The adequacy of aging techniques in vertebrates for rapid estimation of population mortality rates from age distributions

Zhao, M.; Klaassen, C.A.J.; Lisovski, S.; Klaassen, M.

Published in:
Ecology and Evolution

DOI:
10.1002/ece3.4854

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
CC BY

Citation for published version (APA):
Appendix S4. Example of R code to simulate data and calculate \(\frac{1}{m\sqrt{I(m)}} \), the basic factor in the 95% error percentage plotted in Fig. 1.

Construct a function called basic factor to calculate \(\frac{1}{m\sqrt{I(m)}} \), the basic factor in 95% error percentage \(EP(95) \) in equation 44.

```r
basic_factor <- function(beta = 1, sigma, m, c) {
  beta = abs(beta)
  lambda = -log(1-m)  # equation is specified in the line below equation
  mu <- sigma*lambda/beta  # equation is specified in the line above equation 22
  if(mu > 8) {NA} else {  # when mu > 8 the computation is unreliable and thus discarded
    int10 <- function(x) (x + dnorm(x)/pnorm(x)) * dnorm(x + mu)
    int1 <- integrate(int10, -mu - c, -mu + c)$value
    L <- Klow <- mu + int1
    # equation 46 to calculate \( L(\mu) \), which is also the lower limit of \( K(\mu) \)
  }
  # right hand of equation 47, which is the upper limit of \( K(\mu) \)
}
```
Kup <- L + (1 + 1/c + 1/c^2) * dnorm(c)

use the average of the upper and lower limit to represent K(\mu) in equation 47
K <- (Kup + Klow)/2

Jmu <- 1/(mu^2) - 1 - mu^2 + mu*K # second equation in equation 45

Im <- (sigma/beta/(1-m))^2*Jmu # equation 38

mlm <- 1/(sqrt(Im)*m) # \frac{1}{m\sqrt{I(m)}} the basic factor in equation 44 and plotted in Fig. 1

return \frac{1}{m\sqrt{I(m)}} in equation 44

if(is.infinite(mlm)|is.nan(mlm)) {
 NA # when \mu > 8 the computation is unreliable and thus discarded
} else {
 mlm
}
