

Published in:
The Journal of Infectious Diseases

DOI:
10.1086/430506

Citation for published version (APA):
GBV-C infection clear because HIV-1 disease progression lowers the CD4+ cell count? Van der Bij et al. conclude the latter and suggest that the presence of GBV-C is a marker for the CD4+ cell count and is not beneficial. However, previous studies have found that GBV-C infection is associated with prolonged survival in subjects with very low CD4+ cell counts (figure 1) [7] and in subjects classified as having AIDS when first tested for GBV-C [4, 7]. To date, published data do not fully explain the mortality associated with the loss of GBV-C infection; however, no study has fully accounted for the timing of GBV-C clearance and HIV-1 disease progression, and further work is needed to understand the relationship between them.

Several in vitro studies have identified mechanisms by which GBV-C may alter HIV-1 disease progression. GBV-C exerts an inhibitory effect on HIV replication in vitro [7–9], and GBV-C infection and exposure of cells to the GBV-C envelope glycoprotein E2 results in induction of anti-HIV chemokines and down-regulation of the HIV coreceptor CCR5 [8–10]. These mechanistic data provide biological plausibility to support the hypothesis that GBV-C infection is causally related to the improvement in survival observed in HIV-infected populations [3, 5, 7].

Jack T. Stapleton,1,2 Kathryn Chaloner,3,4 and Carolyn F. Williams5

1Medical Service, Iowa City VA Medical Center, and Departments of 2Internal Medicine, 3Biostatistics, and 4Statistics and Actuarial Science, University of Iowa, Iowa City; 5Epidemiology Branch, Division of AIDS, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland

References

Reprints or correspondence: Dr. Jack T. Stapleton, Dept. of Internal Medicine, SW34-P, 200 Hawkins Dr., UIHC, Iowa City, IA 52242 (jack-stapleton@uiowa.edu).

The Journal of Infectious Diseases 2005; 191:2157–8

© 2005 by the Infectious Diseases Society of America. All rights reserved. 0022-1899/2005/19112-0025S15.00

Reply to George and to Stapleton et al.

To the Editor—We recently demonstrated that loss of GB virus C (GBV-C) RNA was associated with HIV-1 disease progression [1], confirming the results of other recent studies [2, 3]. Williams et al. [3] also observed an association between persistence of GBV-C RNA and slower HIV disease progression, relative to individuals who lack GBV-C RNA. We did not observe this in our study.

In the letters by George [4] and Stapleton et al. [5] written in response to our study, concerns are raised about the imputation method used to determine the date of HIV-1 seroconversion. We fully agree that a date of HIV-1 seroconversion cannot be determined on the basis of the CD4+ cell count at entry if the cofactor of
interest is correlated with the CD4+ cell count. This is considered to be a problem of the marker-based approach [6]. Therefore, the imputed date of HIV-1 seroconversion was derived from a cohort-based estimate of the date of HIV-1 seroconversion and was not based on the CD4+ cell count [7]. Geskus [7] showed that, for the Amsterdam Cohort Study, a conditional mean imputation based on the cohort HIV-1 seroincidence curve gives unbiased results and that the uncertainty in the date of seroconversion hardly changes P values and confidence intervals (CIs). Moreover, in our study, similar results were obtained when the analysis was restricted to seroconverters (n = 123) [1]. For instance, the unadjusted hazard ratio (HR) for death in men who lost GBV-C RNA, compared with men who had no evidence of GBV-C infection, was 3.00 (95% CI, 1.60–5.61) in seroconverters and was 3.26 (95% CI, 2.31–4.59) in the total group. The HR decreased toward 1 when adjusted for time-updated CD4+ cell count in seroconverters (HR, 0.66 [95% CI, 0.28–1.51] and in the total group (HR, 1.21 [95% CI, 0.84–1.76]) [1].

We do agree with Stapleton et al. that the date of change in GBV-C status was imputed with a large degree of uncertainty. Therefore, we assessed the robustness of our findings by varying the time of GBV-C RNA loss. George raises concerns about the completeness of our data. However, CD4+ cell counts were available for all seroconverters at 12–18 months after HIV-1 seroconversion and for most of the subjects entering the Amsterdam Cohort Study already infected with HIV-1 within 2 years after HIV-1 seroconversion, which is only 6 months after the maximum time at which Williams et al. measured baseline CD4+ cell counts [3]. During follow-up, CD4+ cell counts were measured every 3 months. Information on yearly HIV-1 load was available for almost all subjects already infected with HIV-1. In addition, information on HIV-1 load at baseline was available for almost all subjects already infected with HIV-1. If the HIV-1 load was unavailable, it was obtained from a random-effects model for the joint development of CD4+ cell count and HIV-1 load, which is a reliable method to estimate viral load [8].

George and Stapleton et al. also comment that, in our study, the CD4+ cell counts at baseline in subjects with GBV-C infection were significantly lower than those in subjects without GBV-C infection and raise concerns about whether subjects positive for GBV-C RNA and subjects negative for GBV-C RNA were matched for the duration of HIV-1 infection. However, in our cohort, subjects positive for GBV-C RNA and subjects negative for GBV-C RNA were homogeneous in their duration of HIV-1 infection at the time the baseline CD4+ cell count was obtained (table 1). In addition, in the seroconverters, CD4+ cell counts at baseline were also significantly lower in subjects positive for GBV-C RNA than in those negative for GBV-C RNA (P = .033).

George interpreted a significant benefit of GBV-C acquisition on HIV-1 disease progression from our data. However, in table 3 in our study, 95% confidence intervals (CIs) for each category of GBV-C status—and not overall P values for GBV-C status—should be used to evaluate the significance of GBV-C acquisition. Because 1 was always within the 95% CI of the hazard ratio, the data in our study do not support a significant effect of GBV-C acquisition on HIV-1 disease progression. Similarly, in model 1 of table 3, the data do not show a significant benefit of GBV-C RNA persistence on progression from AIDS to death (HR, 0.66 [95% CI, 0.40–1.11]). Indeed, we did observe that GBV-C RNA persistence was associated with a decreased risk of death in models 1, 2, and 3 of table 3 (not on the basis of P < .0001, which, again, is the overall P value) but not with any of the other end points. However, the beneficial effect of GBV-C RNA persistence on progression to death disappeared when adjusted for time-updated CD4+ cell counts during follow-up—which George and Stapleton et al. considered to be invalid. However, this is exactly what confusing is about. Indeed, it is invalid to control for a variable that is an intermediate step in the causal pathway between exposure and disease if exposure is the variable of interest [9], but we adjusted for time-updated CD4+ cell counts and HIV-1 load to explore possible causal pathways. Because the effect of GBV-C RNA persistence and loss largely disappeared when adjusted for time-updated CD4+ cell counts, our study gives a possible explanation for the effects found: either the CD4+ cell count is an intermediate step in the causal pathway between GBV-C infection and HIV-1 disease progression or the effect of GBV-C infection can be explained by changes in CD4+ cell counts during follow-up, suggesting that

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Negative for GBV-C RNA</th>
<th>Positive for GBV-C RNA</th>
<th>P a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months since seroconversion at which baseline CD4+ cell count was measured</td>
<td>23.9 (12.1–29.0) 21.5 (12.4–28.4)</td>
<td>24.3 (13.6–28.3) 26.6 (16.8–29.0)</td>
<td>.11</td>
</tr>
<tr>
<td>Baseline CD4+ cell count, cells/μL</td>
<td>600 (390–780) 595 (457–822)</td>
<td>490 (360–710) 550 (450–730)</td>
<td>.03</td>
</tr>
</tbody>
</table>

NOTE. Data are median (interquartile range), unless otherwise indicated.

a Kruskal-Wallis test.
GBV-C infection is associated with high CD4+ cell counts. The latter hypothesis seems biologically more plausible, because GBV-C can replicate in CD4+ cells [10]. The loss of CD4+ cells during the course of HIV-1 infection, therefore, implies a loss of target cells for GBV-C.

In conclusion and in agreement with the results of a study by Bjørkmann et al. [2], our study provides evidence to support the hypothesis that GBV-C RNA loss is a consequence of—and not a cause of—CD4+ cell loss. We fully agree with Stapleton et al., however, that further studies, with frequent measurement of GBV-C load in each individual, are required to fully understand the relationship between GBV-C infection and HIV-1 disease progression.

References

Akke K. Van der Bij, Nico Kloosterboer, Maria Prins, Brigitte Boeser-Nunnink, Ronald B. Geskus, Joep M. A. Lange, Roel A. Coutinho, and Hanneke Schuitemaker

1Department of HIV and Sexually Transmitted Disease Research, Cluster of Infectious Diseases, Municipal Health Service of Amsterdam, 2Sanquin Research at Landsteiner Laboratory, Academic Medical Center, 3National AIDS Therapy Evaluation Center, and 4Department of Internal Medicine, Division of Infectious Diseases, Tropical Medicine and AIDS, and 5Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Reprints or correspondence: Dr. Hanneke Schuitemaker, Sanquin Research at CLB, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands (h.schuitemaker@sanquin.nl).