A hierarchical Bayesian approach to assess learning and guessing strategies in reinforcement learning

Schaaf, J.V.; Jepma, M.; Visser, I.; Huizenga, H.M.

DOI
10.1016/j.jmp.2019.102276

Publication date
2019

Document Version
Final published version

Published in
Journal of Mathematical Psychology

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
A hierarchical Bayesian approach to assess learning and guessing strategies in reinforcement learning

Jessica Vera Schaaf⁎, Marieke Jepma⁎, Ingmar Visser⁎, Hilde Maria Huizenga⁎

Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WS Amsterdam, The Netherlands
Yield, Research Institute for Child Development and Education, Nieuwe Achtergracht 129-B, 1018 WS Amsterdam, The Netherlands
ABC, Amsterdam Brain and Cognition Centre, Nieuwe Achtergracht 129-B, 1018 WS Amsterdam, The Netherlands

A R T I C L E I N F O

Article history:
Received 25 January 2019
Received in revised form 3 July 2019
Accepted 6 August 2019
Available online xxxx

Keywords:
Reinforcement learning
Hierarchical modeling
Bayesian model fitting
JAGS
Strategy
Guessing

A B S T R A C T

In two-armed bandit tasks participants learn which stimulus in a stimulus pair is associated with the highest value. In typical reinforcement learning studies, participants are presented with several pairs in a random order; frequently applied analyses assume each pair is learned in a similar way. When tasks become more difficult, however, participants may learn some stimulus pairs while they fail to learn other pairs, that is, they simply guess for a subset of pairs. We put forward the Reinforcement Learning/Guessing (RLGuess) model — enabling researchers to model this learning and guessing process. We implemented the model in a Bayesian hierarchical framework. Simulations showed that the RLGuess model outperforms a standard reinforcement learning model when participants guess: Fit is enhanced and parameter estimates become unbiased. An empirical application illustrates the merits of the RLGuess model.

1. Introduction

In reinforcement learning agents learn, by trial and error, which actions to take in which states to maximize the total amount of reward they receive (see e.g., Sutton & Barto, 2018). A simplified version of this reinforcement learning problem is often studied using n-armed bandit tasks. For example, in two-armed bandit tasks participants learn which stimulus in a stimulus pair is associated with the highest value. In general, participants are presented with multiple stimulus pairs in a randomized order (e.g., Frank, Seeberger, & O’Reilly, 2004; Kim, Shimojo, & O’Doherty, 2006). In the analysis of such data, it is typically assumed that each stimulus pair is learned in a similar way; accordingly, computational models of this learning process typically apply the same learning algorithm to each stimulus. However, if multiple pairs have to be learned in parallel, the difficulty of the task increases (Collins & Frank, 2012), which may result in learning for some pairs, and in guessing for others. In this paper we propose a model for such a combined learning and guessing process.

Typically responses from participants that guessed are excluded from the analyses by removing all data from participants that fail to reach the minimum learning criterion (see e.g., Decker, Otto, Daw, & Hartley, 2016; Doll, Jacobs, Sanfey, & Frank, 2009; Eppinger, Mock, & Kray, 2009; Hämmerer, Li, Müller, & Lindenberger, 2011; Niv et al., 2015). This is problematic as this leads to data loss and therefore loss of power (Cohen, 1988). More importantly, if data are removed, this provides an incomplete description of behavior in reinforcement learning tasks. Yet, the alternative approach in which guessing responses are included is also not recommended as it may induce bias on the parameters governing the learning process.

To address this, we propose the Reinforcement Learning/Guessing (RLGuess) model — enabling researchers to model that participants learn some stimulus pairs while they guess at others. Our first goal is to compare the model fit of the RLGuess model to a standard reinforcement learning model when the data contain guessing responses and to test the parameter recovery capabilities of the model. Our second goal is to examine whether bias is induced on the parameters estimates in standard reinforcement learning models when participants guess at some stimulus pairs (i.e., when the model is misspecified).

The structure of the paper is as follows. First we briefly discuss the fundamentals of reinforcement learning models that are currently applied and outline why guessing responses are problematic in these models. Then we introduce the RLGuess model, and present a parameter recovery study to assess the performance of the RLGuess model and to examine the effects of model misspecification on the parameter estimates. We also apply the RLGuess model to existing data from a reinforcement learning...
learning task in which multiple stimulus pairs had to be learned in parallel.

2. Reinforcement learning models

Commonly applied reinforcement learning models originate in the Rescorla–Wagner Model (Rescorla & Wagner, 1972; Sutton & Barto, 2018). In these models each person makes a series of binary choices across trials $t = \{1, 2, \ldots, T\}$. At each trial t the value estimate Q of the chosen option is updated via the following rule:

$$Q(t + 1) = Q(t) + \eta \delta(t)$$

(1)

with

$$\delta(t) = R(t) - Q(t)$$

(2)

where Q is the value estimate and η indicates the learning rate. The prediction error δ is computed by subtracting the current value estimate from the obtained reward R. People thus update the value estimate by scaling the prediction error with the learning rate and then adding this to the estimated value at the previous trial. Learning rates close to 1 indicate that a person makes fast adaptations based on prediction errors and learning rates closer to 0 indicate slow adaptation. The value estimates of both options are used to determine the probability to choose either option. This probability is often computed via the following softmax decision rule (Luce, 1959):

$$P(c(t) = 1) = \frac{1}{1 + \exp(-\beta [Q_1(t) - Q_2(t)])}$$

(3)

where $P(c(t) = 1)$ is the probability to choose the first option at trial t. Q_1 is the value estimate of the first option and Q_2 is the value estimate of the second option. The parameter β is the inverse temperature, a parameter that indicates to what extent a person’s choice is guided by the difference in value estimates.

3. RLGuess model

The reinforcement learning model presented in Section 2 contains two parameters to be estimated — learning rate and inverse temperature. Both parameters are fixed across stimulus pairs. In this way the model cannot account for participants that learned some stimulus pairs and guessed at others. To overcome this problem without excluding data, we augmented the reinforcement learning model with a strategy variable. Strategy s is either 0, indicating that the participant guessed, or 1, indicating that the participant learned. The strategy for each participant and each stimulus pair s is determined by stimulus-specific (s) learning state probability π_s, a proportion between 0 and 1. The higher the learning state probability of a stimulus pair, the more participants tend to learn that pair. A stimulus-specific learning state probability is modeled to capture that some stimuli might be more easily learned than others, for example because they are more salient (O’Doherty, 2004; Schutte, Slagter, Collins, Frank, & Kenemans, 2017) or require less working memory because they are more familiar (Stern, Sherman, Kirchhoff, & Hasselmo, 2001).

In a binary choice paradigm, when a participant guesses, all choices are made with probability 0.5; when a participant learns, each choice c is determined by the decision rule presented in Eq. (3). In this way responses originating from learning and guessing are separated and the learning and choice parameters are only estimated when a participant learns. Hereby the RLGuess model purifies the interpretation of these parameters while still providing a complete description of behavior in reinforcement learning tasks.

3.1. Model implementation

We implemented hierarchical extensions of the standard reinforcement learning (RL) model and the RLGuess model in R 3.4.3 (R Development Core Team & R Core Team, 2017). We implemented the RLGuess model with stimulus-varying learning state probabilities (RLGuess_var) and the standard RL model (RLfix). In order to assess the effect of stimulus-specific parameters we also implemented the RLGuess model with a fixed learning state probability across stimuli (RLGuessfix) and an RL model with stimulus-specific inverse temperatures (RLvar).

In a hierarchical approach individuals are assumed to be nested within a group and therefore the individual-level parameters are drawn from a group-level distribution. We chose to estimate parameters hierarchically because this improves accuracy of the individual-level parameter estimates (Efron & Morris, 1977; Lee & Webb, 2005; Shiffrin, Lee, Kim, & Wagenmakers, 2008) and therefore more sound conclusions can be drawn. In addition, we used a Bayesian framework because it yields the possibility to quantify uncertainty in the parameter estimates (Wagenmakers, Morey, & Lee, 2016).

3.1.1. Graphical model

A graphical model (Lee & Wagenmakers, 2013) of the RLGuess_var model is depicted in Fig. 1. In this figure, square nodes represent discrete variables and round nodes represent continuous variables. Nodes with a single border are stochastic whereas a double border indicates deterministic variables. Blank nodes indicate unobserved, that is latent, variables whereas shaded nodes indicate observed variables. Furthermore, arrows capture dependencies between nodes and encompassing plates depict independent replications of model structures.

3.1.2. Prior distributions

In the analysis, we assigned an uninformative beta prior distribution to the group-level mean of learning state probability. For the RLGuess_var model we sampled stimulus-specific (s) values from this distribution, $\pi_s \sim \text{Beta}(1, 1)$ (see Fig. 1), and for the RLGuessfix model we sampled one value, $\pi \sim \text{Beta}(1, 1)$. To obtain a stimulus-specific (s) strategy z per participant (p) the learning state probability was inserted into an individual Bernoulli distribution; for the RLGuess_var model, $z_{p,s} \sim \text{Bernoulli} (\pi)$, and for the RLGuessfix model, $z_{p,s} \sim \text{Bernoulli} (\pi')$.

We assigned beta prior distributions to the individual-level learning rate, $\eta_p \sim \text{Beta}(\mu_\eta, \lambda_\eta)$. Inverse temperature, $\beta_p \sim \text{Beta}(\mu_\beta, \lambda_\beta)$, (Steingroever, Wetzels, & Wagenmakers, 2014). Only for the RLfix model the inverse temperature was made stimulus-specific, $\beta_{p,s} \sim \text{Beta}(\mu_{p,s}, \lambda_{p,s})$. To estimate the learning rate and inverse temperature hierarchically, we replaced the rate and shape parameters in the beta distribution with a group-level mean and group-level precision. We assigned uniform prior distributions to the group-level means μ_η and μ_β, $U(0.001, 0.999)$, as well as to the log-transformed group-level precisions $\log(\lambda_\eta)$ and $\log(\lambda_\beta)$, $U(\log(2), \log(600))$. We set these prior distributions such that no strict restrictions to the range of individual differences were made. As the range of the inverse temperature is assumed to be $[0, 50]$ (Gershman, 2016), not $[0, 1]$ as the underlying beta distribution suggests, the following transformation was performed to the individual-level parameters: In the RLGuess_var, RLGuessfix and RLfix model, $\beta_p = 50 \times \beta_p'$, and in the RLvar model, $\beta_{p,s} = 50 \times \beta_{p,s}'$ (Steingroever et al., 2014).
3.2. Parameter estimation

We estimated the parameters of the RLGuess models and the RL models in JAGS (Plummer, 2003) by means of the R2jags package (Su & Yajima, 2015). JAGS uses Markov chain Monte Carlo (MCMC) sampling (e.g., Gamerman & Lopes, 2006; Gilks, Richardson, & Spiegelhalter, 1996) to obtain direct samples from the posterior distribution. As this posterior distribution cannot always be obtained analytically, MCMC sampling is used to characterize the distribution without knowing all of the distribution’s mathematical properties (van Ravenzwaaij, Cassey, & Brown, 2018). Sampling chains are constructed that cover the entire posterior distribution. The narrower the distribution, the more certain one can be of the point estimate given by the average of the sampling chains (Lee & Wagenmakers, 2013). We initialized 3 sampling chains with 10,000 iterations each; from these 10,000 iterations half was removed as burn-in to minimize the influence of the chosen starting values. Furthermore, every 10th iteration was used to remove autocorrelation (thinning). Consequently, 3 x 500 = 1500 representative samples were obtained per parameter.

Convergence of sampling chains was investigated using the R-hat statistic (Gelman & Rubin, 1992), a statistic that compares the variance between and within sampling chains; we interpreted values above 1.1 as convergence problems. When we encountered convergence problems, we reran the replication with 20,000 iterations, 10,000 samples removed as burn-in and a thinning factor of 20. The code for simulation, model implementation, model fit and analysis are provided on https://osf.io/uk684/. To illustrate the workings of MCMC sampling, an example of the learning curve of a simulated participant accompanied with the returned MCMC chains for the model parameters is presented in Fig. 1 of the Supplementary Materials.

4. Simulations

A simulation study was performed to compare model fit between the four models, to assess the parameter recovery capabilities of the RLGuess_vary model, and to investigate parameter bias resulting from model misspecification. To do so, we simulated choices and rewards for 4 different stimuli with 24 trials each (total of 96 trials) for 38 participants in six simulation conditions. Hereafter we fit the four models to the simulated data sets thus obtained. We did this 100 times (replications).

To assess parameter recovery, point estimates of the group-level means of the model parameters were determined by averaging the 1500 posterior samples of that group-level mean. These
group-level means were averaged over the 100 replications. In addition, for both the group-level and individual-level parameters, we computed the number of times the true parameter value lay within the 95% highest-density interval of the estimated posterior distribution of that parameter, and averaged across the 100 replications to determine the accuracy of the parameter estimates. We formally tested whether the difference between the true and estimated learning and choice parameters differed between the four models by means of Bayesian paired \(t \)-tests (Bååth, 2014; Kruschke, 2013). Finally, we calculated the proportion of sampled strategies \((z) \) and rounded to integers (i.e., all proportions < 0.5 were rounded to 0, and > 0.5 to 1). We then determined the percentage of correctly classified strategies by averaging the proportion of rounded strategies that matched the simulated strategy across the 100 replications.

4.1. Simulation conditions

We simulated data in six conditions. In all conditions the group-level mean of learning rate was set to 0.280 and the group-level mean of inverse temperature to 6.6. First, a condition in which on average 80% of the participants learn a particular stimulus but each stimulus had a different probability to be learned (i.e., data generated given the RLGuess_{\text{vary}} model); to accomplish this, we set the probability to adopt a learning strategy to \(\pi = \{0.65, 0.75, 0.75, 0.75\} \) for the four stimulus pairs. We used on average 80% congruent feedback (i.e., in 80% of the cases positive feedback following the most favorable choice and negative feedback following the least favorable choice; and in 20% of the cases negative feedback following the most favorable choice and positive feedback following the least favorable choice). This percentage is commonly used in reinforcement learning studies (e.g., Eppinger et al., 2009; Hauser, Iannaccone, Walitza, Brandeis, & Brem, 2015; van den Bos, Güröglu, Van Den Bulk, Rombouts, & Crone, 2009). As both learning and guessing are simulated in this condition, with varying learning state probabilities across pairs, and the reward probabilities of both options (i.e., 80% for the most favorable option and 20% for the least favorable one) are dissimilar, we call this condition the Mixed (dissimilar/vary) Condition.

Second, we also simulated data in a condition in which again on average 80% of the participants learned each stimulus and each stimulus had a different probability to be learned (i.e., data generated given the RLGuess_{\text{fix}} model), but it was harder to differentiate between learning and guessing responses. We accomplished this by lowering the percentage of congruent feedback from 80% to 60% in this Mixed (similar/vary) Condition. Because the difference between the percentages of rewards for both response options is smaller (i.e., 60% for the most favorable option and 40% for the least favorable one), response patterns that arise from learning are more similar to guessing responses than in the preceding condition.

Third, we simulated data in which on average 80% of the participants learn a particular stimulus but this probability was fixed across pairs (i.e., data generated given the RLGuess_{\text{fix}} model); we accomplished this by setting the probability to learn each pair to \(\pi = 0.8 \). Again 80% congruent feedback was used. This is called the Mixed (dissimilar/fix) Condition.

Fourth, in the Mixed (similar/fix) Condition, on average 80% of the participants learn a particular stimulus and the probability was fixed across pairs (i.e., data generated given RLGuess_{\text{fix}} model), but now with 80% congruent feedback.

Fifth, in the Learning (vary) Condition, all participants learn all stimulus pairs (i.e., \(\pi = 1 \)). We varied the inverse temperature parameter across stimulus pairs (i.e., data generated given RL_{\text{vary}} model). Again the percentage of congruent feedback was 80%.

In the final Learning (fix) Condition, we simulated data with the standard RL_{fix} model in which all participants learn all pairs, a fixed inverse temperature across pairs and 80% congruent feedback.

We did not include Learning Conditions with 60% congruent feedback because we were mainly interested in the effect of feedback congruency on the strategy recovery capabilities of the RLGuess model when the data contain guessing responses. In each condition 100 replications were run which resulted in a total of 6 \(\times \) 100 = 600 simulated data sets.

4.2. Results

4.2.1. Model validation

Model selection by means of the DIC showed that in general the data generating model fitted the data best, although not in every replication (see Table 1).

4.2.2. Parameter estimates

We compared the true and estimated values of learning state probability \(\pi \), learning rate \(\eta \) and inverse temperature \(\beta \). A more thorough summary of the simulation results is provided in Table 1 of the Supplementary Materials. The posterior distributions of the group-level means of learning state probability, learning rate and inverse temperature are depicted in Fig. 2 and the parameter recovery capabilities of the four models are provided in Table 2. Both are further discussed below.

RLGuess_{\text{vary}}. The RLGuess_{\text{vary}} model recovered all parameters adequately in all conditions, except in the Learning Conditions. In both Learning Conditions, the 95% highest-density interval did not contain the true learning state probability (0.0%) because this value was fixed at the bound of the beta prior distribution (i.e., 1). Furthermore, inspection of the distributions in Fig. 2 shows that the inverse temperature was slightly underestimated in the Learning (vary) Condition.

RLGuess_{\text{fix}}. The same applies to the RLGuess_{\text{fix}} model: All parameters were adequately recovered in all conditions, except the learning state probabilities in both Learning Conditions and the inverse temperature in the Learning (vary) Condition.

RL_{\text{vary}}. The RL_{\text{vary}} model inadequately recovered parameters in all conditions, except in the Learning (vary) Condition. Parameter estimation bias was most pronounced in the Learning (fix) Condition: Learning rate was underestimated. Inspection of the distributions in Fig. 2 shows that the estimated learning rates were generally lower than the true value. Estimated inverse temperatures on the other hand were generally higher than the true value and seemed to depend on the percentage of congruent feedback. Additional simulations in which we used 70% and 95% congruent feedback verified this pattern (see Fig. A.1): The higher the percentage of congruent feedback, the larger the overestimation of the inverse temperature.

RL_{\text{fix}}. The RL_{\text{fix}} model inadequately recovered parameters in all conditions, except in the Learning (fix) Condition. In all other conditions inverse temperatures were underestimated. Inspection of the distributions in Fig. 2 shows the opposite pattern for the RL_{\text{fix}} model compared to the RL_{\text{vary}} model: Learning rates were generally higher than the true value and seemed to depend on the percentage of congruent feedback whereas estimated inverse temperatures were generally lower than the true value. Again, this pattern was verified in additional simulations (see Fig. A.1).

Taken together, these simulation results thus indicate that the RLGuess model outperforms standard reinforcement learning models when participants guess: Fit is enhanced and parameters are unbiased. Furthermore, model misspecification results in biased estimates of both learning rate and inverse temperature. In a standard model with fixed inverse temperature across pairs, learning rate is overestimated and inverse temperature underestimated. In a model with varying inverse temperature learning rate is underestimated and inverse temperature overestimated.
5. Application to real data

5.1. Data

The four models were fit to reinforcement learning data collected by Kramer (2017). A total of 38 participants performed on a reinforcement learning task in which the correct spelling of a pseudo word needed to be learned from feedback. The pseudo word pairs were homophones (i.e., they sound the same; in Dutch). In this task (see Verburg, Snellings, Zegers, & Huizenga, 2018) four different stimulus pairs (see Table 3) were learned in parallel with 24 trials each. Participants either gained nothing (0) or gained +10 points (see Fig. 3 for an example trial). On average, the percentage of congruent feedback was 65%, that is, in 65% of the cases positive feedback after the most favorable choice and negative feedback after the least favorable choice; and in 35% of the cases negative feedback after the most favorable choice and positive feedback after the least favorable choice. The data contained 0.7% missing values as a result of late responses; these responses were omitted from the analysis. The data are available at https://osf.io/uk684/.

5.2. Results

The RLGuessvary model (DIC = 3819.45) described the data better than the RLGuessfix model (DIC = 3829.83). It also fitted better than the RLfix model (DIC = 3890.16) and the RLvary model (DIC = 3938.04), suggesting that participants guessed at some stimulus pairs and that some pairs were more easily learned than others. This was supported by Bayesian t-tests on the estimated learning state probabilities (π); All probabilities differed from 0.

Apart from general patterns in participants’ choice behavior – formalized by the group-level means of learning state probability ($\mu_\pi = .87$), learning rate ($\mu_\eta = .23$) and inverse temperature ($\mu_\beta = 6.1$) – the RLGuess model is able to identify individual differences in the learning and guessing process. To illustrate the information that can be obtained about individual participants, the observed and predicted choices of four participants are shown in Fig. 4.

Both the RLGuessvary model and the RLGuessfix model indicate that participants 106 and 203 learned all stimulus pairs, even though learning was less clear for participant 203. The models suggest that participant 115 learned the last three pairs whereas (s)he most likely guessed at the first pair. Lastly, the models indicate that participant 120 guessed at the first and the third pair and learned the other two pairs.

If a participant learns all pairs (PP 106 and 203), all four models predict roughly the same choice pattern for that participant; when this learning strategy is clear (PP 106) the estimates of that participants’ learning rate and inverse temperature are also very similar for the four models. However, when participants seem to guess at some pairs (PP 115 and 120), the predictive accuracy of the RLfix and RLvary model decreases, especially for guessed pairs, compared to the model predictions of the RLGuessvary and

Table 1
Proportion of simulated data sets for which each model had the lowest DIC value per condition.

<table>
<thead>
<tr>
<th>Data generating model</th>
<th>RLGuessvary</th>
<th>RLGuessfix</th>
<th>RLvary</th>
<th>RLfix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mixed (dissimilar/vary)</td>
<td>Mixed (similar/vary)</td>
<td>Mixed (dissimilar/fix)</td>
<td>Mixed (similar/fix)</td>
</tr>
<tr>
<td>Data recovering model</td>
<td>RLGuessvary</td>
<td>56</td>
<td>74</td>
<td>45a</td>
</tr>
<tr>
<td></td>
<td>RLGuessfix</td>
<td>44a</td>
<td>26a</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>RLvary</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RLfix</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2
Percentage of cases where the models correctly classified the strategy (z) and where the 95% highest-density interval contained the true group-level mean of learning state probability (π), learning rate (η) and inverse temperature (β).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RLGuessvary</th>
<th>RLGuessfix</th>
<th>RLvary</th>
<th>RLfix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mixed (dissimilar/vary)</td>
<td>Mixed (similar/vary)</td>
<td>Mixed (dissimilar/fix)</td>
<td>Mixed (similar/fix)</td>
</tr>
<tr>
<td>z</td>
<td>94.3%</td>
<td>90.8%</td>
<td>94.2%</td>
<td>89.8%</td>
</tr>
<tr>
<td>π</td>
<td>94%</td>
<td>93%</td>
<td>96%</td>
<td>97%</td>
</tr>
<tr>
<td>η</td>
<td>93%</td>
<td>94%</td>
<td>93%</td>
<td>94%</td>
</tr>
<tr>
<td>β</td>
<td>94%</td>
<td>94%</td>
<td>94%</td>
<td>96%</td>
</tr>
<tr>
<td>z</td>
<td>93.9%</td>
<td>90.1%</td>
<td>94.3%</td>
<td>90.0%</td>
</tr>
<tr>
<td>π</td>
<td>93%</td>
<td>97%</td>
<td>96%</td>
<td>96%</td>
</tr>
<tr>
<td>η</td>
<td>93%</td>
<td>96%</td>
<td>92%</td>
<td>96%</td>
</tr>
<tr>
<td>β</td>
<td>92%</td>
<td>94%</td>
<td>94%</td>
<td>96%</td>
</tr>
<tr>
<td>z</td>
<td>92%</td>
<td>79%</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>π</td>
<td>92%</td>
<td>84%</td>
<td>80%</td>
<td>86%</td>
</tr>
<tr>
<td>η</td>
<td>88%</td>
<td>91%</td>
<td>88%</td>
<td>91%</td>
</tr>
<tr>
<td>β</td>
<td>31%</td>
<td>32%</td>
<td>42%</td>
<td>45%</td>
</tr>
</tbody>
</table>

Note. In bold the model for which most datasets yielded the lowest DIC value.

For the RLGuessvary model the percentage of intervals containing the group-level mean of learning state probability was determined by averaging all samples over the four stimulus pairs, then determining the 95% highest-density interval and whether the true group-level mean fell within this interval, and finally averaging over the 100 replications.
Fig. 2. The posterior distributions of the group-level means of learning state probability (π; left column), learning rate (η; middle column) and inverse temperature (β; right column) in the six simulated data conditions (six rows). In each panel the blue solid curve represents the posterior distribution of the group-level mean by the RLGuessvary model, the striped blue curve by the RLGuessfix model, the solid red curve by the RLvary model, and the striped red curve by the RLfix model. Vertical solid lines represent the true (black) and estimated (RLGuessvary; blue, solid; RLGuessfix; blue, striped; RLvary; red, solid; RLfix; red, striped) means of that distribution. Horizontal line segments on top of each panel indicate the 95% highest-density interval of the posterior distributions estimated by the four models; the black dot inside the interval indicates the true mean.

RLGuessfix model. Also the estimates of the learning and choice parameters (for PP 115 both learning rate and inverse temperature and for PP 120 mainly inverse temperature) of the RLGuess models and the RL models deviate.

6. Discussion

In this paper we proposed the RLGuess model — a reinforcement learning model augmented with a strategy variable,
enabling researchers to model that participants learn some stimulus pairs while they guess at others. In simulations we showed that, when the data contain guessing responses, the RLGuess model fits data better than standard reinforcement learning models and adequately recovers the learning and choice parameters. We also demonstrated the implications of using a standard reinforcement learning model when participants guess. In a standard model with fixed inverse temperature across pairs, their learning rate is overestimated and their inverse temperature underestimated, suggesting that participants make faster adaptations based on prediction errors and focus less on differences between the values of options than they actually do. In a model with varying inverse temperatures across pairs, their learning rate is underestimated and their inverse temperature overestimated, suggesting slower adaptations and more focus on differences between values. Therefore we argue that standard reinforcement learning models without considering guessing should only be applied when there is good reason to believe that guessing does not occur.

Other modeling approaches have previously been adopted to reduce the impact of choices unrelated to the learning process. Some models take into account lapses in attention by adding a “lapse rate” parameter to the softmax rule (see e.g., Economides, Kurth-Nelson, Lübbe, Guitart-Masip, & Dolan, 2015). Similarly, other models allow for occasional random choices by using an epsilon-greedy decision rule (Sutton & Barto, 2018; see e.g., Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Speekenbrink & Constantinidis, 2015). However, the lapse parameter and the epsilon in these previous approaches are not stimulus-specific, as is the case in the RLGuess model.

Applications

The RLGuess model could be used to clarify differences in choice behavior in various domains. In the developmental field, differences in the learning and guessing process could be related to different stages of development, both in child and adolescent samples (e.g., van den Bos et al., 2009; Verburg et al., 2018) as well as in samples consisting of seniors (e.g., Frank & Kong, 2008; Simon, Howard, & Howard, 2010). For example, the probability of guessing responses might decrease during childhood and adolescence while it may increase again in seniors. In the clinical field, clinical groups such as Parkinson patients (Frank et al., 2004) could be compared to their healthy counterparts. More broadly, the RLGuess model could be used to test the effect of experimental manipulations such as set size (Collins & Frank, 2012), feedback valence (Eppinger & Kray, 2011; Palminteri et al., 2012; Palminteri, Khamassi, Joffily, & Coricelli, 2015), feedback validity (Eppinger, Kray, Mock, & Mecklinger, 2008; Nieuwenhuis et al., 2002), or arousal (Lighthall, Gorlick, Schoeke, Frank, & Mather, 2013; Raio, Hartley, Oredru, Li, & Phelps, 2017) on the learning and guessing process.

Besides, modeling learning and guessing separately can strengthen functional magnetic resonance imaging (fMRI) results by removing guessing responses from the main analysis. Traditionally, prediction errors are correlated with blood-oxygen level dependent (BOLD) responses in the brain (e.g., O’Doherty et al., 2004; Pessiglione et al., 2006; van den Bos, Cohen, Kahnt, & Crone, 2012). When participants guess, however, choices are made randomly, they either do not compute prediction errors or do not use them to update their value estimates as assumed in reinforcement learning models. If these responses are included this adds noise to the main analysis and thus makes it more difficult to find prediction error related activity.

Future Directions/Extensions

In the RLGuess model, strategies are fixed across all trials of a stimulus pair. In other words, we assume that a participant either learns a stimulus from the first trial onwards or guesses. There is no room for switching between the two strategies during the task. It might be, however, that participants start off by guessing, but move on to a learning strategy once they have learned one of the other stimulus pairs, and, for example, working memory capacity is available (Collins & Frank, 2012). Such a process can be incorporated in the RLGuess model by modeling the onset of learning (Gallistel, Fairhurst, & Balsam, 2004) or by including a dynamic (see Busemeyer & Stout, 2002) learning
Fig. 4. Observed (black solid line) and predicted learning curve by $RL_{\text{Guess}_{\text{vary}}}$ (blue solid), $RL_{\text{Guess}_{\text{fix}}}$ (blue striped), RL_{vary} (red solid) and RL_{fix} model (red striped) of participants 106, 203, 115 and 120. On the y-axis the proportion of correct responses (i.e., choices for the option that yielded the highest reward); on the x-axis for all four stimulus pairs the 24 trials divided into 6 bins of 4 trials (96 trials in total). Note that we ordered the data by stimulus pair; in the experiment pairs were presented in a randomized order. Each vertical dotted line represents a new pair. The possible spellings of the pseudo words are presented above each pair; the first pseudoword represents the correct spelling. Above these spellings the portion of sampled strategies by the $RL_{\text{Guess}_{\text{vary}}}$ (top) and $RL_{\text{Guess}_{\text{fix}}}$ (bottom) model are denoted in which 0 = Guessing and 1 = Learning.

state probability. Second, the value updating mechanism used in standard reinforcement learning models assumes a monotonic learning process. A more flexible learning and guessing process could be incorporated by determining the probability of both strategies at each choice of a stimulus pair (Lee, Zhang, Munro, & Steyvers, 2011). Third, we saw in the empirical application that when participants first choose one of the options and during the task switch to the other option (see PP120 stimulus 1 in Fig. 4), these responses are classified as guessing. One could model these sudden changes in choice behavior by incorporating uncertainty about the unchosen option in the model; for example, by adding an “uncertainty bonus” to the softmax decision rule (Daw et al., 2006; Speekenbrink & Konstantinidis, 2015). Most likely, this improves model fit but also requires more free parameters.

Another possible extension is to estimate a learning rate for each stimulus pair separately. This would be meaningful if, for example, stimulus pairs differ in the percentage of congruent feedback and therefore prediction errors are more informative for some of the pairs, those with high feedback congruency, than for other pairs, those with low feedback congruency (e.g., Decker, Lourenco, Doll, & Hartley, 2015; Doll et al., 2009; Hämmerer et al., 2011). One could also decide to update not only the value estimate of the chosen response option, but also of the unchosen one. This adjustment would be suitable when, for example, deterministic feedback is used; in that case feedback also provides information on the unchosen option (e.g., Peters, Braams, Raimakers, Koolsvijk, & Crone, 2014; van der Schaaf, Warmerdam, Crone, & Cools, 2011; Van Leijenhorst, Crone, & Bunge, 2006).

Other possible extensions are the inclusion of different types of learning strategies (e.g., Bartlema, Lee, Wetzel, & Vanpaemel, 2014), separate learning rates for positive and negative prediction errors (Daw, Kakade, & Dayan, 2002; Frank, Doll, Oas-Terpstra, & Moreno, 2009; Frank, Moustafa, Haughey, Curran, & Hutchison, 2007; Gershman, 2015; Niv, Edlund, Dayan, & O’Doherty, 2012) or inclusion of the propensity to switch between options independent of rewards (Christakou et al., 2013; Gershman, 2016; Gershman, Pesaran, & Daw, 2009).

7. Conclusion

To conclude, our results suggest guessing cannot be ignored in reinforcement learning tasks. Therefore, we put forward a simple and easy-to-apply model that can accurately describe a reinforcement learning process while considering participants might guess.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Jessica Vera Schaaf: Conceptualization, Formal Analysis, Validation, Visualization, Writing - original draft. Marieke Jepma:
Fig. A.1. The posterior distributions of the group-level means of learning state probability (left column), learning rate (middle column) and inverse temperature (right column) in additional simulations where 80% of the participants learned each stimulus, and 70% (top row) and 95% (bottom row) congruent feedback (i.e., positive feedback following the most favorable choice and negative feedback following the least favorable choice) was used. In each panel the posterior distributions of the group-level means estimated by the RLGuessfix (blue solid), RLGuess0.5fix (blue striped), RLfix (red solid) and RL0.5fix (red striped) are depicted. The vertical solid lines represent the true (black) and estimated (RLGuessfix; blue solid; RLGuess0.5fix; blue striped; RLfix; red solid; RL0.5fix; red striped) means of that distribution. The horizontal line segment on top of each panel indicates the 95% highest-density interval; the black dot inside the interval indicates the true mean.

Acknowledgments

We would like to thank Johnny van Doorn and Maarten Speekenbrink for their critical comments on a preliminary version of the manuscript. We also thank Anne-Wil Kramer who shared her data with us.

Appendix. Results additional simulations

See Fig. A.1.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmp.2019.102276.

References

J. V. Schaaf, M. Jepma, I. Visser et al. / Journal of Mathematical Psychology 93 (2019) 102276

