The adequacy of aging techniques in vertebrates for rapid estimation of population mortality rates from age distributions

Zhao, M.; Klaassen, C.A.J.; Lisovski, S.; Klaassen, M.

DOI
10.1002/ece3.4854

Publication date
2019

Document Version
Other version

Published in
Ecology and Evolution

License
CC BY

Citation for published version (APA):
Appendix S6: Key mathematical notation

General notation

- F: distribution functions
- f: (probability) density functions
- $\Phi(z)$: standard normal distribution function
- $\varphi(z)$: standard normal density function

Birth and survival related notation

- S: survival time
- $F_S(s)$: the distribution function of survival time S
- $f_S(s)$: the density function of survival time S
- T: time of birth of a random individual from the population
- $f_T(t)$: the density function of time of birth T
- τ: the maximum possible age an individual from the population can attain

Linear regression related notation

- X: age proxy
- X_1, \ldots, X_n: independent and identically distributed copies of X
- x_1, \ldots, x_n: realization of the random variables X_1, \ldots, X_n
- Y: age
- $f_Y(y)$: density function of the age of an individual at time 0
- $g(y)$: regression function relating age proxy to age
- α: intercept for linear regression of age proxy against age
- β: slope for linear regression of age proxy against age
- σ: standard deviation of the error in the regression model
- ε: standardized error in the regression model
- $f_\varepsilon(z)$: density function for ε
- $F_\varepsilon(z)$: distribution function for ε
n: sample size, i.e., the number of sampled individuals of which the age proxy is measured

Mortality rate related notation

m: mortality rate

$\lambda = -\ln(1 - m)$: rate parameter of exponential distribution

β/σ: the crucial indicator for the variation in estimated mortality rate

$\mu = \sigma \lambda / |\beta|$: proxy coefficient

$\hat{\mu}_n$: asymptotically efficient estimator of μ

$I(m)$: Fisher information for mortality rate m

$J(\mu)$: Fisher information for μ

$CR(95)$: 95% confidence range

$EP(95)$: theoretical 95% error percentage for mortality rate m

$EEP(95)$: empirical 95% error percentage for mortality rate m

\hat{m}_n: efficient estimator for mortality rate m

$\frac{1}{m \sqrt{I(m)}}$: the basic factor used in the calculation of 95% error percentage $EEP(95)$