Complete subvarieties of moduli spaces of algebraic curves

Zaal, C.G.

Publication date
2005

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CHAPTER 4
A complete surface in M_6 in characteristic > 2

Abstract. *In all characteristics $p > 2$ we construct a complete surface in the moduli space of smooth genus 6 curves. The surface is contained in the locus of curves with automorphisms.*

We consider the following question: ‘What is the maximal number of essential parameters on which a complete family of smooth curves of genus g depends?’ or equivalently, ‘What is the maximal dimension of a complete subvariety of M_g, the moduli space of smooth curves of genus g?’ In [14] Diaz provided an upper bound for the dimension of such a subvariety: for $g \geq 2$ this dimension is at most $g-2$. The moduli space M_g itself is irreducible, quasi-projective of dimension $3g-3$ ($g \geq 2$). Diaz proved his result in characteristic 0, but his bound also holds in characteristic > 0 (see [35]).

In order to see how good Diaz’s bound is one has to construct complete subvarieties of M_g. This turns out to be a difficult problem, in any characteristic. Only in genus ≤ 3 Diaz’s bound is known to be sharp, since it is known that M_g contains complete curves if g is at least 3 (see [16]). In higher genera almost nothing is known. The best result we know is a construction of complete subvarieties of arbitrary dimension $d \geq 1$ in M_g with $g \geq 2^{d+1}$. This construction gives a complete surface in M_8. For $g = 4, 5, 6$ and 7 we still do not know whether a complete surface in M_g exists.

4.1 The construction

Starting from a complete curve in M_3, we construct a complete surface in M_6. However, this construction only works in characteristic $\neq 0, 2$. Our result is:

Theorem 4.1 *In any characteristic $p > 2$ the moduli space M_6 of smooth genus 6 curves contains a complete surface.*

To construct in characteristic 0 a complete surface in M_6 seems more difficult. This is more or less similar to the fact that the moduli space A_g of principally polarized abelian varieties of dimension g contains in characteristic $p > 0$ complete subvarieties of rather high dimension [45]. The corresponding situation in characteristic 0 is completely unknown.\(^1\)

\(^1\) However, see Keel-Sadun [32].