The adequacy of aging techniques in vertebrates for rapid estimation of population mortality rates from age distributions

Zhao, M.; Klaassen, C.A.J.; Lisovski, S.; Klaassen, M.

DOI
10.1002/ece3.4854

Publication date
2019

Document Version
Other version

Published in
Ecology and Evolution

License
CC BY

Citation for published version (APA):
Appendix S4. Example of R code to simulate data and calculate \(\frac{1}{m} \), the basic factor in the 95% error percentage plotted in Fig. 1.

Construct a function called basic factor to calculate \(\frac{1}{m} \), the basic factor in 95% error percentage (\(EP(95) \)) in equation 44.

basic_factor <- function(beta = 1, sigma, m, c) {
 beta = abs(beta)
 lambda = -log(1-m) # equation is specified in the line below equation
 mu <- sigma*lambda/beta # equation is specified in the line above equation 22
 if(mu > 8) {NA} else { # when mu \(\mu \) > 8 the computation is unreliable and thus discarded
 # integral part of equation 46
 int10 <- function(x) (x + dnorm(x)/pnorm(x)) * dnorm(x + mu)
 int1 <- integrate(int10, -mu - c, -mu + c)$value
 # equation 46 to calculate \(L(\mu) \), which is also the lower limit of \(K(\mu) \)
 L <- Klow <- mu + int1
 # right hand of equation 47, which is the upper limit of \(K(\mu) \)
Kup <- L + (1 + 1/c + 1/c^2) * dnorm(c)

use the average of the upper and lower limit to represent $K(\mu)$ in equation 47
K <- (Kup + Klow)/2

Jmu <- 1/(mu^2) - 1 - mu^2 + mu*K # second equation in equation 45

Im <- (sigma/beta/(1-m))^2*Jmu # equation 38

mIm <- 1/(sqrt(Im)*m) # $\frac{1}{m \sqrt{I(m)}}$, the basic factor in equation 44 and plotted in Fig. 1

return $\frac{1}{m \sqrt{I(m)}}$ in equation 44

if(is.infinite(mIm)|is.nan(mIm)) {
 NA # when mu $\mu > 8$ the computation is unreliable and thus discarded
} else {
 mIm
}

}