Molecular markers of breast cancer metastasis
Weigelt, B.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 7

Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer

Submitted for publication
Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer

Britta Weigelt1, Zhiyuan Hu2,3, Xiaping He2,3, Chad Livasy4, Lisa A. Carey5, Matthew G. Ewend6, Annuska M. Glas6, Charles M. Perou2,3,4, and Laura J van 't Veer1,6,7

1Division of Experimental Therapy, 2Division of Diagnostic Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; 3Lineberger Comprehensive Cancer Center, 4Department of Genetics, 5Department of Pathology and Laboratory Medicine, 6Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA; 7Agendia B.V., Amsterdam, The Netherlands

Abstract
Microarray analysis has been shown to improve risk stratification of breast cancer. Breast tumors analyzed by hierarchical clustering of expression patterns of intrinsic genes have been reported to subdivide into five molecular subtypes, which are associated with distinct patient outcomes. Using a supervised method, a 70-gene expression profile has been identified that predicts the later appearance or absence of clinical metastasis in young breast cancer patients. Here we show that distant metastases display both the same molecular breast cancer subtype as well as the 70-gene prognosis signature as their primary tumors. Our results suggest that the capacity to metastasize is an inherent feature of breast cancer. Furthermore, our data imply that the molecular subtypes and the 70-gene prognosis groups represent distinct disease entities that seem to be sustained throughout the metastatic process.

Introduction
DNA microarray technology, which allows the analysis of the expression levels of thousand of genes in a single experiment, offers great potential to improve our knowledge of tumor molecular biology, but also for the discovery of new molecular markers. Over the past years, microarray analysis has been extensively used to improve the diagnosis and risk-stratification of many cancers (1-6). Two major studies have described the use of this technology to assess the molecular classification of human breast cancer and have defined new subgroups based on expression that are relevant to patient management. Using hierarchical clustering, Perou et al. showed that breast tumors can be classified into specific subtypes based solely on differences in gene expression patterns, named the molecular portraits of breast tumors (3). Three estrogen receptor (ER)-negative subtypes of breast carcinomas were identified (basal-like', 'HER2+', and 'normal breast-like'), and later at least two ER-positive tumor subtypes ('luminal A' and 'luminal B') were defined (4). Importantly, the breast cancer subtypes also represent clinically distinct subgroups of patients, as they show differences in metastasis-free and overall survival (4). Sorlie et al. identified the 'luminal A' subgroup of ER-positive tumors to be associated with the best outcome, whereas the 'basal-like' and the 'HER2+' tumors have the worst outcome (4). The identification of the distinct subtypes was based upon the hierarchical clustering of an intrinsic gene set, which comprises genes that show little variance within repeated samplings of the same tumor, but which show high variance across different tumors (3). Recently, a new intrinsic gene set of 1300 genes (i.e. the 'Intrinsic/UNC' gene set) was identified using a larger set of breast tumors and genes than in the original report, and was validated on a test set of tumors from independent microarray studies (7). The breast tumor subtypes based on the new 'Intrinsic/UNC' gene set were nearly identical to those previously identified and shown to be reproducible across independent data sets, across different microarray platforms, also with respect to clinical outcome (7).

In complementary studies, van 't Veer et al. used a supervised classification method to identify a gene expression signature in young breast cancer patients with lymph node-negative tumors that is associated with patient outcomes and prognosis (6). Using this signature, consisting of 70 genes, primary breast tumors can be classified as having either a 'poor prognosis' signature, which means they are likely to metastasize, or a 'good
prognosis' signature, meaning that the development of metastases is unlikely. This 70-gene signature was subsequently confirmed in a consecutive series of 295 patients with both lymph node-positive and lymph node-negative disease (8).

The finding that the metastasis risk of a breast cancer patient can be predicted by the overall gene-expression profile of its primary tumor challenged the widely accepted idea that metastatic potential is acquired relatively late during multistep tumorigenesis (9). The concept that the ability to metastasize to distant sites is an early and inherent genetic property of breast cancer seemed to be supported by our previous finding that the molecular program established in a human primary breast carcinoma is highly preserved in its distant metastasis (10). Here we test in a larger patient group whether the molecular subtypes of breast cancer as well as the 70-gene prognosis profiles are also maintained throughout the metastatic process.

Material and Methods

Detailed information on RNA isolation, amplification, labeling, hybridization, scanning, microarray analysis and patient information has been described previously (6, 7, 9, 10). The microarray data presented here have been deposited into the GEO under the series number GSE2741, with the 23 samples not described in Hu et al. (7) being GSM52910 to GSM52932.

In brief, seven pairs of matching primary breast tumors and distant metastases of the Netherlands Cancer Institute (NKI) described previously (10) (pair 1, 3 – 8) were hybridized and analyzed for their 70-gene expression profile (6), and 5 pairs (pair 3, 5 – 8) analyzed by hierarchical clustering for their molecular breast cancer subtype. The hierarchical clustering analysis was done using the 'Intrinsic/UNC' gene list comprising 1410 microarray elements (representing 1300 genes) (7) using 156 arrays (Agilent Human 1A Oligo Microarray (V2)) representing 107 patients. The molecular subtypes of the samples were determined by the dendrogram that was associated with characteristic gene expression patterns. In addition, a different set of 5 pairs of primary breast tumors and lymph node metastases, 1 pair of primary breast tumor and a brain metastasis, as well as multiple distant metastasis samples of 5 autopsy patients from the University of North Carolina (UNC) at Chapel Hill were analyzed for their molecular breast cancer subtype.

These studies were approved by the Medical Ethical Committee of the NKI and the IRB of UNC.

Results

Hard-wiring of molecular signatures throughout the metastatic process

To test whether the molecular subtype of a primary breast tumor is preserved in its metastasis, five of the seven pairs of primary tumors and matching metastases described in Weigelt et al. (10) were re-tested and analyzed using hierarchical clustering and 107 additional breast tumors using a new breast 'intrinsic gene list' (7). All primary breast tumors paired with their matching metastases, even when added to a large data set of breast tumors from 107 patients (Fig. 1, red codes). Two matching pairs were classified into the ‘HER2-’ group, one pair into the ‘basal-like’ group and one pair was ‘ER-negative unclassified’ and clustered near the ‘basal-like’ and the ‘HER2-’ group. These ER-negative breast cancer subtypes are associated with the shortest relapse-free and overall survival times (4, 7). Pair 8 was classified into the luminal group of breast cancer subtypes. The finding that the individual portraits of tumors are maintained in their metastases was further confirmed by the paired clustering of an independent set of five pairs of primary tumors and simultaneous lymph node metastases (Fig. 1, light blue codes) and one primary and metastatic brain tumor pair (Fig. 1, red code) of the University of North Carolina (UNC) at Chapel Hill. In a few additional cases from autopsy patients, we were able to sample and compare multiple metastasis sites from the same individual. The primary tumor and metastases of the spinal cord, liver, adrenal gland, lymph node and lung of autopsy patient A1 were analyzed for their molecular subtype, of autopsy patient A7, metastases of the liver, kidney, lung, lymph node, diaphragm and brain were tested. Remarkably, all metastasis samples obtained from one breast cancer patient cluster together and show the same molecular breast cancer subtype (Fig. 1, pink codes).

In the next step, the maintenance of the 70-gene prognostic signature throughout the metastatic process was tested for seven pairs of primary tumor and matching metastases (6, 10). Five primary breast carcinomas had a
Prognosis signatures are preserved throughout metastasis

Figure 1. Determination of the molecular "intrinsic" subtypes of primary tumors and their metastatic counterparts. A hierarchical clustering analysis was performed using a 1300 gene intrinsic gene list (7). Genes were arranged in horizontal and samples in vertical. Sample names in red represent 6 primary tumor–distant metastasis pairs, those in light blue represent primary tumor-lymph node metastasis pairs, and those in pink represent local and distant metastasis samples from autopsy patients (which for patient A1 includes the primary).

Figure 2. Expression data matrix of 70 prognostic marker genes from 78 primary breast tumors plus seven pairs of matching pairs of primary tumors and distant metastases (6, 10). Each row represents a tumor and each column a gene. Genes are ordered according to their correlation coefficient with the two prognostic groups; tumors are ordered by the correlation to the average profile of the good prognosis group (right panel). Above the yellow line patients have a good prognosis signature, below the line a poor prognosis signature.
70-gene signature associated with 'poor prognosis', as did their distant metastases (Fig. 2). Interestingly, pair 8 that was classified into the good prognosis 'luminal' group of breast tumors also has a 'good prognosis' 70-gene signature in both its primary and recurrence that was separated in time by 15 years. Only the primary tumor of pair 4 has a different 70-gene signature than its metastasis.

Discussion

Gene expression profiling confirms that breast cancer is a very heterogeneous disease, both biologically and clinically (3, 4, 6, 7, 12, 13). Nevertheless, the genome-wide expression analysis of breast cancers has made it possible to identify signature patterns in primary breast carcinomas that are associated with patient outcomes and prognoses. Our data show that distant metastases mirror the specific prognostic profiles, the molecular breast cancer subtypes and 70-gene prognostic signatures, of their primary breast tumors. The fact that the likelihood of similarity between the expression profiles of primary tumors and metastases from the same individual rapidly decreases as the size of the gene set across which this comparison is performed, also decreases, underlines our findings. Remarkably, multiple metastases from one patient all display the same molecular breast cancer subtype independent of the organ in which they developed and still maintain the unique molecular identity of the primary that they arose from. Our findings support the hypothesis that the molecular subtypes might originate from different cell types within the breast and therefore reflect different biological entities (14), which are maintained throughout the multistep metastatic process.

Almost all pairs are either of the poor prognosis molecular subtype 'HER2+' or 'basal-like' or have a 'poor prognosis' signature of 70 genes, which is what might be expected since all tumors metastasized. Primary tumor 8 and its distant metastasis sample in the ovary, however, had a 'good prognosis' signature of 70 genes and a 'luminal' breast cancer subtype, both of which are associated with a low metastasis risk. Of note, the metastasis of this primary tumor developed 15 years after primary diagnosis, compared to a mean of 4.5 years (range 1.6 – 6.3) in the other six patients. Only one primary breast carcinoma did not maintain the 70-gene signature in its distant metastasis (pair 4), though these two samples were relatively close as observed by their Pearson correlation coefficient. This pair was due to limited amounts of RNA not tested for its breast cancer subtype. For the samples analyzed from UNC, all primary tumors and their associated metastases were collected at the same time.

The analysis of the 70-gene signature revealed that in 6/7 pairs the metastasis has a higher correlation with the 'poor prognosis' signature than its primary tumor (see Fig. 2). Genes correlated with the 'good prognosis' signature of 70 genes remain virtually unchanged between primary and metastatic tumors within a patient. A small number of genes correlated with the 'poor prognosis' signature is, however, up-regulated in the metastases compared with their matching primary breast carcinomas (data not shown), which leads to the 'poorer' 70-gene signature of the metastases. The genes up-regulated in the metastatic tumors are amongst others involved in DNA replication (RFC4, ORC6L) and signal transduction (IGFBP5, PRC1) (data not shown). Interestingly, only MMP9, which plays an important role in the proteolysis of the extracellular matrix (15), is down-regulated in five of the six metastases showing a 'poorer' profile than their primary tumors (data not shown).

Our results presented here emphasize that the metastatic nature of poor prognosis breast carcinomas, which are depicted by the 'poor prognosis' 70-gene profile or the 'luminal B', 'HER2-', or 'basal-like' molecular subtype, is an inherent feature of breast cancers that remains stable with time, and across distinct tumor outgrowth locations within the same individual. Since both the molecular breast cancer subtype and prognostic expression profile of a primary breast tumor are maintained throughout the metastatic process, future treatment decisions based on the expression profile of a primary tumor is a rational approach towards preventing the outgrowth of metastases.

Acknowledgements

B. Weigelt and I.J. van 't Veer are supported by the Dutch Cancer Society and the Cancer Genomics Initiative. C.M. Perou was supported by funds from the NCI Breast SPORE program to UNC-CH (P56-CA8223-09A1), by the National Institute of Environmental Health Sciences (UE1-ES1391-03) and by NCI (RO1-CA-101227-01). We also wish to thank Drs. Phil Bernard, Juan Palazzo and Olufunmilayo I. Olopade for the contributions towards the 107 patient sample data set.
References


