Complete subvarieties of moduli spaces of algebraic curves

Zaal, C.G.

Publication date
2005

Citation for published version (APA):
Chapter 2. Explicit complete subvarieties of dimension \(d \) in \(M_{2d+1} \)

STEP 2. We claim that the map \(B_2 \to M_{2g} \) is non-degenerate. First note that the general fibers of \(B_2 \to B_1 \) parametrize double coverings of a fixed genus \(g \) curve. The restriction of \(B_2 \to M_{2g} \) to such a fiber is non-degenerate. This follows from a direct calculation of the Kodaira-Spencer map, as in [34] (here we need that \(g > 1 \)).

Secondly, suppose \(Z \subset B_2 \) is irreducible, one-dimensional, and contained in the general fiber of the map to \(M_{2g} \). Then we have maps of families:

\[
\begin{align*}
X_2 \times_{B_2} Z & \to X_1 \times_{B_1} \text{Im}(Z) \\
Z & \to \text{Im}(Z) \subset B_1
\end{align*}
\]

Since \(Z \) is not be contained in a fiber of \(B_2 \to B_1 \), \(\text{Im}(Z) \subset B_1 \) is one-dimensional. As \(Z \) maps to a point in \(M_{2g} \), the fibers of \(X_2 \times_{B_2} Z \to Z \) are all isomorphic. Since \(X_1 \to B_1 \) is non-degenerate, this would give a curve \(F \) of genus \(2g \) (the fiber of \(X_2 \times_{B_2} Z \to Z \)) doubly covering infinitely many, pairwise non-isomorphic curves of genus \(g \). This is absurd, since \(F \) has a finite automorphism group.

\[\Box \]

Proof of Theorem 2.1. To obtain the required families, let \(X_0 \) be a smooth genus 2 curve. Consider the map \(X_0 \times X_0 \to \text{Jac}(X_0) \), sending \((P, Q) \) to \([P - Q]\). This map is birational, and \(\Delta \) is blown down to the origin. Let \(W_0 \) be the inverse image of a curve in \(\text{Jac}(X_0) \) which does not contain the origin. Then \(W_0 \) is a complete curve in \(X_0 \times X_0 \) not meeting the diagonal.

Applying Lemma 2.2 to \(X_1 = X_0 \) yields a complete, non-degenerate, one-dimensional family \(X_2 \to B_2 \) of genus 4 curves. Applying it to \(X_2 \to B_2 \) yields a complete, non-degenerate, two-dimensional family \(X_3 \to B_3 \) of genus 8 curves. In this way we obtain for any \(d \) non-degenerate families of smooth curves of genus \(2^{d+1} \) over a complete base of dimension \(d \).

\[\Box \]