As shown in Figure 6, the increase in activity of both enzymes starts after one day of exposure to MIBG and is nearly maximal at day 4. The GPx activity of control cells reduces slightly over the 5-day incubation period, whereas the catalase activity remains more or less constant.

DISCUSSION

In this paper we discuss the oxidative-stress-inducing properties of the neuroblastoma-seeking agent MIBG and its effects on cell proliferation and several oxidative-stress-related parameters in the human neuroblastoma cell line SK-N-BE(2c).

As reported earlier, MIBG decreases the proliferation rate of the SK-N-BE(2c) cell line (Cornelissen et al., 1995a). We explained this decrease in proliferation rate by the inhibiting action of MIBG on complexes I and III of the mitochondrial respiratory chain. Since an increase in the MIBG concentration to concentrations higher (10–25 µM) than those required to cause optimal inhibition of respiratory chain activity (5–10 µM) led to an even more serious inhibition of cell proliferation, it was concluded that inhibition of the respiratory-chain activity could not be entirely responsible for the cell-proliferation-inhibiting properties of MIBG.

Experiments performed in SMPs by our group and others showed that inhibition of complex I by MPP⁺, rotenone, piercidin A (Takeshige and Minakami, 1979; Takayanagi et al., 1980; Hasegawa et al., 1990; Ramsay and Singer, 1992) or MIBG (Cornelissen et al., 1997) led to increased lipid peroxidation and formation of superoxide. When MIBG is used to inhibit complex I, the formation of superoxide is maximal at MIBG concentrations much higher than those required to achieve optimal inhibition of respiratory-chain activity, and might therefore be responsible for the proliferation-inhibiting effect of MIBG at high concentrations, which cannot be entirely explained by the inhibition of respiratory-chain activity.

Addition of MIBG to SK-N-BE(2c) cells indeed led to increased concentrations of MDA in these cells. The increased MDA concentration is a measure of increased lipid peroxidation. This is caused not only directly by inhibition of complex I (as is observed in SMPs), but also indirectly by the formation of superoxide (also due to inhibition of complex I). Indirect lipid peroxidation occurs when superoxide is converted to H₂O₂ by Mn SOD, located in the mitochondrial matrix. H₂O₂ can easily cross the mitochondrial membranes to enter the cytosol, and react with Fe²⁺ in the Fenton reaction, to form the highly reactive hydroxyl radicals. These radicals react non-specifically within the cell, giving rise to the formation of MDA when they react with membranes (Halliwell and Gutteridge, 1991). The MIBG-induced increase in the MDA concentration should be seen as a reflection of general cellular damage rather than just a measure of membrane damage.

The increase in cellular MDA normalizes, despite the presence of MIBG, after 3 days of MIBG exposure. This decrease correlates to an increase in activity of H₂O₂-detoxifying enzymes. It seems
likely, therefore, that the increased activity of the H$_2$O$_2$ detoxifying enzymes is responsible for normalization of the MDA levels. Increase of the activity of these enzymes will lead to a decrease in H$_2$O$_2$ concentration within the cell, depriving the Fenton reaction of substrate. Consequently, the formation of hydroxyl radicals through the Fenton reaction (and thus the formation of MDA) will occur at a lower rate.

In conclusion, the oxidative stress caused by MIBG at first leads to cellular damage (reflected in the increased concentrations of MDA), but over a longer period does not result in inhibition of cell proliferation. This is reflected by the lack of effect of the addition of radical scavengers on cell proliferation of cells treated with MIBG (data not shown), most likely because the cells adapt to the increase in oxidative stress by up-regulation of the H$_2$O$_2$-detoxifying enzymes, catalase and GPx.

Mono ADP ribosylation is another process affected by MIBG (Smets et al., 1990). Inhibition of this process by MIBG could be an explanation for the inhibition of cell proliferation caused by MIBG at high concentrations. Increased oxidative stress due to MIBG in the long term does not affect cell proliferation, but merely changes the activity of the enzymatic defence system against oxidative stress.

ACKNOWLEDGEMENTS

This study was supported by grant 92-03 from the “Stichting Kindergeneeskundig Kankeronderzoek”.

REFERENCES

