The adequacy of aging techniques in vertebrates for rapid estimation of population mortality rates from age distributions

Zhao, M.; Klaassen, C.A.J.; Lisovski, S.; Klaassen, M.

DOI
10.1002/ece3.4854

Publication date
2019

Document Version
Other version

Published in
Ecology and Evolution

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Appendix S6: Key mathematical notation

General notation

F: distribution functions

f: (probability) density functions

$\Phi(z)$: standard normal distribution function

$\varphi(z)$: standard normal density function

Birth and survival related notation

S: survival time

$F_S(s)$: the distribution function of survival time S

$f_S(s)$: the density function of survival time S

T: time of birth of a random individual from the population

$f_T(t)$: the density function of time of birth T

τ: the maximum possible age an individual from the population can attain

Linear regression related notation

X: age proxy

X_1, \ldots, X_n: independent and identically distributed copies of X

x_1, \ldots, x_n: realization of the random variables X_1, \ldots, X_n

Y: age

$f_Y(y)$: density function of the age of an individual at time 0

$g(y)$: regression function relating age proxy to age

α: intercept for linear regression of age proxy against age

β: slope for linear regression of age proxy against age

σ: standard deviation of the error in the regression model

ε: standardized error in the regression model

$f_\varepsilon(z)$: density function for ε

$F_\varepsilon(z)$: distribution function for ε
\(n \): sample size, i.e., the number of sampled individuals of which the age proxy is measured

Mortality rate related notation

\(m \): mortality rate

\[\lambda = -\ln(1 - m) \] rate parameter of exponential distribution

\(\beta / \sigma \): the crucial indicator for the variation in estimated mortality rate

\[\mu = \sigma \lambda / |\beta| \] proxy coefficient

\(\hat{\mu}_n \): asymptotically efficient estimator of \(\mu \)

\(I(m) \): Fisher information for mortality rate \(m \)

\(J(\mu) \): Fisher information for \(\mu \)

\(CR(95) \): 95\% confidence range

\(EP(95) \): theoretical 95\% error percentage for mortality rate \(m \)

\(EEP(95) \): empirical 95\% error percentage for mortality rate \(m \)

\(\hat{m}_n \): efficient estimator for mortality rate \(m \)

\[\frac{1}{m \sqrt{I(m)}} \]: the basic factor used in the calculation of 95\% error percentage \(EEP(95) \)