Equilibrium spherically curved two-dimensional Lennard-Jones systems

Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.

Published in:
Journal of Chemical Physics

Citation for published version (APA):
Equilibrium spherically curved 2D Lennard-Jones systems

J.M. Voogd,* P.M.A. Sloot
University of Amsterdam, Section Computational Science,
Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands
and
R. van Dantzig**
NIKHEF, Kruislaan 409, 1098 SJ Amsterdam, The Netherlands

September 21, 2005

Abstract

To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional \(N \)-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many \(N \)-values (\(N < 800 \)) equilibrium configurations are traced as a function of the curvature radius \(R \). Sharp jumps for tiny changes in \(R \) between trajectories with major differences in topological structure correspond to avalanche-like transitions. For a typical case, \(N = 25 \), equilibrium configurations fall on smooth trajectories in state space which can be traced in the \(E - R \) plane. The trajectories show-up with local energy minima, from which growth in \(N \) at steady curvature can develop.

1 Introduction

In vitro self-organization in aqueous solution of nanoscale spherical shells, like various types of nano-vesicles [1,2,3,4] and viral capsids [5] is a thermodynamic process driven by overall free energy minimization. The resulting shell has inherent tendencies toward a) crystalline structure [5,7,8], b) global polyhedral symmetry [9,10,11], and c) discrete sizes [11,12,13], thus discrete curvatures.

A compelling question is whether during thermodynamic growth a transient uncompleted (open) shell of given \(N \) prefers intrinsically to adopt a specific equilibrium radius of curvature (\(R \)), and whether this radius - on

*Now at TNO-FEL, NL-2597AK The Haque, The Netherlands
**rvd@nikhef.nl, corresponding author
the basis of molecular packing order already - may be approximately stable
during (part of) that growth. The occurrence of local minima in the mean
(per particle) potential energy \(E \) of an emerging shell as a function of all
internal degrees of freedom - including \(R \) - along the evolution path in state
space, could thus be significant for steady curvature during growth in \(N \).

In this paper we approach the problem in a much simplified model that
allows systematic generic studies. The sphericity of the shell, in reality due
to intrinsic 3D-properties of the optimally closely packed molecular subunits,
is built-in as a global geometrical constraint. We perform computer experi-
ments with freely relaxing - possibly open - spherically curved zero-thickness
monolayers of identical molecules, studying structural properties in relation
with \(N \) and \(R \). Our approach is most natural for monolayer nanowheel ves-
icles, but it is as well relevant for tiny bilayer vesicles, where the laterally
most densely packed pseudo-crystalline inner lipid headgroup-sublayer can
act as monolayer ‘backbone’.

As model we use two-dimensional (2D) Lennard-Jones (LJ) \(N \)-particle
systems on a spherical surface with flexible radius at zero temperature. The LJ potential \(V_{ij} = r_{ij}^{-12} - 2r_{ij}^{-6} \) between two particles \(i \) and \(j \)
with Euclidean distance \(r_{ij} \) energetically favors close regular packing with
essentially unit distance between neighboring particles. The LJ-form in
the constrained system acts as an effective interaction mimicking the real
complex of interactions. It allows a comprehensive systematic exploration
while keeping salient features of real systems. The present work arises from
a series of computational studies on 2D spherical crystallization in LJ-
systems over a broad range of \(N \), involving thermodynamic behavior and
zero-temperature global energy minimization. The LJ-systems follow local-
equilibrium paths in state space, realistically allowing for local minimum
‘hang-ups’ in evolving configurations.

When many LJ particles are randomly spread over a flat surface they ag-
gregate into an approximately homogeneous configuration, a major fraction
of the particles being trapped inside the bulk (interior). Edge particles have
higher energy than bulk particles, giving rise to edge tension, the 2D equiv-
alent of surface tension. Minimizing edge energy, flat aggregates become
approximately circular patches. Minimizing the overall potential energy the
bulk becomes an essentially regular hexagonal lattice. Allowing for spherical
curvature, the 2D system can further decrease the energy by reducing the
distance and by a rising attraction from LJ-tails of remote particles (the
LJ-forces acting in 3D). The energy gain by curvature, however, balances
against increasing strain energy of the bulk because of less favorable packing.

Our question becomes whether – thanks to the interplay of these \(R \)-
dependent non-linear effects – equilibrium radii \(R_{eq} \) can be found where
relaxation after any small change in curvature raises \(E \), and freely variable
\(R \) leads the system back to the same equilibrium radius. If such local energy
minima in open configurations are thermodynamically significant, they can stabilize transient states along a path of growing N. This is supported by a LJ-study [15], showing that closed global minimum energy N-particle configurations (covering the whole sphere) strongly correlate with specific open local minimum configurations of lower N.

2 Methods

In our experiments, each time the radius R is changed by a small step, the particle system is relaxed by minimizing – at the new R value – the mean energy, which implies reaching the nearest equilibrium configuration. The system is thus evolved in curvature while staying in equilibrium with changing R. For relaxation (equilibration of forces and energy minimization), a steepest descent (SD) algorithm [16] is applied while for aggregation a Metropolis Monte Carlo simulated annealing (SA) [17] optimization is used. The latter method enhances the probability that the system ends up in a global energy minimum (GEM) [13] rather than in a local secondary energy minimum. The 2D-topology of a configuration is defined by the Voronoi nearest neighbors method [19], giving each particle a coordination number (CN), which is 6 everywhere for a flat (hexagonal) GEM configuration. The value $CN - 6$ is denoted as the disclination charge - short d-charge - of a particle. In a 2D topological structure any single built-in defect – disclination or dislocation (tightly bound pair of disclinations with opposite d-charge) – can be displaced but not removed, except by its annihilation as part of a set of converging complementary defects, or by moving it all the way to the edge. During the transformation of a flat GEM lattice to a closed shell a net total d-charge of -12 must be incorporated in the full Voronoi lattice. In addition, dislocations have the function of lowering the strain energy in total, by distributing it locally more evenly [6].

How much the configurations change during relaxation after a step ΔR, can be expressed as the mean Euclidean distance, \hat{r}, traveled between the associated sets of coordinates x_R and $x_{R+\Delta R}$ in configuration space (mean taken per particle and per percent change in curvature):

$$\hat{r} = \frac{|\Delta R|}{2N} \sqrt{\sum_{i=1}^{N} (x_{R,i} - x_{R+\Delta R,i})^2}.$$

3 Computer experiments

From flat to spherical

In a first series of experiment we explore gross changes in topological and geometrical structure and the corresponding energy with monotonously decreasing R. For hundreds of runs with $N < 800$ an initial, circularlike aggregate is prepared from a flat regular hexagonal lattice with unit spacing.
(GEM for infinite \(N \) in flat 2D). In the experiments \(R \) is decreased in 1% steps, each time the configuration being projected onto the new sphere and then relaxed using the SD method. The decrease in \(R \) is continued until the system is compressed considerably. A system of particular \(N \) follows a ‘standard’ (for that \(N \)) evolution path through state space and through the \(E - R \)-plane.

Example, \(N = 25 \)

Secondly, curved lattices unbiased by any initial configuration and path history, are simulated while starting in SA mode at high temperature (\(T = 10 \)) in a random configuration and then aggregate by cooling down the system in 5% \(\Delta T/T \) steps. SD is applied as final tuning. This study is done for a typical ‘unmagic’ \(N \) value, \(N = 25 \). In 1300 runs radii are randomly chosen between \(R = 1.3 \) and \(R = 2 \).

The equilibrium points in \(E - R \) space align over a range of \(R \)-values along distinct smooth trajectories: lines which correspond to continuous sets of topologically and geometrically closely similar equilibrium configurations.

Tracing up and down in curvature

The central question of the current paper, whether trajectories of the system lining-up closely related configurations, can provide a stable system against freely variable \(R \), is addressed in a third type of experiment. Starting from particular open \(N = 25 \) configurations obtained in the second experiment, trajectories are traced (with relaxation) step-by-step in \(R \) in both directions, and the structure is investigated.

4 Results and discussion

Energy trends

In the first study a general energy trend is found for all \(N \)-values, as illustrated by three typical examples: for \(N = 6, 50 \) and 350 in Fig. [4](left column). As expected, the most prominent feature is a deep global minimum along the followed \(E - R \) path. Having started from a flat regular configuration while systematically decreasing \(R \), the particles cover in close packing an increasing part of the sphere until at the closure radius \(R_c \) the lowest \(E \) along the \(E - R \) path is reached. At this stage any uncovered area – and thus any edge – has disappeared. We note that except for details, the structure is not biased significantly by the initial configuration.

The energy difference, \(\Delta E_c \), between the \(R \to \infty \) asymptotic value and the deep minimum represents the energy gain of closure. Additional structure is visible: secondary, local, minima and sharp downward jumps at \(R > R_c \).

Toward smaller radii, \(R < R_c \), the system comes under external pressure, and the density increases. The LJ repulsive core between neighboring
particles then increasingly dominates the energy, the energy rises steeply, independent of the detailed configuration.

The energy of a configuration can be approximated as $E = (N_{\text{bulk}}\epsilon_{\text{bulk}} + N_{\text{edge}}\epsilon_{\text{edge}})/N$, where $N_{\text{bulk}} + N_{\text{edge}} = N$, $\epsilon_{\text{bulk}} = -3.382$ being the lowest possible value corresponding to an infinite flat regular hexagonal lattice while ϵ_{edge} is typically half that value. Due to the impossibility of fully regular hexagonal packing ϵ_{bulk} is higher on a curved surface. The unfavorable edge energy forms the main driving force for curvature and shell closure, although - due to topological rearrangement - normally a barrier between flat and curved states stands in the way. Consequently, for the larger N-values, starting from the flat GEM configuration, indeed dE/dR is negative, meaning that at sufficiently low T such a flat LJ-system is locally stable against curvature. An exception is the extreme case, $N = 6$, where the initially flat LJ-system can immediately gain energy by curving. A tiny jump in E (at $R \approx 1.36$) goes with a discontinuity in the dE/dR slope. Here already we observe a secondary minimum along the standard $E - R$ path. For $N = 50$ below $R = 4$, local energy minima and jumps are visible.
Figure 2: Mean energy (E) versus curvature radius (R) for $N = 25$. From top to bottom: a) Second experiment: energy minima at random fixed values of R, found in unbiased searches, each with random initial configuration, applying SA and SD; b) Third experiment: example of tracing through $E − R$ space by 1% steps in R using SD. Arrows indicate the R step direction. The inset shows a clear-cut case of hysteresis; c) Parts of trajectories, exhibiting local minima as a function of R.

At $R_c \approx 1.87$ the system closes over the sphere. For $N = 350$ below $R = 13$, many minima and many jumps show-up. At $R_c \approx 5$ the system closes. In the second experiment ($N = 25$), in Fig. 2a, the independently obtained E-values for fixed, randomly chosen, R-values align along smooth lines in the $E − R$ plane.

Euclidean distance

Energy jumps (Fig.1 at left) go with structural transitions visible as spikes in the mean Euclidean distance per particle per percent, $\hat{r}(R)$ (Fig.1 at right). At $R < R_c$, the particles hardly move anymore over the sphere, all flexibility being lost due to the external pressure counterbalanced by the repulsive core. The smooth background in $\hat{r}(R)$ reflects small adjustments of an essentially stable configuration after a curvature step. It can be fully suppressed by reducing the step size, which turns out to leave the transitions essentially unaffected; the sharpness of the transitions remains within a step size of even an order of magnitude smaller than applied in the current data.
Closure radius

The radius R_c at which the system closes can be predicted by requiring the packing density on the spherical surface to be (almost) the same as for a flat lattice, $R_c(N) = \sqrt{\frac{N}{4\pi}} \cos\left(\frac{\pi}{6}\right)$. For $N=6, 25, 50$ and 350 it follows that $R_c(N)=0.64, 1.3, 1.9$ en 4.9 respectively. These values agree with the data (Fig. 1 left) except for small N where the packing is far less optimal than for a flat GEM lattice.

Structural transitions and topological defects

Energy jumps between different trajectories involve a major global rearrangement.

With successively applied small steps in curvature followed by relaxation, the system usually undergoes only minor local redistributions, while strain accumulates in parts of the lattice. At some curvature steps, however, an avalanche of sequential displacements over a major part of the system is triggered by local instabilities, while releasing much of the built-up strain. A small change in R may thus enforce a structural transition to a configuration, in which both the strain and the 2D-topological (defect) structure have been drastically altered. An extensive systematic study of the topological defect structure as a function of N up to 200 is available [6].

The transitions come along with incorporation or removal of defects as a function of curvature. Energy barriers are present between configurations with different topological structure. The transition to take place requires the system to climb the barrier to a threshold for starting an avalanche of particle moves. The threshold R-value depends on the barrier side, causing hysteresis.

Starting from an essentially circular patch with flat regular packing, the ‘unstable’ radius R_u where - with increasing curvature - the first structural transition occurs, is modeled as $S \ast 2n_{max} \arcsin(\alpha) = \sin(2n_{max} \arcsin(\alpha)) \geq$, where $\alpha = 1/(2R_u)$, n_{max} is essentially the largest completed hexagonal ring, and where S can be taken from the data for a single specific N-value (see Table 1).

Open configurations

The points in Fig. 2a at large R cover a broad range in energy, corresponding to a great variety of open configurations and edge-arrangements. As R decreases, the edge becomes smaller, and the variation decreases. Any flexibility essentially disappears below R_c, due to the strong constraints for a closed spherical configuration.

Secondary minima

Fig. 2b shows $E-R$ trajectories from the third experiment, starting from a specific configuration (near the minimum at $R \approx 1.5$) from the second experiment. Here the system is traced up-and-down in R. Indeed, the trajectories in the $E-R$ plane connect unbiased solutions, and – like in the first experiment – jumps and secondary minima occur. The secondary
minima visible in Fig.2c, are obtained starting from configurations of the second experiment (Fig.2c), and tracing in R up and down until a jump occurs. The minima have a typical depth of 10% of the closure energy ΔE_c. At non-zero T the thermodynamic significance of such minima should be judged with respect to both kT and ΔE_c.

Variable N

The finding of distinct locally-stable open configurations for fixed N raises the expectation that any discrete curvature may remain, or change smoothly, during growth when particles are added. A study of this type [15] indeed indicates that discrete locally-stable configuration trajectories exist as a function of both R and N, where the bulk packing remains essentially the same.

In conclusion, for fixed-N two-dimensional spherical Lennard-Jones systems at zero temperature, the global energy minimum with decreasing curvature radius R is approached through sharp transitions with major rearrangements. These transitions bring-in topological defects connected with curvature. The curvature range of events relevant for self-assembly, $R_u - R_c$ is consistent with simple models. Apart from the closed (global) minimum energy configuration, secondary, local, minima show up at larger R-values, with an open configuration. This phenomena – here shown for $N = 25$ – occurs naturally as a consequence of optimal packing topologies. During growth toward a complete shell such minima can capture ‘threads’ of steady curvature along with growth in N, while staying in equilibrium. The present results and methods can help guide further generic studies of the self-organization in complex spherical molecular systems.

The authors are grateful to D. Frenkel (FOM-AMOLF) for many fruitful suggestions, and to M. Livny (UW-Madison) for indispensable support on Condor High Throughput Computing. Part of this work has been funded by the FOM and NWO science organizations in The Netherlands.

<table>
<thead>
<tr>
<th>N</th>
<th>n (max)</th>
<th>R_u (data)</th>
<th>R_u (model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>1.37</td>
<td>1.34</td>
</tr>
<tr>
<td>50</td>
<td>3</td>
<td>3.95</td>
<td>4.11</td>
</tr>
<tr>
<td>350</td>
<td>9</td>
<td>12.3</td>
<td>12.3</td>
</tr>
<tr>
<td>500</td>
<td>11</td>
<td>15.6</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Table 1: The radius R_u where the trajectory becomes unstable for increasing curvature starting from a flat regular distribution for $N=6, 50, 350$ and 500, compared with estimates from the simple model with S calibrated at $N = 350$.

Variable N
References

[15] Reference [6], page 157-159 and to be published.

