Complete subvarieties of moduli spaces of algebraic curves

Zaal, C.G.

Publication date
2005

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 2. Explicit complete subvarieties of dimension d in M_{2d+1}

STEP 2. We claim that the map $B_2 \to M_{2g}$ is non-degenerate. First note that the general fibers of $B_2 \to B_1$ parametrize double coverings of a fixed genus g curve. The restriction of $B_2 \to M_{2g}$ to such a fiber is non-degenerate. This follows from a direct calculation of the Kodaira-Spencer map, as in [34] (here we need that $g > 1$).

Secondly, suppose $Z \subset B_2$ is irreducible, one-dimensional, and contained in the general fiber of the map to M_{2g}. Then we have maps of families:

$$
\begin{align*}
X_2 \times_{B_2} Z & \to X_1 \times_{B_1} \text{Im}(Z) \\
\downarrow & \downarrow \\
Z & \to \text{Im}(Z) \subset B_1
\end{align*}
$$

Since Z is not be contained in a fiber of $B_2 \to B_1$, $\text{Im}(Z) \subset B_1$ is one-dimensional. As Z maps to a point in M_{2g}, the fibers of $X_2 \times_{B_2} Z \to Z$ are all isomorphic. Since $X_1 \to B_1$ is non-degenerate, this would give a curve F of genus $2g$ (the fiber of $X_2 \times_{B_2} Z \to Z$) doubly covering infinitely many, pairwise non-isomorphic curves of genus g. This is absurd, since F has a finite automorphism group. \square

Proof of Theorem 2.1. To obtain the required families, let X_0 be a smooth genus 2 curve. Consider the map $X_0 \times X_0 \to \text{Jac}(X_0)$, sending (P, Q) to $[P - Q]$. This map is birational, and Δ is blown down to the origin. Let W_0 be the inverse image of a curve in $\text{Jac}(X_0)$ which does not contain the origin. Then W_0 is a complete curve in $X_0 \times X_0$ not meeting the diagonal.

Applying Lemma 2.2 to $X_1 = X_0$ yields a complete, non-degenerate, one-dimensional family $X_2 \to B_2$ of genus 4 curves. Applying it to $X_2 \to B_2$ yields a complete, non-degenerate, two-dimensional family $X_3 \to B_3$ of genus 8 curves. In this way we obtain for any d non-degenerate families of smooth curves of genus 2^{d+1} over a complete base of dimension d. \square