map of families \(\pi_2 \to \pi_1 \) such that the induced map on the fibers is a finite map of curves. In particular, we obtain data as above, but with \((X_1, B_1)\) replaced by \((X_2, B_2)\):

\[
\begin{array}{ccc}
X_2 & \to & X_1 & \to & X_0 \\
\downarrow \pi_2 & & \downarrow \pi_1 & & \downarrow \pi_0 \\
B_2 & \to & B_1 & \to & \text{Spec}(\mathbf{C})
\end{array}
\]

Finally, if \(B_1 \) is complete, then \(B_2 \) can be chosen to be complete as well.

Proof. Step 1 is the construction. In \(X_0 \times X_0 \) the curve \(W_0 \) parametrizes pairs of distinct points of \(X_0 \). Let \(W \) be an irreducible component of the inverse image of \(W_0 \) under the map \(X_1 \times B_1, X_1 \to X_0 \times X_0 \). Then \(W \) parametrizes pairs of distinct points in the fibers of \(X_1 \to B_1 \).

Let \(V \) be a desingularization of \(W \). Set \(Y = X_1 \times_{B_1} V \). Then \(Y \to V \) is a family of curves, smooth over \(V \). It has two disjoint sections \(s_1, s_2 \) induced by the two projections of \(W \) onto \(X_1 \). With these sections \(Y \to V \) is a family of two-pointed curves. Note that \(Y \) is smooth since \(V \) is, and that the divisors \(s_i(V), i = 1, 2 \), meet the fibers of \(Y \to V \) transversally in \(Y \). Set \(\Gamma = s_1(V) + s_2(V) \in \text{Div}(Y) \).

For our construction we need a line bundle \(L \) on \(Y \) satisfying \(L^2 \cong O_Y(\Gamma) \). Such a bundle may not exist over the base \(V \). Pulling back along a finite étale cover \(V' \to V \) such an \(L \) will exist, as we presently show.

Indeed, let \(V_0 \) be the normalisation of \(W_0 \), and consider \(\Gamma_0 \subset X_0 \times V_0 \), the divisor associated to the corresponding sections of \(X_0 \times V_0 \to V_0 \). Clearly, \(\Gamma \) is the pullback of \(\Gamma_0 \). Let \(V_0' \to V_0 \) be (a component of) the finite étale cover associated to the kernel of \(\pi_1(V_0) \to H_1(V_0, \mathbf{Z}/2\mathbf{Z}) \). The class of the pullback of \(\Gamma_0 \) to \(X_0 \times V_0' \) is zero in \(H_2(X_0 \times V_0', \mathbf{Z}/2\mathbf{Z}) \), as Atiyah shows in [3]. So let \(V' = V \times_{V_0} V_0' \). Then the class \(\Gamma' = \Gamma \times_{V} V' \subset Y' = Y \times_{V} V' \) is zero in \(H_2(Y', \mathbf{Z}/2\mathbf{Z}) \), and \(\Gamma' \) determines an even class in \(H_2(Y', \mathbf{Z}) \). Since \(\text{Pic}(Y') \) is an extension of the Neron-Severi group by a divisible group, there exists a line bundle \(L \) satisfying \(L^2 \cong O_{Y'}(\Gamma') \).

We continue the construction. By standard arguments, there exists in the total space of \(L \) a double cover \(X_2 \) of \(Y' \), ramified precisely along \(\Gamma' \). Setting \(B_2 = V' \) gives a new smooth family of algebraic curves \(\pi_2 : X_2 \to B_2 \). The fiber \((X_2)_{b_2} \) is a double cover of \((X_1)_{b_1} \), where \(b_1 \) is the image of \(b_2 \) in \(B_1 \), and this cover is ramified precisely over the tuple \(\text{Im}(b_2) \subset W \). By Riemann-Hurwitz, the fibers of \(\pi_2 \) have genus \(2g \). The dimension of the base \(B_2 \) equals \(\dim(B_1) + 1 \). The construction is summarized in the following diagram.

\[
\begin{array}{ccc}
X_2 & \to & L \\
\downarrow & & \downarrow \\
Y' & \to & Y = V \times_{B_1} X_1 \\
\downarrow & & \downarrow \\
B_2 = V' & \to & V & \to & W \subset X_1 \times_{B_1} X_1 & \to & X_1 \\
\downarrow & & \downarrow & & \downarrow & \to & B_1 \\
X_1 & \to & B_1
\end{array}
\]