Aspect, tense and modality: theory, typology, acquisition
Boland, J.H.G.

Citation for published version (APA):
List of Tables and Figures

Tables

Table 2-1. Underlying structure of the layers 30
Table 3-1. Functions of operators 35
Table 3-2. Temporal and aspectual relations according to Klein (1994) 55
Table 3-3. Classification of aspect, tense and quantification according to scope 66
Table 4-1. Combinations of sense and source 73
Table 4-2. Different types of modality according to scope 74
Table 4-3. Combinations of scope and sense 75
Table 4-4. Possible combinations of source and scope 76
Table 4-5. Classification of the domain of modality along the parameters sense, scope, and source 84
Table 4-6. Classification of modality, irrealis and evidentiality according to scope 90
Table 5-1. Classification of TMA domains according to scope 92
Table 5-2. Characteristics of lexical and grammatical items 93
Table 6-1. English TMA expressions included in this research 126
Table 6-2. Subtypes of potentiality, expressed by can, could, may or might 144
Table 6-3. Subtypes of disposition, expressed by will, would, or wanna 147
Table 6-4. Subtypes of weak necessity, expressed by should, ought to, or be supposed to 151
Table 6-5. Subtypes of necessity, expressed by must, need to, have to, have got to, or shall 155
Table 6-6. English TMA expressions with narrow scope (π1-operators) 157
Table 6-7. English TMA expressions with medial scope (π2-operators) 158
Table 6-8. English TMA expressions with wide scope (π3-operators) 158
Table 6-9. Selected data for the adult conversations sample 173
Table 6-10. Distribution of TMA expressions in American English adult conversations (in %) 174
Table 6-11. Number of expression forms and semantic functions per operator class in English 176
TABLES AND FIGURES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-12</td>
<td>Combinations of scopes of polysemous TMA expressions in English</td>
<td>178</td>
</tr>
<tr>
<td>6-13</td>
<td>Relation between expression form and operator type in English</td>
<td>180</td>
</tr>
<tr>
<td>6-14</td>
<td>Relation between age and expression form in English</td>
<td>182</td>
</tr>
<tr>
<td>7-1</td>
<td>TMA domains and semantic functions included in the study</td>
<td>201</td>
</tr>
<tr>
<td>7-2</td>
<td>Comparison of analyses in Bybee et al. (1994) and in this study of the TMA system in Chacobo</td>
<td>204</td>
</tr>
<tr>
<td>7-3</td>
<td>Number of languages in the sample that have certain types of operators</td>
<td>211</td>
</tr>
<tr>
<td>7-4</td>
<td>Eight portmanteau expressions in Guaymi</td>
<td>213</td>
</tr>
<tr>
<td>7-5</td>
<td>Number of expression forms and semantic functions per type of operator</td>
<td>214</td>
</tr>
<tr>
<td>7-6</td>
<td>Percentage of languages that are in accordance with H2b</td>
<td>215</td>
</tr>
<tr>
<td>7-7</td>
<td>Number of languages in the sample that grammatically express TMA domains</td>
<td>216</td>
</tr>
<tr>
<td>7-8</td>
<td>Number of expressions and semantic functions for each TMA domain</td>
<td>217</td>
</tr>
<tr>
<td>7-9</td>
<td>Number of MODAL expression forms and semantic functions per type of operator</td>
<td>218</td>
</tr>
<tr>
<td>7-10</td>
<td>Frequency of different synchronic configurations</td>
<td>220</td>
</tr>
<tr>
<td>7-11</td>
<td>Polysemous expressions with potentiality senses</td>
<td>224</td>
</tr>
<tr>
<td>7-12</td>
<td>Polysemous expressions with (weak) necessity senses</td>
<td>225</td>
</tr>
<tr>
<td>7-13</td>
<td>Polysemous expressions with sense of disposition and polysemous expressions with general basic senses</td>
<td>226</td>
</tr>
<tr>
<td>7-14</td>
<td>Polysemous expressions that combine participant-oriented modality and prospective or future</td>
<td>227</td>
</tr>
<tr>
<td>7-15</td>
<td>Polysemous expressions that combine epistemic modality, future tense and irrealis</td>
<td>228</td>
</tr>
<tr>
<td>7-16</td>
<td>Polysemous expressions for quantification and aspect</td>
<td>229</td>
</tr>
<tr>
<td>7-17</td>
<td>Combinations of scopes in polysemous expressions</td>
<td>231</td>
</tr>
<tr>
<td>7-18</td>
<td>Frequency of combinations of meanings of portmanteau expressions</td>
<td>232</td>
</tr>
<tr>
<td>7-19</td>
<td>Combinations of scopes in portmanteau expressions</td>
<td>233</td>
</tr>
<tr>
<td>7-20</td>
<td>Proportion of expression forms for TMA expressions</td>
<td>235</td>
</tr>
<tr>
<td>7-21</td>
<td>Proportion of operator types in different language types</td>
<td>236</td>
</tr>
</tbody>
</table>
Table 7-22. Proportion of expression forms in languages with both bound and non-bound expression forms 237
Table 7-23. Frequencies of expression forms for each semantic domain, in languages with both bound and non-bound expression forms 238
Table 7-24. Proportions of semantic domains within different morphological types of languages 240
Table 7-25. Expression forms of major gram-types in sample of Dahl (1985) 241
Table 7-26. Examples in the sample in which expression order reflects scope relations 244
Table 7-27. Examples in the sample in which expression order does not reflect scope relations 247
Table 8-1. Children included in the research 266
Table 8-2. Overview of 750-utterance samples investigated for each child 266
Table 8-3. Number of adult utterances in the input files to Naomi, Nina and Abe 267
Table 8-4. English TMA expressions with narrow scope (π_1) 269
Table 8-5. English TMA expressions with medial scope (π_2) 270
Table 8-6. English TMA expressions with wide scope (π_3) 270
Table 8-7. Ages and MLU in words of children in phase 1 273
Table 8-8. Ages and MLU in words of children in phase 2 277
Table 8-9. Ages and MLU in words of children in phase 3 283
Table 8-10. Distribution of operators in adult-adult conversations 289
Table 8-11. Absolute frequency of operators in Eve’s speech, compared to adult distribution 292
Table 8-12. Absolute frequency of operators in Peter’s speech, compared to adult distribution 294
Table 8-13. Absolute frequency of operators in Nina’s speech, compared to adult distribution 294
Table 8-14. Absolute frequency of operators in Naomi’s speech, compared to adult distribution 296
Table 8-15. Absolute frequency of operators in Adam’s speech, compared to adult distribution 296
Table 8-16. Absolute frequency of operators in Sarah’s speech, compared to adult distribution 299
Table 8-17. Absolute frequency of operators in Abe’s speech, compared to adult distribution 300
| Table 8-18. | Absolute frequency of operators in Ross’ speech, compared to adult distribution | 300 |
| Table 8-19. | Absolute frequency of operators in input to Naomi, compared to adult sample | 304 |
| Table 8-20. | Absolute frequency of operators in input to Nina, compared to adult sample | 305 |
| Table 8-21. | Absolute frequency of operators in input to Abe, compared to adult sample | 307 |
| Table 8-22. | Eve’s use of inflection with five different predicates | 312 |
| Table 8-23. | Peter’s use of inflection with five different predicates | 312 |
| Table 8-24. | Nina’s use of inflection with five different predicates | 312 |
| Table 8-25. | Naomi’s use of inflection with five different predicates | 312 |
| Table 8-26. | Adam’s use of inflection with five different predicates | 312 |
| Table 8-27. | Sarah’s use of inflection with five different predicates | 313 |
| Table 8-28. | Abe’s use of inflection with five different predicates | 313 |
| Table 8-29. | Ross’ use of inflection with five different predicates | 313 |
| Table 8-30. | Age at which inflectional categories are acquired, according to the five predicates criterion (this thesis) versus the 90% criterion (R. Brown 1973) | 314 |
| Table 8-31. | Eve’s use of auxiliaries with five different predicates | 317 |
| Table 8-32. | Peter’s use of auxiliaries with five different predicates | 317 |
| Table 8-33. | Nina’s use of auxiliaries with five different predicates | 317 |
| Table 8-34. | Naomi’s use of auxiliaries with five different predicates | 317 |
| Table 8-35. | Adam’s use of auxiliaries with five different predicates | 318 |
| Table 8-36. | Sarah’s use of auxiliaries with five different predicates | 318 |
| Table 8-37. | Abe’s use of auxiliaries with five different predicates | 318 |
| Table 8-38. | Ross’ use of auxiliaries with five different predicates | 318 |
| Table 8-39. | Eve’s use of modal domains with five different predicates | 321 |
| Table 8-40. | Peter’s use of modal domains with five different predicates | 321 |
| Table 8-41. | Nina’s use of modal domains with five different predicates | 321 |
| Table 8-42. | Naomi’s use of modal domains with five different predicates | 321 |
| Table 8-43. | Adam’s use of modal domains with five different predicates | 321 |
| Table 8-44. | Sarah’s use of modal domains with five different predicates | 322 |
| Table 8-45. | Abe’s use of modal domains with five different predicates | 322 |
| Table 8-46. | Ross’ use of modal domains with five different predicates | 322 |
| Table 8-47. | Acquisition of scope within modal domain (five predicates criterion) for all children | 324 |
Tables and Figures

Table 8-48. Cumulative number of contrasts within operator classes in Eve’s data

Table 8-49. Cumulative number of contrasts within operator classes in Naomi’s data

Table 8-50. Cumulative number of contrasts within operator classes in Peter’s data

Table 8-51. Cumulative number of contrasts within operator classes in Nina’s data

Table 8-52. Cumulative number of contrasts within operator classes in Adam’s data

Table 8-53. Cumulative number of contrasts within operator classes in Sarah’s data

Table 8-54. Abe’s use of auxiliaries with five different predicates

Table 9-1. Percentage of past progressives (of all progressives)

Table 10-1. Classification of TMA domains and specific semantic functions according to scope

Table 10-2. Relevant TMA expressions in Turkish

Table 10-3. Relevant TMA expressions in Warlpiri

Table 10-4. Acquisition of TMA expressions in Sesotho by one child

Table 10-5. Acquisition of TMA expressions in West Greenlandic

Table 10-6. Relevant TMA expressions in Finnish

Table 10-7. Relevant TMA expressions in four Germanic languages

Table 10-8. Relevant TMA expressions in three Romance languages

Table 10-9. Relevant TMA expressions in Japanese

Table 10-10. Relevant TMA expressions in Korean

Table 10-11. Relevant TMA expressions in Quiché

Table 10-12. Relevant TMA expressions in Yucatan

Table 10-13. Use of TMA-prefixes in one child (1;9-2;4)

Table 10-14. Relevant TMA expressions in Mandarin

Table 10-15. Sentence particles in Cantonese

Table 10-16. Relevant TMA expressions in Kaluli

Table 10-17. Overview of acquisition orders of TMA in the languages of the sample

Table 10-18. Revised overview of acquisition orders of TMA in the languages of the sample
Figures

Figure 1-1. Simplified conceptual space for static spatial relationships and crosslinguistic variation in semantic mapping 7
Figure 1-2. Constraints on typological variation 9
Figure 1-3. Constraints on language variation 14
Figure 1-4. Demands on a functional model of language 21
Figure 2-1. Semantic representation of the clause in FG 31
Figure 3-1. Classification of situation types 40
Figure 3-2. Possible selections of parts of the temporal structure of an event by aspectual expressions 43
Figure 3-3. Representation of maximal temporal structure of an unmodified relation or property: PRED (x)^a 45
Figure 3-4. Representation of prospective: ‘going to PRED’ 46
Figure 3-5. Representation of ingressive: ‘start PRED’ 46
Figure 3-6. Representation of progressive: ‘PRED-ing’ 47
Figure 3-7. Representation of continuative: ‘keep PRED-ing’ 48
Figure 3-8. Representation of egressive and completive: ‘stop PRED’ or ‘finish PRED’ 48
Figure 3-9. Representation of perfect: ‘have PRED-ed’ 49
Figure 3-10. Representation of perfective: ‘PRED-ed’ 49
Figure 3-11. Representation of perfect progressive: ‘have been PRED-ing’ 50
Figure 3-12. Representation of prospective progressive: ‘going to be PRED-ing’ 50
Figure 3-13. Representation of prospective ingressive: ‘going to start PRED’ 51
Figure 3-14. Representation of present tense and perfect: Mary has written a letter 58
Figure 3-15. Representation of past tense and perfect: Mary had written a letter 58
Figure 3-16. Representations of future tense and perfect: Mary will have written a letter 59
Figure 3-17. Representations of an unmodified (left), an iterative (middle) and an intense (right) property or relation: jump, jump up and down, make big jumps 62
Figure 3-18. General representation of event quantification 63
Figure 3-19. Representation of a habitual following Klein’s analysis 64
Figure 3-20. Representation of a habitual following Bohnemeyer’s analysis 64
Tables and Figures

Figure 4-1. Scale of senses 69
Figure 5-1. Representation of a semantic or grammaticalization path 104
Figure 5-2. Possible synchronic configurations of polysemy 111
Figure 5-3. Impossible synchronic configurations of polysemy 111
Figure 6-1. Representation of simple present in combination with a stative event in English 131
Figure 6-2. Representation of habitual or distributive interpretation of simple present in English 132
Figure 6-3. Representation of reportative interpretation of simple present in English 133
Figure 6-4. Representation of scheduled event interpretation of simple present in English 134
Figure 6-5. Representation of a past habitual in combination with an event with boundaries in English 136
Figure 6-6. Representation of a past habitual in combination with a state with a terminal boundary in English 137
Figure 6-7. Developmental paths to resultative and perfect 160
Figure 6-8. Developmental path to progressive 161
Figure 6-9. Developmental path to prospective 161
Figure 6-10. Developmental path of will 162
Figure 6-11. Developmental path of shall 163
Figure 6-12. Developmental path of should 163
Figure 6-13. Developmental path of must 164
Figure 6-14. Developmental paths of may and might 165
Figure 6-15. Developmental paths of can and could 165
Figure 6-16. Assumed developmental path of supposed to 166
Figure 6-17. Developmental path of have to 167
Figure 6-18. Developmental path of have got to 168
Figure 6-19. Developmental path of wanna 168
Figure 6-20. Developmental path of will and would 169
Figure 6-21. Developmental path of used to 170
Figure 7-1. Developmental paths leading to perfective aspect and past tense 189
Figure 7-2. Developmental path leading to evidentiality 190
Figure 7-3. Developmental paths leading to imperfective aspect and present tense 191
Figure 7-4. Developmental paths of aspect and quantification 192
Figure 7-5. Developmental paths of items with a basic sense of potentiality 193
Figure 7-6. Developmental paths leading to future tense and prediction 194
Figure 7-7. Left: primary tense distinction. Right: Primary aspect distinction 207
Figure 8-1. Distribution of operators in Eve’s speech and adult sample 292
Figure 8-2. Distribution of operators in Peter’s speech and adult sample 295
Figure 8-3. Distribution of operators in Nina’s speech and adult sample 295
Figure 8-4. Distribution of operators in Naomi’s speech and adult sample 297
Figure 8-5. Distribution of operators in Adam’s speech and adult sample 297
Figure 8-6. Distribution of operators in Sarah’s speech and adult sample 299
Figure 8-7. Distribution of operators in Abe’s speech and adult sample 301
Figure 8-8. Distribution of operators in Ross’ speech 301
Figure 8-9. Distribution of operators in Naomi’s speech, input to Naomi, and adult sample 304
Figure 8-10. Distribution of operators in Nina’s speech, input to Nina, and adult sample 305
Figure 8-11. Distribution of operators in Abe’s speech, input to Abe, and adult sample 307
Figure 9-1. Classification of event types 338
Figure 9-2. Proportions of event types for simple present, progressive, and simple past in American English adult-adult conversation 340
Figure 9-3. Naomi’s use of progressive: proportions of different situation types 343
Figure 9-4. Nina’s use of progressive: proportions of different situation types 343
Figure 9-5. Abe’s use of progressive: proportions of different situation types 343
Figure 9-6. Naomi’s use of simple past: proportions of different situation types 345
Figure 9-7. Nina’s use of simple past: proportions of different situation types 345
Figure 9-8. Abe’s use of simple past: proportions of different situation types 345
Figure 9-9. Naomi’s use of simple present: proportions of different situation types 347
Figure 9-10. Nina’s use of simple present: proportions of different situation types 347
Figure 9-11. Abe’s use of simple present: proportions of different situation types 347
Figure 9-12. Input to Nina: proportion of situation types in progressive 349
Figure 9-13. Input to Abe: proportion of situation types in progressive 349
Figure 9-14. Input to Nina: proportions of situation types in simple past 351
Figure 9-15. Input to Abe: proportions of situation types in simple past 351
Figure 9-16. Input to Nina: proportions of situation types in the simple present 353
Figure 9-17. Input to Abe: proportions of situation types in the simple present 353
Figure 10-1. Predicted acquisition order for semantic domains 380
Figure 10-2. Order of acquisition of TMA expressions in Finnish 397
Figure 10-3. Typical relations between event time, speech time and topic time in the child’s world 485