Essays in financial economics

Golec, P.M.

Publication date
2019

Document Version
Other version

License
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Appendix B

Appendix to chapter 2

B.1 Proofs

B.1.1 Proof of Lemma 1

The expected trading profit of a speculator becoming informed about the idiosyncratic risk factor of firm i is

$$
\left(1 - \frac{\phi_i}{\theta_i}\right) \left[(1 - q_a) \frac{\phi_a}{\theta_a} \cdot 0 + \left(1 - \frac{\phi_a}{\theta_a}\right) (q_a q_I (R_{H,i} - R_{L,i}) + R_{L,i} - R_{L,i})
+ q_a \frac{\phi_a}{\theta_a} [q_I (R_{H,i} - R_{L,i}) + R_{L,i} - R_{L,i}] \right]
$$

if $A_i = 0$ and

$$
\left(1 - \frac{\phi_i}{\theta_i}\right) \left[(1 - q_a) \frac{\phi_a}{\theta_a} \cdot 0 + \left(1 - \frac{\phi_a}{\theta_a}\right) (-q_a q_I (R_{H,i} - R_{L,i}) - R_{L,i} + q_a (R_{H,i} - R_{L,i}) + R_{L,i})
+ q_a \frac{\phi_a}{\theta_a} [-q_I (R_{H,i} - R_{L,i}) - R_{L,i} + R_{H,i}] \right]
$$

if $A_i = 1$. Simplifying these terms and taking the unconditional expectation yields the term in Lemma 1. The analogue holds for the incentives to become informed about the common risk factor A_a, except that the summation is over all securities.

B.1.2 Proof of Proposition 1

For the proof, note that welfare is a smooth function of ΔR. There are four cases to distinguish depending on whether the information acquisition equations (2.2) and (2.3) are binding:

$(\phi_a > 0, \phi_I > 0)$: solve the FOC (equation 2.5) to get the interior solution $\Delta R_{SP}^{\text{Int}}$. It goes to infinite as $\left(\frac{\phi_a}{\theta_a} + \frac{\phi_I}{\theta_I}\right) (K - x_L) \rightarrow c_I \frac{\phi_I}{q_a q_I (1 - q_I)} + c_a \frac{\phi_a c_a}{q_a q_I (1 - q_I)}$. Thus, if $\left(\frac{\phi_a}{\theta_a} + \frac{\phi_I}{\theta_I}\right) (K - x_L) > c_I \frac{\phi_I}{q_a q_I (1 - q_I)} + c_a \frac{\phi_a c_a}{q_a q_I (1 - q_I)}$, the optimal solution is ΔR_{max} maximal. By assumption $\Delta R_{\text{max}} >$
max[ΔR_I, ΔR_a], so this is possible. If \(\frac{c_a}{q_a} + \frac{c_I}{q_I} \) \((K - x_L) \leq c_I q q (1 - q_I) + c_a \frac{\theta_a c_a}{q_a q_a (1 - q_a)} \), then it is ΔR_{SP}^{\text{int}}. For existence we need that ΔR_{SP}^{\text{int}} > max[ΔR_I, ΔR_a].

\(\phi_a = 0, \phi_I = 0 \): no information is acquired. Welfare is just \(q_a q_I (x_H - x_L) + x_L - K \). Any \(\Delta R < \min[ΔR_I, ΔR_a] \) is optimal.

\(\phi_a > 0, \phi_I = 0 \): Setting \(\frac{\partial \phi_I}{\partial \Delta R} = \phi_I = 0 \), the FOC reduces to

\[
\frac{\partial^2 \phi_a}{\partial \Delta R^2} (1 - q_a) (K - x_L) - c_a \frac{\partial \phi_a}{\partial \Delta R}.
\]

\(\frac{\partial \phi_a}{\partial \Delta R} \) cancels out and we get \(\frac{1}{q_a} (1 - q_a) (K - x_L) - c_a \). Therefore, if \(K - x_L > \frac{\theta_a c_a}{1 - q_a} \), then the FOC is positive for all \(\Delta R \). Setting \(\Delta R \) maximally without violating \(\phi_a > 0, \phi_I = 0 \) gives \(\Delta R = \Delta R_I \). If on the other hand \(K - x_L < \frac{\theta_a c_a}{1 - q_a} \), then the FOC is negative for all \(\Delta R \). We would like to minimize \(\Delta R \). But this violates \(\phi_a > 0 \), so it is not possible that \(K - x_L < \frac{\theta_a c_a}{1 - q_a} \).

\(\phi_a = 0, \phi_I > 0 \): Setting \(\frac{\partial \phi_a}{\partial \Delta R} = \phi_a = 0 \), the FOC reduces to

\[
\frac{\partial^2 \phi_I}{\partial \Delta R^2} (1 - q_I) (K - x_L) - c_I \frac{\partial \phi_I}{\partial \Delta R}.
\]

\(\frac{\partial \phi_I}{\partial \Delta R} \) cancels out and we get \(\frac{1}{q_I} (1 - q_I) (K - x_L) - c_I \). If \(K - x_L > \frac{\theta_i c_i}{1 - q_i} \), then the FOC (2.5) is positive for all \(\Delta R \). Setting \(\Delta R \) maximally without violating \(\phi_a = 0, \phi_I > 0 \) gives \(\Delta R = \Delta R_a \). If on the other hand \(K - x_L < \frac{\theta_i c_i}{1 - q_i} \), then the FOC is negative for \(\Delta R \). But minimizing \(\Delta R \) violates \(\phi_I > 0 \), so it is not possible that \(K - x_L < \frac{\theta_i c_i}{1 - q_i} \).

Next, I show that the interior solution is in fact a local maximum. If ΔR_{SP}^{\text{int}} > max[ΔR_I, ΔR_a], then welfare is concave in ΔR around ΔR_{SP}^{\text{int}} because the second derivative is negative as I will show:

\[
\frac{\partial^2 W}{\partial \Delta R^2} = \frac{\partial^2 \phi_a}{\partial \Delta R^2} \left[1 - \frac{q_a}{q_i} \left(1 - \frac{1 - q_I}{1 - q_i} \right) \right] (K - x_L) - c_a \\
+ \frac{\partial^2 \phi_I}{\partial \Delta R^2} \left[1 - \frac{q_I}{q_i} \left(1 - \frac{1 - q_a}{1 - q_a} \right) \right] (K - x_L) - c_I \\
- 2(K - x_L) \frac{1 - q_a}{q_i} \frac{1 - q_a}{q_i} \frac{\partial \phi_I}{\partial \Delta R} \frac{\partial \phi_a}{\partial \Delta R}.
\]
Using \(\frac{\partial^2 W}{\partial \Delta R^2} = -\frac{\partial W}{\partial R} \frac{\partial^2 W}{\partial R \Delta R} \), this yields

\[
\frac{\partial^2 W}{\partial \Delta R^2} = -\frac{2}{\Delta R} \left\{ \frac{\partial^2 \phi_a}{\partial \Delta R^2} \left[1 - q_a \left(\frac{1 - q_l}{\theta_a} \phi_l \right) (K - x_L) - c_a \right] + \frac{\partial^2 \phi_l}{\partial \Delta R^2} \left[1 - q_l \left(1 - \frac{q_a}{\theta_a} \phi_a \right) (K - x_L) - c_l \right] \right\} - 2(K - x_L) \frac{1 - q_l}{\theta_l} \frac{1 - q_a}{\theta_a} \frac{\partial \phi_l}{\partial \Delta R} \frac{\partial \phi_a}{\partial \Delta R}.
\]

The term in curly brackets is equal to the FOC (2.5) and therefore 0, so welfare is concave around the interior solution.

Let us compare the interior solution to the other three possible corner solutions. The claim is that the interior solution is optimal if it exists. Note that in the cases where \((\phi_a > 0, \phi_l = 0)\) or \((\phi_a = 0, \phi_l > 0)\), welfare is increasing in \(\Delta R\). But then the interior solution must be better because \(\overline{\Delta R_I} < \overline{\Delta R}_{\text{Interior}}\) resp. \(\overline{\Delta R_a} < \overline{\Delta R}_{\text{Interior}}\) and the fact that welfare is smooth in \(\Delta R\). Is it possible that choosing \(\Delta R\) minimal such that \((\phi_a = 0, \phi_l = 0)\) is better? No, as the difference between welfare under the interior solution and under no information only depends on linear terms containing \(\phi_I^*\) and \(\phi_a^*\), without a constant (thus not affine).

If \(0 < \overline{\Delta R}^{SP}_{\text{Int}} < \max\{\overline{\Delta R_I}, \overline{\Delta R_a}\}\), then the interior solution does not exist. If \(\overline{\Delta R_I} > \overline{\Delta R_a}\), then only cases \((\phi_a > 0, \phi_l = 0)\) or \((\phi_a = 0, \phi_l > 0)\) can exist, which means the optimal solution must either be \(\overline{\Delta R_I}\) or \(\overline{\Delta R}_{\text{min}}\). If \(K - x_L > \frac{\theta_a c_a}{1 - q_a}\), then the optimal solution is therefore \(\overline{\Delta R_I}\), otherwise \(\overline{\Delta R}_{\text{min}}\). The reasoning is the same when \(\overline{\Delta R_I} > \overline{\Delta R_a}\).

If the optimal solution is not within the corner solutions, then naturally it must be the corner solution closest since the objective function is smooth.

B.1.3 Proof of Proposition 2

If \(K - x_L \geq \theta_a c_a / (1 - q_a)\), then the FOC (equation 2.6) is negative regardless of \(\phi_a\) (the equilibrium \(\Delta R\)). So in that case the unique equilibrium must be \(\Delta R = \overline{\Delta R}_{\text{min}}\).

Simple Equilibrium If however \(K - x_L \geq \frac{\theta_a c_a}{1 - q_a}\), then potentially firms would like have some information. FOC 2.6 is a quadratic equation,

\[
\Delta R^{CE}_{\text{Int}}^2 \theta_a c_a - \Delta R^{CE}_{\text{Int}} \left[\overline{\Delta R_I} ((1 - q_l) q_a (K - x_L) - \theta_l c_l) + \theta_a c_a \overline{\Delta R_a} \right] - (1 - q_l) \overline{\Delta R_I} (1 - q_a) \overline{\Delta R_a} (K - x_L) = 0 \quad (B.1)
\]

Solving for the \(\Delta R\) yields the term in the proposition. The determinant is always positive therefore a solution always exists. It is also easy to verify that the first term of \(\Delta R^{CE}_{\text{Int}}\) is smaller than the second, thus the sign in front of the second term can not be negative.

For the interior solution to be an equilibrium, we need that \(\Delta R^{CE}_{\text{Int}} > \max\{\overline{\Delta R_I}, \overline{\Delta R_a}\}\) such that \(\phi_a^* > 0\) and \(\phi_l^* > 0\) and that it is not profitable for a firm to deviate. At the
interior solution, it is easy to show that firms are always at a local maximum so any (marginal) deviation \(\Delta R'_j > \bar{\Delta R}_j \) from \(\Delta R^{CE}_{Int} \) is not profitable. For a firm not to deviate to \(\Delta R'_j < \bar{\Delta R}_j \), we need that

\[
\Pi_{\Delta R^{CE}_{Int}} - \Pi_{\Delta R'_j} = \phi^{'int}_j \left[\frac{1 - q_j}{\theta_I} (1 - \frac{1 - q_a}{\theta_a} \phi^{int}_a) (K - x_L) - c_I \right] - \phi^{int}_a c_a \left(1 - \frac{\Delta R'_j}{\Delta R^{CE}_{Int}} \right) \geq 0 \quad (B.2)
\]

where \(\phi^{'int}_j \) and \(\phi^{int}_a \) are the amount of speculators becoming informed in equilibrium under no deviation. Rearranging terms and simplifying yields

\[
\phi^{int}_a c_a \left[\frac{\Delta R^{CE}_{Int}}{\Delta R_I} - 1 - \left(1 - \frac{\Delta R'_j}{\Delta R^{CE}_{Int}} \right) \right] \geq 0.
\]

The condition is least likely to hold when \(\Delta R'_j \) is chosen minimally, \(\Delta R_{min} \). The term in square brackets then is exactly the condition in the proposition.

We also need that \(\Delta R^{CE}_{Int} > \bar{\Delta R}_I \) and \(\Delta R^{CE}_{Int} > \bar{\Delta R}_a \). Rewriting condition \(\Delta R^{CE}_{Int} > \bar{\Delta R}_a \), it turns out that it is equivalent to \((1 - q_j)(K - x_L) \geq \theta_I c_I \), so it always holds. Condition \(\Delta R^{CE}_{Int} > \bar{\Delta R}_I \) always holds if the no-deviation condition \(\frac{\Delta R^{CE}_{Int}}{\Delta R_I} - 1 \geq 1 - \frac{R_{min}}{\Delta R^{CE}_{Int}} \) holds. To see this, note that if \(\Delta R_{min} > \bar{\Delta R}_I \), then together with the no-deviation condition this directly implies that \(\Delta R^{CE}_{Int} > \bar{\Delta R}_I \). If on the other hand \(\Delta R_{min} < \bar{\Delta R}_I \), then condition \(\frac{\Delta R^{CE}_{Int}}{\Delta R_I} - 1 \geq 1 - \frac{\Delta R_{min}}{\Delta R^{CE}_{Int}} \) is equivalent to \(\Delta R^{CE}_{Int} \geq \bar{\Delta R}_I \left(1 + \sqrt{1 - \frac{\Delta R_{min}}{\Delta R_I}} \right) \). From that condition it automatically follows that \(\Delta R^{CE}_{Int} > \bar{\Delta R}_I \).

Mixed Equilibrium When \((1 - q_j)(K - x_L) \geq \theta_I c_I \) and \(\frac{\Delta R^{CE}_{Int}}{\Delta R_I} - 1 < 1 - \frac{\Delta R_{min}}{\Delta R^{CE}_{Int}} \), we will show that the mixed equilibrium described in the proposition is indeed an equilibrium and that it is unique. For it to be an equilibrium, we need that firms issuing \(\bar{\Delta R}_I \left(1 + \sqrt{1 - \frac{\Delta R_{min}}{\Delta R_I}} \right) \) and firms issuing \(\Delta R_{min} \) do not deviate at the margin and that both types earn the same profits. Note that the equilibrium can only exist if \(\Delta R_{min} < \bar{\Delta R}_I \). Then condition \(\frac{\Delta R^{CE}_{Int}}{\Delta R_I} - 1 < 1 - \frac{\Delta R_{min}}{\Delta R^{CE}_{Int}} \) becomes \(\Delta R^{CE}_{Mix} < \bar{\Delta R} \equiv \bar{\Delta R}_I \left(1 + \sqrt{1 - \frac{\Delta R_{min}}{\Delta R_I}} \right) \).

Firms issuing \(\Delta R_{min} \) do not deviate at the margin because for them \(\phi^{'int}_j = 0 \) (due to \(\Delta R_{min} < \bar{\Delta R}_I \)), thus they only care about the adverse selection costs stemming from information about the common risk factor induced by the other firms.

The condition for all firms to earn the same profits is:

\[
c_a \phi^{'int}_a \mid_{\Delta R = \Delta R^{CE}_{Mix}} \left[\frac{\bar{\Delta R}}{\Delta R_I} - 1 - \left(1 - \frac{\Delta R_{min}}{\Delta R_I} \right) \right] = 0.
\]

Solving this quadratic equation for \(\bar{\Delta R} \) yields \(\bar{\Delta R} = \bar{\Delta R}_I \left(1 + \sqrt{1 - \frac{\Delta R_{min}}{\Delta R_I}} \right) \).

\(\Delta R^{CE}_{Mix} \) is pinned down by the local optimality condition of the firms issuing \(\bar{\Delta R} \). We can rewrite FOC (equation 2.6) with \(\frac{\theta_I c_I}{q_a q_j (1 - q_j) \bar{\Delta R}^2} \) in place of \(\frac{\partial \Pi}{\partial \Delta R} \) and \(\theta_a \left(1 - \frac{1}{\bar{\Delta R}_I} \right) \)}
\[
\frac{c_a}{q_a(1 - q_a)\Delta R_{\text{Mix}}^{CE}} \text{ in place of } \phi_a,
\]
\[
\Delta R_{\text{Mix}}^{CE} = \frac{1}{2\tilde{R}_I[1 - q_I]q_a(K - x_L) - \theta_I c_I]} \left\{ \left[\theta_a c_a \tilde{R}^2 - \Delta R_a(1 - q_a)\tilde{R}_I(1 - q_I)(K - x_L) \right] + \theta_a c_a \Delta R_a \tilde{R}^2 \right\} = 0.
\]
Solving this equation yields
\[
\Delta R_{\text{Mix}}^{CE} = \pm \sqrt{\left[\theta_a c_a \tilde{R}^2 - \Delta R_a(1 - q_a)\tilde{R}_I(1 - q_I)(K - x_L) \right]^2 - 4\tilde{R}_I[1 - q_I]q_a(K - x_L) - \theta_I c_I] \theta_a c_a \Delta R_a \tilde{R}^2}.
\]
I will prove that the discriminant is always positive. Thus we require that
\[
\left[\theta_a c_a \tilde{R}^2 - \Delta R_a(1 - q_a)\tilde{R}_I(1 - q_I)(K - x_L) \right]^2 > 4\tilde{R}_I[1 - q_I]q_a(K - x_L) - \theta_I c_I] \theta_a c_a \Delta R_a \tilde{R}^2
\]
Using equation B.1 together with \(\Delta R_{\text{Mix}}^{CE} < \tilde{R} \), we also know that
\[
\tilde{R}^2 \theta_a c_a - (1 - q_I)\tilde{R}_I(1 - q_a)\Delta R_a(K - x_L) > \tilde{R}[\Delta R_I((1 - q_I)q_a(K - x_L) - \theta_I c_I) + \theta_a c_a \Delta R_a]. \quad (B.3)
\]
Thus we can underestimate the LHS of the determinant condition,
\[
\tilde{R}^2 [\Delta R_I((1 - q_I)q_a(K - x_L) - \theta_I c_I) + \theta_a c_a \Delta R_a]^2 > 4\tilde{R}_I[1 - q_I]q_a(K - x_L) - \theta_I c_I] \theta_a c_a \Delta R_a \tilde{R}^2.
\]
Reformulating this condition yields
\[
[\Delta R_I((1 - q_I)q_a(K - x_L) - \theta_I c_I) - \theta_a c_a \Delta R_a]^2 > 0,
\]
which always holds.

One can also show that the sign in front of the square root must be negative.

The fraction \(f^* \) of firms issuing \(\tilde{R} \) is then pinned down by
\[
\Delta R_{\text{Mix}}^{CE} = f^* \tilde{R}^* + (1 - f^*)\Delta R_{\text{min}}
\]
\[
\Leftrightarrow f^* = \frac{\Delta R_{\text{Mix}}^{CE} - \Delta R_{\text{min}}}{\tilde{R} - \Delta R_{\text{min}}}
\]
Next I show that \(f \in [0, 1] \) if and only if \(\frac{\Delta R_{\text{Int}}^{CE}}{\tilde{R}_I} - 1 < 1 - \frac{\Delta R_{\text{min}}}{\tilde{R}_{\text{Int}}^{CE}} \). This implies that a mixed equilibrium only exists in that region. For \(f < 1 \) to hold, we require that \(\Delta R_{\text{Mix}}^{CE} < \tilde{R} \). Solving this inequality yields condition B.3, the condition that holds if and only if \(\frac{\Delta R_{\text{Int}}^{CE}}{\tilde{R}_I} - 1 < 1 - \frac{\Delta R_{\text{min}}}{\tilde{R}_{\text{Int}}^{CE}} \) (the inequality sign flips twice when \((1 - q_I)q_a(K - x_L) < \theta_I c_I \)).

Condition \(f > 0 \) is equivalent to \(\Delta R_{\text{Mix}}^{CE} > \Delta R_{\text{min}} \). But firms can not issue a safer security than \(\Delta R_{\text{min}} \), so it is impossible that \(f < 0 \). A mixed equilibrium with three or more different strategies can not exist because there are only two local maxima (one for \(\Delta R < \tilde{R}_I \) and one for \(\Delta R > \tilde{R}_I \)). This implies that the mixed equilibrium in the proposition is unique.
B.1.4 Proof of Proposition 3

If \(\frac{1}{\theta}(1 - q_l)(K - x_L) < c_l \), then from proposition 2 it follows that firms issue that \(\Delta R_{\text{min}} \) in the private market equilibrium. Region 1 is defined exactly as the parameter values where \(\Delta R_{\text{min}} \) is also socially optimal (proposition 1), thus no intervention by the planner is necessary. Since region 2 is just the difference between the region defined by \(\frac{1}{\theta}(1 - q_l)(K - x_L) < c_l \) and region 1, the socially optimal security has \(\Delta R > \Delta R_{\text{min}} \). Thus the planner would like to increase information production.

Next take the case when \(\frac{1}{\theta}(1 - q_l)(K - x_L) \geq c_l \). We need to show that the socially optimal security is riskier than in equilibrium when \(c_a \) small and safer when \(c_a \) large. Since both the socially optimal and equilibrium security are smooth in \(c_a \), then we can conclude that there must be a cutoff \(\bar{c}_a \) which defines the regions 3 and 4 together with \(\frac{1}{\theta}(1 - q_l)(K - x_L) \geq c_l \). First I show that the socially optimal security is riskier than in equilibrium when \(c_a \) small. If \(\frac{1}{\theta}(1 - q_l)(K - x_L)q_a < c_l \), then the socially optimal security is \(\bar{R}_l \) whereas in equilibrium firms issue \(\Delta R_{\text{min}} \) (follows from their FOC (2.6)). If on the other hand \(\frac{1}{\theta}(1 - q_l)(K - x_L)q_a > c_l \), then the socially optimal security is \(\Delta R_{\text{max}} \) for a \(c_a \gg 0 \), whereas in equilibrium firms only issue \(\Delta R_{\text{max}} \) if \(c_a \to 0 \). To see this, note that From the first part of proposition 1, \(\Delta R_{\text{max}} \) is socially optimal whenever \(\theta_l \bar{R}_l c_l + \theta_a \bar{R}_a c_a \leq \left(\bar{R}_l (1 - q_l)q_a + \bar{R}_a (1 - q_a)q_l \right) (K - x_L) \). The condition can be rewritten as

\[
\theta_a \left(\frac{c_a}{q_i q_a (1 - q_a)} - \frac{K - x_L}{q_a} \right) \leq \bar{R}_l [(1 - q_l)q_a (K - x_L) - \theta_l c_l].
\]

The right hand side is positive. Thus the condition always holds for \(\frac{1}{\theta_a q_l (1 - q_a) (K - x_L)} > c_a \).

Now I show that the socially optimal security is safer than in the private equilibrium when \(c_a \) is large. Note that when \(c_a \) is large, then \(\bar{R}_a > \bar{R}_l \). We can also show that \(\Delta R_{\text{int}}^{SP} < \bar{R}_a \). Rewriting that inequality yields

\[
\bar{R}_l [2(1 - q_a)(1 - q_l)(K - x_L) + (1 - q_l)q_a (K - x_L) - \theta_l c_l] < \bar{R}_a [\theta_a c_a - (1 - q_a)q_l (K - x_L)],
\]

which holds if \(c_a \) large enough. Thus we have that \(\Delta R_{\text{int}}^{SP} = \bar{R}_a \). In the private market equilibrium the solution is interior if \(\frac{1}{\theta_l} (1 - q_l)(K - x_L) \geq c_l \). Rewriting the inequality yields exactly \(\Delta R_{\text{int}}^{CE} > \bar{R}_a \) yields \(\frac{1}{\theta_l} (1 - q_l)(K - x_L) > c_l \), thus it holds.