Complete subvarieties of moduli spaces of algebraic curves

Zaal, C.G.

Publication date
2005

Citation for published version (APA):
Section 2.2. A refinement

2.2 A refinement

With a minor modification of Lemma 2.2, we can sharpen Theorem 2.1 to obtain a stronger statement.

Theorem 2.3 For every \(d \geq 1 \) and every \(g \geq 2^{d+1} \) there exist complete subvarieties of \(M_g \) of dimension \(d \).

Proof. The idea is to modify Lemma 2.2. We choose \(X_0 \) such that it admits a map onto an elliptic curve \(E \). Instead of a complete curve in \(X_0 \times X_0 \) we take for any \(k \geq 1 \) a complete curve in \(X_0^{2k} \) not meeting the big diagonal \(\Delta = \{ (x_1, \ldots, x_{2k}) : x_i = x_j \text{ for some } i \neq j \} \). Such a curve parametrizes \(2k \)-tuples of distinct points on \(X_0 \). It is possible to find such a curve. Indeed, inside \(E^{2k} \) take \(\{(e, e+t_1, \ldots, e+t_{2k}) : e \in E\} \) with \(t_i \neq t_j \) for \(i \neq j \). I.e., we translate the small diagonal \(\{(e, e, \ldots, e) : e \in E\} \) along the coordinate directions in such a way that it does not meet the big diagonal. Then simply take the inverse image of this curve via the map \(X_0^{2k} \to E^{2k} \).

Now one can redo the construction of Lemma 2.2, taking double covers ramified not in 2 points, but in \(2k \) points. This will result in a family \(\pi_2 : X_2 \to B_2 \) with \(\dim(B_2) = \dim(B_1) + 1 \) with the genus of the fibers of \(\pi_2 : X_2 \to B_2 \) being equal to \(2g + k - 1 \).

To prove the theorem, take \(g \geq 2^{d+1} \). Write \(g = 2^{d+1} + m \) with \(m \geq 0 \). We start with a bi-elliptic base curve \(X_0 \) of genus 2. We apply the construction of Lemma 2.2 \((d-1) \) times, to arrive at a \((d-1) \)-dimensional family of smooth curves of genus \(2^d \). With the help of the described modification of Lemma 2.2 we construct in the final step a \(d \)-dimensional family of double covers of curves of genus \(2^d \) ramified in \(2m + 2 \) distinct points, to arrive at a family \(\pi_d : X_d \to B_d \) of smooth curves of genus \(g = 2^{d+1} + m \).

The image of the functorial map \(B_d \to M_g \) is a complete subvariety of \(M_g \) of dimension \(d \), as is seen easily. \(\square \)

2.3 Minimality of the construction

In the construction described above we start with a (bi-elliptic) genus 2 curve \(X_1 = X_0 \), given rise to a 1-dimensional family of smooth curves of genus 4. If we would have started with a elliptic curve \(X_1 = X_0 \), then the result is a complete family \(X_2 \to B_2 \) of smooth curves of genus 2. This may seem an improvement of our results, but this family of genus 2 curves is degenerate. There are several ways to see this:

- The moduli space \(M_2 \) of smooth genus 2 curves is affine. For this reason, it does not contain complete curves. Hence the image of \(B_2 \) in \(M_2 \) must be a point (assuming that the base is irreducible), and all fibers are pairwise isomorphic.
- If one calculates the Kodaira-Spencer map of \(X_2 \to B_2 \) in a point \(B_2 \), then this derivative turns out to be a multiple of \(g-1 \), where \(g \) is the genus of the base \(X_1 = X_0 \). So the tangent map of \(B_2 \to M_2 \) is zero in any point of \(B_2 \).