The adequacy of aging techniques in vertebrates for rapid estimation of population mortality rates from age distributions

Zhao, M.; Klaassen, C.A.J.; Lisovski, S.; Klaassen, M.

Published in:
Ecology and Evolution

DOI:
10.1002/ece3.4854

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Appendix S6: Key mathematical notation

General notation

\(F \): distribution functions
\(f \): (probability) density functions
\(\Phi(z) \): standard normal distribution function
\(\varphi(z) \): standard normal density function

Birth and survival related notation

\(S \): survival time
\(F_S(s) \): the distribution function of survival time \(S \)
\(f_S(s) \): the density function of survival time \(S \)
\(T \): time of birth of a random individual from the population
\(f_T(t) \): the density function of time of birth \(T \)
\(\tau \): the maximum possible age an individual from the population can attain

Linear regression related notation

\(X \): age proxy
\(X_1, ..., X_n \): independent and identically distributed copies of \(X \)
\(x_1, ..., x_n \): realization of the random variables \(X_1, ..., X_n \)
\(Y \): age
\(f_Y(y) \): density function of the age of an individual at time 0
\(g(y) \): regression function relating age proxy to age
\(\alpha \): intercept for linear regression of age proxy against age
\(\beta \): slope for linear regression of age proxy against age
\(\sigma \): standard deviation of the error in the regression model
\(\varepsilon \): standardized error in the regression model
\(f_\varepsilon(z) \): density function for \(\varepsilon \)
\(F_\varepsilon(z) \): distribution function for \(\varepsilon \)
\(n \): sample size, i.e., the number of sampled individuals of which the age proxy is measured

Mortality rate related notation

\(m \): mortality rate

\[\lambda = -\ln(1 - m) \]: rate parameter of exponential distribution

\(\beta / \sigma \): the crucial indicator for the variation in estimated mortality rate

\[\mu = \sigma \lambda / |\beta| \]: proxy coefficient

\(\hat{\mu}_n \): asymptotically efficient estimator of \(\mu \)

\(I(m) \): Fisher information for mortality rate \(m \)

\(J(\mu) \): Fisher information for \(\mu \)

\(CR(95) \): 95% confidence range

\(EP(95) \): theoretical 95% error percentage for mortality rate \(m \)

\(EEP(95) \): empirical 95% error percentage for mortality rate \(m \)

\(\hat{m}_n \): efficient estimator for mortality rate \(m \)

\[\frac{1}{m \sqrt{I(m)}} \]: the basic factor used in the calculation of 95% error percentage \(EEP(95) \)