The adequacy of aging techniques in vertebrates for rapid estimation of population mortality rates from age distributions

Zhao, M.; Klaassen, C.A.J.; Lisovski, S.; Klaassen, M.

DOI
10.1002/ece3.4854

Publication date
2019

Document Version
Other version

Published in
Ecology and Evolution

License
CC BY

Citation for published version (APA):
Appendix S6: Key mathematical notation

General notation

\(F \): distribution functions
\(f \): (probability) density functions
\(\Phi(z) \): standard normal distribution function
\(\varphi(z) \): standard normal density function

Birth and survival related notation

\(S \): survival time
\(F_S(s) \): the distribution function of survival time \(S \)
\(f_S(s) \): the density function of survival time \(S \)
\(T \): time of birth of a random individual from the population
\(f_T(t) \): the density function of time of birth \(T \)
\(\tau \): the maximum possible age an individual from the population can attain

Linear regression related notation

\(X \): age proxy
\(X_1, \ldots, X_n \): independent and identically distributed copies of \(X \)
\(x_1, \ldots, x_n \): realization of the random variables \(X_1, \ldots, X_n \)
\(Y \): age
\(f_Y(y) \): density function of the age of an individual at time 0
\(g(y) \): regression function relating age proxy to age
\(\alpha \): intercept for linear regression of age proxy against age
\(\beta \): slope for linear regression of age proxy against age
\(\sigma \): standard deviation of the error in the regression model
\(\varepsilon \): standardized error in the regression model
\(f_\varepsilon(z) \): density function for \(\varepsilon \)
\(F_\varepsilon(z) \): distribution function for \(\varepsilon \)
\(n\): sample size, i.e., the number of sampled individuals of which the age proxy is measured

Mortality rate related notation

\(m\): mortality rate
\(\lambda = -\ln(1 - m)\): rate parameter of exponential distribution
\(\beta / \sigma\): the crucial indicator for the variation in estimated mortality rate
\(\mu = \sigma \lambda / |\beta|\): proxy coefficient
\(\hat{\mu}_n\): asymptotically efficient estimator of \(\mu\)
\(I(m)\): Fisher information for mortality rate \(m\)
\(J(\mu)\): Fisher information for \(\mu\)
\(CR(95)\): 95% confidence range
\(EP(95)\): theoretical 95% error percentage for mortality rate \(m\)
\(EEP(95)\): empirical 95% error percentage for mortality rate \(m\)
\(\hat{m}_n\): efficient estimator for mortality rate \(m\)
\(\frac{1}{\hat{m}_n \sqrt{I(m)}}\): the basic factor used in the calculation of 95% error percentage \(EEP(95)\)