The adequacy of aging techniques in vertebrates for rapid estimation of population mortality rates from age distributions

Zhao, M.; Klaassen, C.A.J.; Lisovski, S.; Klaassen, M.

DOI
10.1002/ece3.4854

Publication date
2019

Document Version
Other version

Published in
Ecology and Evolution

License
CC BY

Link to publication

Citation for published version (APA):
Appendix S6: Key mathematical notation

General notation

F: distribution functions
f: (probability) density functions
$\Phi(z)$: standard normal distribution function
$\varphi(z)$: standard normal density function

Birth and survival related notation

S: survival time
$F_S(s)$: the distribution function of survival time S
$f_S(s)$: the density function of survival time S
T: time of birth of a random individual from the population
$f_T(t)$: the density function of time of birth T
τ: the maximum possible age an individual from the population can attain

Linear regression related notation

X: age proxy
$X_1, ..., X_n$: independent and identically distributed copies of X
$x_1, ..., x_n$: realization of the random variables $X_1, ..., X_n$
Y: age
$f_Y(y)$: density function of the age of an individual at time 0
$g(y)$: regression function relating age proxy to age
α: intercept for linear regression of age proxy against age
β: slope for linear regression of age proxy against age
σ: standard deviation of the error in the regression model
ε: standardized error in the regression model
$f_\varepsilon(z)$: density function for ε
$F_\varepsilon(z)$: distribution function for ε
n: sample size, i.e., the number of sampled individuals of which the age proxy is measured

Mortality rate related notation

m: mortality rate

\(\lambda = -\ln(1 - m) \): rate parameter of exponential distribution

\(\beta / \sigma \): the crucial indicator for the variation in estimated mortality rate

\(\mu = \sigma \lambda / |\beta| \): proxy coefficient

\(\hat{\mu}_n \): asymptotically efficient estimator of \(\mu \)

\(I(m) \): Fisher information for mortality rate \(m \)

\(J(\mu) \): Fisher information for \(\mu \)

\(CR(95) \): 95% confidence range

\(EP(95) \): theoretical 95% error percentage for mortality rate \(m \)

\(EEP(95) \): empirical 95% error percentage for mortality rate \(m \)

\(\hat{m}_n \): efficient estimator for mortality rate \(m \)

\(\frac{1}{m \sqrt{I(m)}} \): the basic factor used in the calculation of 95% error percentage \(EEP(95) \)