The adequacy of aging techniques in vertebrates for rapid estimation of population mortality rates from age distributions

Zhao, M.; Klaassen, C.A.J.; Lisovski, S.; Klaassen, M.

DOI
10.1002/ece3.4854

Publication date
2019

Document Version
Other version

Published in
Ecology and Evolution

License
CC BY

Citation for published version (APA):
Appendix S6: Key mathematical notation

General notation

F: distribution functions

f: (probability) density functions

$\Phi(z)$: standard normal distribution function

$\phi(z)$: standard normal density function

Birth and survival related notation

S: survival time

$F_S(s)$: the distribution function of survival time S

$f_S(s)$: the density function of survival time S

T: time of birth of a random individual from the population

$f_T(t)$: the density function of time of birth T

τ: the maximum possible age an individual from the population can attain

Linear regression related notation

X: age proxy

$X_1, ..., X_n$: independent and identically distributed copies of X

$x_1, ..., x_n$: realization of the random variables $X_1, ..., X_n$

Y: age

$f_Y(y)$: density function of the age of an individual at time 0

$g(y)$: regression function relating age proxy to age

α: intercept for linear regression of age proxy against age

β: slope for linear regression of age proxy against age

σ: standard deviation of the error in the regression model

ε: standardized error in the regression model

$f_\varepsilon(z)$: density function for ε

$F_\varepsilon(z)$: distribution function for ε
n: sample size, i.e., the number of sampled individuals of which the age proxy is measured

Mortality rate related notation

m: mortality rate
\[\lambda = -\ln(1 - m) \]: rate parameter of exponential distribution
\[\beta / \sigma \]: the crucial indicator for the variation in estimated mortality rate
\[\mu = \sigma \lambda / |\beta| \]: proxy coefficient
\[\hat{\mu}_n \]: asymptotically efficient estimator of \(\mu \)
I(\(m \)): Fisher information for mortality rate \(m \)
J(\(\mu \)): Fisher information for \(\mu \)
CR(95): 95% confidence range
EP(95): theoretical 95% error percentage for mortality rate \(m \)
EEP(95): empirical 95% error percentage for mortality rate \(m \)
\[\hat{m}_n \]: efficient estimator for mortality rate \(m \)
\[\frac{1}{m \sqrt{I(\(m \))}} \]: the basic factor used in the calculation of 95% error percentage EEP(95)