Neural correlates of nonclinical dissociation

de Ruiter, M.B.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
3

Neurophysiological correlates of increased verbal working memory in high-dissociative participants: a functional MRI study

3.1 Abstract

Background: Dissociation, defined as a disruption in usually integrated mental functions, is found not only in DSM-IV dissociative disorders, but also in posttraumatic stress disorder and eating disorders. Dissociative phenomena are also common in the general population, and may reflect a constitutionally determined cognitive style rather than a pathological trait acquired through experiencing adverse life events. In pathological dissociation, evidence has been presented for episodic memory dysfunction. In contrast, in high-dissociative subjects increased performance has been found for episodic memory and dual task performance. These findings have been linked to changes in working memory capacity.

Methods: In the present study, we sought to extend these findings by using functional MR imaging during performance of two parametric working memory tasks. We tested 21 healthy low- and high-dissociative participants.

Results: High-dissociative participants performed slightly better during both tasks. Imaging data showed that both groups activated similar networks for both tasks, i.e. (bilateral) dorsolateral and ventrolateral prefrontal cortex (PFC), parietal cortex, and supplementary motor area (SMA). Group by task interactions were found in the high-dissociative group in L DLPFC and L parietal cortex; in the low-dissociative group in R fusiform gyrus. The differences in the high-dissociative group were independent from performance differences, implying that high-dissociative subjects generally recruit this network to a greater extent.

Conclusions: These results confirm earlier findings using a verbal WM task in high-dissociative participants, and are compatible with the conceptualisation of nonpathological
dissociation as an information processing style, characterised by distinct attentional and mnemonic abilities.

3.2 Introduction

Dissociation, a term coined by Janet in the early 1900s (Janet, 1907), refers to a disruption of usually integrated functions of consciousness, memory, identity, or perception of the environment. In dissociative disorders, such as Dissociative Identity Disorder (DID), mental functions may be disintegrated so severely that two or more distinct identities or personality states (i.e., ‘alters’) recurrently take control of behaviour (DSM-IV, APA, 1994). Dissociative phenomena are not unique to dissociative disorders, but may also occur in Acute Stress Disorder (Morgan et al., 2001; Spiegel, Koopman, Cardeña, & Classen, 1996), Posttraumatic Stress Disorder (Boon & Draijer, 1993), and eating disorders (Vanderlinden, Van Dyck, Vandereycken, Vertommen, & Verkes, 1993). In addition, dissociative experiences are common in the general population (Kihlstrom, Glisky, & Angiulo, 1994; Putnam et al., 1996; Ross, Joshi, & Currie 1990; Vanderlinden, Van Dyck, Vandereycken, & Vertommen, 1991).

The etiology of dissociative phenomena is insufficiently known. Dissociative amnesia (defined as an inability to recall important personal information that is too extensive to be explained by ordinary forgetfulness (APA, 1994)), considered to be a key symptom of pathological dissociation, has been explained as resulting from traumatic experiences, such as severe physical (Mulder, Beaurrais, Joyce, & Fergusson, 1998) and sexual (Chu, Frey, Ganzel, & Matthews, 2001) abuse, particularly during childhood (Bliss, 1986; Gleaves, 1996; Kluft, 1986; Putnam, Guroff, Silberman, Barban, & Post, 1986). This assumption has been strongly contended, however, by the sociocognitive model which conceptualizes ‘alters’ in terms of cultural scripts that are shaped by psychotherapists, media portrayals and sociocultural expectations (e.g. Spanos, 1994; cf. Brewin & Andrews, 1998; Merckelbach & Muris, 2001). Both positions acknowledge the existence of individual differences in dissociative style (i.e., the tendency to disintegrate consciousness, memory, or perceptual functions). The high level of genetic influences in both pathological and nonpathological dissociation, and the substantial shared genetic variance (Jang, Paris, Zweig-Frank, & Livesly, 1998), moreover, suggests that a fundamental mechanism may be involved that acts, initially at least, independently of adverse life experiences. This study aims to contribute to the characterisation of dissociative style in terms of cognitive and neural information processing mechanisms, in particular working memory, in a group of nonclinical participants.

Cognitive experimental research in dissociative disorders has focused on memory dysfunction, in particular impairment of episodic memory between alter personalities (Dorahy, 2001; Eich, Macauley, Loewenstein, & Dihle, 1997; Peters, Uyterlinde,
Consemulder, & van der Hart, 1998), whereas performance on a standard intelligence test is apparently not different from matched controls (Rossini, Schwartz, & Braun, 1996). In contrast, there are also indications, at least in some conditions, of enhanced memory performance in patients with highly dissociative tendencies (Cloitre, Cancienne, Brodsky, Dulit, & Perry, 1996; Elzinga, de Beurs, Sergeant, Van Dyck, & Phaf, 2000; McNally, Metzger, Lasko, Clancy, & Pitman, 1998; McNally, Clancy, & Schacter, 2001). This form of ‘hypermnesia’ has, however, only been observed when encoding and retrieval take place in the same personality state. Elzinga et al. (2000), using a directed forgetting paradigm, explained the superior memory performance of their high-dissociative participants as due to increased elaboration, for which a high working memory (WM) capacity is a prerequisite.

In contrast, Dorahy (2001) hypothesized WM deficits in high-dissociative subjects, resulting in increased interference in a classical Stroop task (i.e., naming the colour of the letters of colour words) due to a failure to keep working memory free of irrelevant stimuli (Freyd, Martorello, Alvarado, Hayes, & Christman, 1998). In the same vein, Conway, Cowan, & Bunting (2001) showed that participants who demonstrate the ‘cocktail party phenomenon’ (i.e., are able to detect their name in an unattended, irrelevant message), have a relatively low working-memory capacity. In a recent study, de Ruiter, Phaf, Elzinga, & van Dyck (2004, see Chapter 2) administered both a questionnaire measuring dissociative tendencies (Dis-Q; Vanderlinden, Van Dyck, Vandeneycken, & Vertommen, 1993) and a Dutch version of the verbal working memory span test (Daneman & Carpenter, 1980) to 119 participants in three unrelated experiments. Participants with a Dis-Q score approaching pathological ranges had a verbal span that was on average half a word larger than participants with lower scores. Although these latter findings are in agreement with the elaboration hypothesis of Elzinga et al. (2000), the memory test used by de Ruiter et al. (2004) presumably does not provide the most accurate estimate of verbal working memory capacity. It has been argued recently that ‘pure’ working memory span is likely to be considerably less than seven, as postulated by Miller (1956), particularly when rehearsal is blocked, for instance by having participants perform a distracter task (Cowan, 2001). If the number of study items is large, participants may resort to alternative encoding strategies, such as forming associations between items, or remembering the order in which items were presented (Rypma & D’Esposito, 1999). When, on the other hand, rehearsal is possible, WM capacity is likely to be determined by the number of items that can be rehearsed in about 2 seconds (Baddeley, 1996; Cowan, 2001). Consequently, consonant letter strings are preferable to words or objects to avoid confounds arising from the use of complex stimuli.

A second issue regarding WM function is the distinction made in the literature between manipulation and maintenance tasks. Maintenance has been defined as transferring, maintaining (including rehearsal), and matching of information in WM (Fletcher & Henson, 2001), whereas manipulation refers to the additional reorganisation or updating of each memory set. It has been argued that these functions depend on neuro-anatomically distinct
Nonclinical dissociation, working memory, and fMRI

areas within the prefrontal cortex (PFC), i.e.ventrolateral PFC (maintenance) and
dorsolateral PFC (manipulation). Whereas maintenance tasks can be used to test WM span,
manipulation WM tasks require additional executive functions similar to dual task
performance (Baddeley, 1996; D'Esposito et al., 1995), which may solely be enhanced in
high-dissociators (cf. Freyd et al., 1998; de Ruiter, Phaf, Veltman, Kok, & Van Dyck, 2003,
see Chapter 4).

In the present study, we aimed to extend our previous findings with regard to WM
function in high- versus low-dissociative participants. To this end, we used functional MR
imaging to compare high- and low-dissociative participants during performance of two WM
tasks, one maintenance task (Sternberg task) and one manipulation task (N-letter back task).
Both tasks employed letter stimuli (consonants only), in order to avoid long-term memory
encoding strategies to support maintenance, as outlined earlier. In addition, both tasks were
varied parametrically, enabling us to identify regions specifically associated with task
performance (Jansma, Ramsey, Coppola, & Kahn, 2000). Given our previous findings
using a WM span task, we expected that high-dissociative participants would perform better
during a maintenance WM task, particularly at higher task loads. If, however, only
increased executive functions are involved in dissociation, such an advantage would only
be expected in the manipulation WM task.

3.3 Method

Participants

Participants were selected on the basis of their scores on the Dissociative Symptoms
Questionnaire (Dis-Q) which was administered in a general ‘test week’ (in exchange for
course credit) to approximately 400 first-year students at the Psychology Department of the
University of Amsterdam. The Dis-Q is a 63-item self-reporting scale for dissociative
experiences using a 5-point Likert scale (1 = not at all, 5 = extremely). In the general
population, it has been shown that dissociation scores are highly left-skewed, with no
differences between males and females (Ross & Ryan, 1989; Vanderlinden et al., 1991).
For the present fMRI study, persons scoring in the highest and lowest quartiles were
contacted for participation. Twenty-two healthy right-handed students participated in the
study. All gave informed consent after the rationale of the study had been explained, and
were paid for their participation. The experimenter did not know the participant’s Dis-Q
score during the experiment. In order to obtain an IQ estimate, a vocabulary test was
administered (Elshout, 1976). This test consists of 40 low frequency words of which the right synonym has to be chosen.

Task paradigms

Prior to scanning, all participants practised both tasks outside the scanner on a personal computer. To account for possible differences in state anxiety, participants were asked to rate their subjective distress on a 100-point scale (SUD-S; 0 = not at all distressed, 100 = extremely distressed) before each time series while in the scanner.

N-letter back. The four-step parametric version of the n-letter back task employed in this study was similar to the Braver et al. (1997) paradigm. Participants saw single letters projected on a screen and were requested to press a (right hand) response key when (i) the letter ‘x’ appeared (baseline), (ii) the projected letter was the same as the last shown letter (1-back), (iii) the projected letter was the same as the letter preceding the last shown letter (2-back), (iv) the projected letter was the same as the letter preceding the last two shown letters (3-back). Each N-back session consisted of two sub-sessions, in which all conditions were presented twice, in pseudo-randomised order. Each block consisted of 20 stimuli with an ISI of 3 s and was preceded by a condition-specific instruction (6 s).

Sternberg. We used a six-step parametric version of the letter Sternberg task. In each condition, participants were instructed to memorise a letter string of varying length (2 - 7 letters) during 10 s, after which the string disappeared and single letters were projected on a screen. Participants were requested to press (right hand) one of two keys to indicate whether the letter had been in the string (Y/N). Each letter string was followed by 15 single letters (ISI = 2.5 s), and each block was introduced by the text ‘New string will follow’[nieuwe reeks volgt] presented for 5 s. Each condition was repeated three times, giving 18 blocks, in randomised order.

Scanning details

Functional MR imaging was performed at the dept. of Radiology of the outpatient clinic of the Vrije Universiteit Academic Hospital, using a 1.5 Tesla Vision whole-body system (Siemens AG, Erlangen, Germany) equipped with a head volume coil. Axial multislice T$_2$* -weighted images were obtained with a gradient-echo planar sequence (TE = 60 ms, TR = 3.485 s, 64 x 64 matrix, 32 slices, 3 x 3 mm in-plane resolution, slice thickness 3 mm with a 1 mm interslice gap), covering the entire brain. Each session consisted of two functional MRI sub-sessions during which 2 x 153 (n-back) and 280 (Sternberg) volumes were
acquired, with the two tasks in counterbalanced order across participants. Between the sub-
sessions, a T1-weighted structural 3D gradient-echo MR-scan (0.78 x 0.78 x 2 mm voxel
size) was acquired.

Statistical analysis

Overall performance (error rates, i.e. the ratio [no. of correct responses/total no. of
responses x 100 %], reaction times, and SUD-S scores) was assessed with a standard
statistical package by ANOVAs with a mixed factorial design; group differences by
comparing error rates and reaction times for difficult versus easy steps (string length 2-4
compared with 5-7 in the Sternberg; conditions X and 1-back compared with 2- and 3-back
in the n-back). Imaging data were analysed with SPM99 (Wellcome Department of
Cognitive Neurology, http://www.fil.ion.ucl.ac.uk). After discarding the first two scans of
each time series to allow for a steady state to be induced, images were realigned, and
spatially normalized into the standard space of Talairach and Tournoux (1988) using each
subject’s co-registered structural T1-scan. The data were smoothed spatially with an 8-mm
isotropic Gaussian kernel. Subsequently, data were band pass filtered, and analysed in the
context of the General Linear Model, using boxcar regressors convolved with the canonical
hemodynamic response to model responses during each condition. For each task, linear
contrasts were computed for main effects of task load for each subject. The resulting
contrast images were then fed into a second level (random effects) analysis and main
effects for task load were assessed for each group, as well as group by task load
interactions. Main effects for each group are reported at p < 0.005 corrected for multiple
comparisons using the False Discovery Rate method (Genovese, Lazar, & Nichols, 2002),
with a cluster size restriction of 10 voxels. Interaction effects are reported at p < 0.001
uncorrected, masked with the appropriate main effect at p < 0.001.

3.4 Results

One scanning session (involving a female participant from the high-dissociative group) was
aborted due to intervening panic. Consequently, the low-dissociative group consisted of 10
participants (mean Dis-Q score 1.33, range 1.19 - 1.46, mean age 22.9, range 18 - 30, seven
females) and the high-dissociative group consisted of 11 participants (mean Dis-Q score
2.24, range 1.84 - 2.90, mean age 22.6, range 19 - 29, seven females).
Chapter 3

Behavioural data

Unless indicated otherwise, mean values and standard deviations are presented. Scores on the vocabulary test could be collected for all low dissociators (number of correct answers 16.00 ± 1.74) and for 9 of 11 high dissociators (number of correct answers 17.89 ± 1.56). Not surprisingly, Dis-Q scores differed significantly for the two groups ($t(19) = 7.97$, $p < 0.000001$), whereas age ($t(19) < 1$, NS) and vocabulary ($t(19) < 1$, NS) were about the same for both groups.

Behavioural measures for the Sternberg and n-back task are shown in Figure 1 and 2, respectively. ANOVAs showed load-related increases in reaction times for both tasks (for Sternberg: $660 \text{ ms} \pm 90$ (string length 2) – $920 \text{ ms} \pm 120$ (string length 7), $F(5, 15) = 18.1$, $p < 0.001$; for n-back: $550 \text{ ms} \pm 78$ (baseline) – $840 \text{ ms} \pm 240$ (3-back), $F(3, 17) = 14.1$, $p < 0.001$). Overall performance for both tasks was high (for the Sternberg 94.7 % ± 2.2; for the n-back, 97.7 % ± 1.7), although performance decreased with increasing task load (Sternberg: $F(5, 15) = 30.0$, $p < 0.001$; n-back: $F(3, 17) = 4.7$, $p = 0.017$). Sternberg task performance, defined as the mean difference between scores for easy (string length 2 - 4) and difficult items (string length 5 - 7) was better in the high-dissociative group than in the low-dissociative group (5.3 ± 4.2 vs. 9.6 ± 4.9; $F(1, 19) = 4.7$, $p = 0.043$). For the n-letter back, task performance (similarly defined as the mean difference between difficult (2- and 3 back) and easy (x and 1-back) items) for the first sub-session did not differ between groups (2.0 ± 1.9 vs. 2.1 ± 2.9, $F < 1$), but for the second sub-session, performance was again better in the high-dissociative (0.36 ± 3.0) than in the low-dissociative group (3.0 ± 2.35; $F(1, 19) = 4.8$, $p = 0.041$). Reaction times did not differ in both tasks (Fs < 1). Subjective levels of distress (SUD-S) scores were numerically higher in the high-dissociative group, but these differences were not significant (n-back, first subsession: 24.0 ± 14.6 vs. 33.0 ± 19.1; second subsession: 25.6 ± 16.3 vs. 30 ± 19.0; Sternberg: 22.3 ± 18.8 vs. 33.5 ± 26.1; all Fs < 1). To exclude the possibility that performance differences during the Sternberg and N-back (second sub-session) were due to differences in levels of distress, analyses of covariance were performed with SUD-scores as covariates. For the n-back (second session), group effects were still significant ($F(1, 19) = 4.9$, $p = 0.041$), whereas differences for the Sternberg were only marginally significant after regressing out SUD-scores ($F(1, 19) = 3.7$, $p = 0.074$).
Nonclinical dissociation, working memory, and fMRI

Sternberg: % correct

Figure 1. Performance scores and reaction times (mean ± S.E.M.) in low- and high-dissociative participants during performance of the Sternberg task.

n-letter back: % correct

Figure 2. Performance scores and reaction times (mean ± S.E.M.) in low- and high-dissociative participants during performance of the N-letter back task (two sub-sessions).

fMRI data

Results for imaging data are summarised in Tables 1-3. Main effects for task load for the Sternberg task for each group were found in left dorsolateral and ventrolateral prefrontal cortex, left parietal cortex, left inferior posterior temporal cortex, supplementary motor area extending into anterior cingulate gyrus (ACG), and cerebellum. In addition, in the high-dissociative group, we found right DLPFC and right parietal cortex, whereas in the low-dissociative group, we found right fusiform gyrus (see Table 1 and Figure 3). For the n-letter back task, in both groups increasing task load was associated with activity bilaterally in DLPFC, VLPFC, and parietal cortex, as well as in right SMA, ACG, and cerebellum (see Table 2 and Figure 4). Group by task load interaction effects for both tasks were found in favour of the high-dissociative group in left posterior DLPFC; for the n-back, left parietal cortex was also identified. In contrast, group by task load interaction effects in favour of the low-dissociative group were found only for the Sternberg, in bilateral fusiform gyrus and brain stem (Table 3).
Table 1. Areas showing significant (p<0.005 corr., extent threshold > 10 voxels) linear task load-related increase in activity during performance of the Sternberg task in low- and high-dissociative subjects. BA=Brodmann area. SMA=supplementary motor area.

<table>
<thead>
<tr>
<th>Region</th>
<th>Low</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Talairach</td>
<td>Z-score</td>
<td>BA</td>
<td>Talairach</td>
<td>Z-score</td>
<td>BA</td>
<td></td>
</tr>
<tr>
<td>Prefrontal</td>
<td>-48 24 30</td>
<td>4.7</td>
<td>9</td>
<td>-48 24 30</td>
<td>4.4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-51 21 33</td>
<td>4.9</td>
<td>9</td>
<td>-42 27 21</td>
<td>4.0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-48 12 36</td>
<td>4.6</td>
<td>44</td>
<td>-45 12 36</td>
<td>5.6</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-51 12 24</td>
<td>4.4</td>
<td>44</td>
<td>-39 9 30</td>
<td>5.6</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Ventrolat</td>
<td>-54 15 6</td>
<td>5.0</td>
<td>44</td>
<td>-54 15 6</td>
<td>4.7</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

We also investigated whether the increased task load related activity in the high-dissociative group was due to performance differences. To this end, we performed post-hoc comparisons of the two sub-sessions of the n-letter back task, because the high-dissociative group had performed slightly better than the low-dissociative group during the second sub-session, but not during the first. We did not find any significant session to session differences for each group, however. Moreover, the task load by group interaction effects in favour of the high-dissociative group were found in both sub-sessions.
Nonclinical dissociation, working memory, and fMRI

low dissociators

high dissociators

![3D-rendering of task load-related activity during performance of the Sternberg task in low-dissociative (left panel) and high-dissociative (right panel) participants.](image)

Table 2. Areas showing significant (p<0.005 corr., extent threshold > 10 voxels) linear task load-related increase in activity during performance of the N-letter back task in low- and high-dissociative subjects. BA = Brodmann area. SMA = supplementary motor area.

<table>
<thead>
<tr>
<th>Region</th>
<th>l/r</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Talairach</td>
<td>Z-score</td>
</tr>
<tr>
<td>Prefrontal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anterior</td>
<td>l</td>
<td>-42 39 30</td>
<td>4.0</td>
</tr>
<tr>
<td>Dorsolat.</td>
<td>l</td>
<td>-45 36 21</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-45 27 33</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-51 9 36</td>
<td>4.6</td>
</tr>
<tr>
<td>Ventrolat.</td>
<td>l</td>
<td>-51 12 18</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-51 12 3</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-36 15 3</td>
<td>4.4</td>
</tr>
<tr>
<td>Prefrontal</td>
<td>r</td>
<td>33 42 15</td>
<td>4.4</td>
</tr>
<tr>
<td>Anterior</td>
<td>l</td>
<td>42 42 30</td>
<td>4.2</td>
</tr>
<tr>
<td>Dorsolat.</td>
<td></td>
<td>45 33 36</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>54 15 36</td>
<td>4.6</td>
</tr>
<tr>
<td>Ventrolat.</td>
<td>r</td>
<td>57 12 15</td>
<td>4.6</td>
</tr>
<tr>
<td>Parietal</td>
<td>l</td>
<td>-45 -39 51</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30 -54 51</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>36 -48 51</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45 -39 54</td>
<td>5.5</td>
</tr>
<tr>
<td>Ant. Cing.</td>
<td></td>
<td>6 27 39</td>
<td>4.6</td>
</tr>
<tr>
<td>SMA</td>
<td></td>
<td>21 6 63</td>
<td>5.7</td>
</tr>
<tr>
<td>Cerebel.</td>
<td></td>
<td>-21 -63 -39</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39 -51 -42</td>
<td>4.2</td>
</tr>
</tbody>
</table>

39
In the present study, we used functional MR imaging to investigate neurophysiological correlates of verbal working memory in high- and low-dissociative participants. To this end, participants performed a parametric version of a verbal delayed match to sample task (Sternberg task), as well as a parametric n-letter back task, while being scanned. Behavioural data demonstrated that high-dissociators performed better during the Sternberg task as well as during the second sub-session of the n-letter back task, whereas reaction times for both tasks were similar across groups. The Sternberg findings are in agreement
with previous work indicating an increased working memory span in high-dissociative participants (De Ruiter et al., 2004, see Chapter 2). However, our data indicate that high-dissociative participants may also perform better during a manipulation type WM task, in which memory span (stack size) is less important than efficiency of stack updating. WM-performance differences were not abolished after correcting for differences in subjective distress. This suggests that they are not due to catecholaminergic modulation of working memory (Arnsten, 1998), but are associated with fundamental differences in a general information processing mechanism.

Imaging data revealed in both groups for the Sternberg task load-related activity in L DLPFC, L parietal cortex, L inferior temporal cortex, as well as cerebellum and SMA, extending into ACG. In addition, we found R DLPFC and parietal cortex for high-dissociators, and right fusiform gyrus for low-dissociators. Group by task load interaction effects were identified in L DLPFC in favour of the high-dissociative group, as well as in R fusiform gyrus and brain stem in favour of the low-dissociative group. For the n-back task, we found similar areas, although these tended to be bilateral for both groups, rather than left-lateralized: bilateral DLPFC and VLPFC, parietal cortex, SMA, and cerebellum. Group by task load interaction effects in favour of the high-dissociative group were again found in left DLPFC, but also in L parietal cortex. Thus, both WM tasks activated highly similar networks across groups. In earlier WM studies, VLPFC has been found primarily in maintenance (delayed match to sample) tasks, whereas DLPFC was additionally activated during manipulation tasks, such as verbal (Braver et al., 1997) and spatial (Jansma et al., 2000) n-back, but also reordering/alphabetisation (Postle, Berger, & D'Esposito, 1999), letter fluency, dual task vs. single task performance, and planning tasks (van den Heuvel et al., 2003). Therefore, it has been postulated that VLPFC is engaged in maintenance proper (including subvocal rehearsal), and DLPFC in selection/manipulation/monitoring of WM contents (Fletcher & Henson, 2001). An alternative hypothesis has been put forward by Duncan and Owen (2000), who concluded that mid-ventrolateral, mid-dorsolateral, and dorsal cingulate regions were consistently recruited for solving diverse cognitive problems. Regional specialization, in their view, is a matter of degree rather than kind, such as left-lateralization of verbal, as opposed to spatial/object, WM tasks. The present data appear to be in line with this second model, as they do not clearly support the hypothesis of a maintenance/manipulation segregation between VLPFC and DLPFC (see Veltman, Rombouts, & Dolan, 2003, for a more extensive discussion of this issue).

An important finding of the present study is that in both tasks, high-dissociative participants showed greater task load related activity in the same region, i.e. L middle DLPFC. Moreover, this difference cannot be explained solely by the superior performance of the high-dissociative groups. Although it has been shown that performance during a maintenance task is associated with signal strength during the encoding/delay phase (Pessoa, Gutierrez, Bandettini, & Ungerleider, 2002), in the present study we found these
group differences in both sub-sessions of the n-letter back task, whereas performance scores were different only during the second sub-session. Therefore, it appears that although both groups rely on similar networks to perform these WM tasks, the high-dissociative group activates this system to a greater extent. In the present study, we found two additional areas showing group by task interaction effects: L parietal cortex in high-dissociative compared with low-dissociative participants (n-back), and R fusiform area in low-dissociative compared with high-dissociative participants (Sternberg task). Left parietal cortex has previously been implicated in phonological storage (Paulesu, Frith, & Frackowiak, 1993), but has also been found in manipulation WM tasks, which has been interpreted as participation in executive functioning (Cohen et al., 1997; Collette et al., 1999), or due to increased attentional demands at higher task loads (Honey, Bullmore, & Sharma, 2000). The greater involvement of R fusiform gyrus in low-dissociative participants during performance of the Sternberg task suggests stronger visual (object) processing in this group. It is unclear whether this is due to decreased visual selective attention resulting from a higher relative WM load in the low-dissociative group, as would be predicted by the findings of de Fockert, Rees, Frith, & Lavie (2001), or due to a fundamental difference in information processing style (e.g., verbal vs. nonverbal style; Gevins & Smith, 2000).

The present results seem to contradict the conjecture by Dorahy (2001) of potential deficits in working memory with dissociative patients. Though unlikely, it remains, however, possible that only patients are characterized by working memory deficits, but high-dissociative nonpathological individuals have elevated working memory abilities. An alternative view that visuospatial, but not verbal, working memory is affected in high levels of dissociative style, both pathological and nonpathological, can also not be excluded on the basis of these results. The main finding of this study, increased working memory performance as a function of dissociative style, is, however, not easy to reconcile with Dorahy’s suggestion. In our view, moreover, it corresponds closely to other findings in the fields of attention and memory. Words that are, for instance, kept active longer in working memory are generally encoded more strongly in episodic memory (e.g., Raaijmakers & Shiffrin, 1981), which also offers a potential explanation for the findings of enhanced memory performance by high dissociators (Cloitre et al., 1996; Elzinga et al., 2000; McNally et al., 1998; McNally et al., 2001). Only with ‘alter’ changes clear episodic memory deficits have been obtained in dissociative patients (Eich et al., 1997; Elzinga, Phaf, Ardon, & Van Dyck, 2003). This, probably, does not indicate that working memory capacity changes with ‘alter’, but suggests that the working memory ability is actively engaged to suppress ‘unwanted’ memories in the other ‘alter’. The retrieval inhibition hypothesis for inter-alter memory performance was supported by the finding of a directed forgetting effect in a second ‘alter’ that could not be caused by differential storing by the first ‘alter’ (Elzinga et al., 2003). Apart from its potential for explaining dissociative disorders, dissociative style also provides an opportunity to investigate general information
Nonclinical dissociation, working memory, and fMRI

processing mechanisms in healthy individuals. Strictly speaking, because our study only concerned a nonclinical sample, our conclusions should only address nonpathological functioning. We feel that sufficiently converging and consistent results have been obtained in the fields of attention, WM, and long term memory to conclude that, at least nonpathological, dissociative tendencies correspond to both enhanced attentional and working memory abilities, which have a strong genetic basis (Jang et al., 1998). A differentiation between high- and low-dissociative individuals in experiments on attention and memory may in the end result in a sharper delineation of the elementary processes involved.