Signal sensing and transduction in the blue-light photoreceptor AppA and the cyanobacterial phytochrome Cph1
Laan, W.W.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 1: General Introduction

1.1 Light and life on earth 10
1.2 Photoreceptors 10
 1.2.1 Introduction 10
 1.2.2 Flavin-based photoreceptors 12
1.3 Regulation of photosynthesis in Rhodobacter sphaeroides 16
 1.3.1 Photosynthesis in Rb. sphaeroides 16
 1.3.2 Fnrl 19
 1.3.3 The PrrBA two component system 20
 1.3.4 The AppA-PpsR system 20
1.4 The BLUF protein family 25
1.5 Phytochromes 28
1.6 Scope and outline of this thesis. 32

Chapter 2: Initial characterisation of the primary photochemistry of AppA, a BLUF-domain containing transcriptional anti-repressor protein from Rhodobacter sphaeroides: a key role for reversible intramolecular proton transfer from the FAD chromophore to a conserved tyrosine?

2.1 Abstract 36
2.2 Introduction 36
2.3 Materials and methods 38
 2.3.1 Strains and growth conditions 38
 2.3.2 Plasmid construction 38
 2.3.3 Site-directed mutagenesis 39
 2.3.4 Protein expression and purification 39
 2.3.5 Fourier-transform infrared spectroscopy 39
 2.3.6 Simultaneous transient UV/Vis absorption- and pH measurements 40
2.4 Results 41
 2.4.1 The N-terminal domain of AppA from Rhodobacter sphaeroides RK1 41
 2.4.2 The photocycle of AppA: kinetics and species associated spectra 42
 2.4.3 Analysis of the signaling state/receptor state UV/Vis difference spectrum 44
 2.4.4 A role for Y17 in the photocycle of AppA 45
 2.4.5 FTIR analyses of light-induced difference spectra of AppA 46
 2.4.6 Test of light-induced proton release by AppA 47
2.5 Discussion 48
2.6 Acknowledgements 52

Chapter 3: Chromophore composition of a heterologously expressed BLUF-domain

3.1 Abstract 54
3.2 Introduction 54
3.3 Materials and Methods 55
 3.3.1 Strains and growth conditions 55
 3.3.2 Protein expression and purification 55
Contents

3.3.3 TLC analysis of the flavin cofactors associated with AppA_{5,125} 56
3.3.4 Transient UV-Vis absorption spectroscopy 56
3.3.5 Relative quantum yield determination 56
3.3.6 Fluorescence spectroscopy 57
3.3.7 FT-IR spectroscopy 57
3.4 Results 58
3.4.1 Separation of BLUF domains containing different chromophores 58
3.4.2 Comparison of BLUF domains containing different chromophores 60
3.5 Discussion 63
3.6 Acknowledgements 67

Chapter 4: Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes

4.1 Abstract 70
4.2 Introduction 70
4.3 Materials and Methods
 4.3.1 Protein Expression and Purification 72
 4.3.2 Time-Resolved Spectroscopy 73
 4.3.3 Data Analysis 74
4.4 Results 75
 4.4.1 Time-Resolved Fluorescence Spectroscopy 75
 4.4.2 Femto- to Nanosecond Transient Absorption Spectroscopy 75
 4.4.3 Nanosecond Flash-Photolysis Spectroscopy 79
 4.4.4 Quantum Yield of Signaling-State Formation 82
 4.4.5 Target Analysis, a Compartmental Model Approach 84
4.5 Discussion 86
4.6 Acknowledgments 89

Chapter 5: On the mechanism of photo-activation of the BLUF domain of AppA

5.1 Abstract 92
5.2 Introduction 92
5.3 Materials and methods
 5.3.1 Strains and growth conditions 95
 5.3.2 Site-directed mutagenesis 96
 5.3.3 Protein production and purification 96
 5.3.4 Transient UV-Vis absorption spectroscopy 96
 5.3.5 Time-resolved fluorescence spectroscopy 97
 5.3.6 Calculation thermodynamic parameters 97
 5.3.7 Quantum yield signaling state formation AppA_{5,125} W104F 97
5.4 Results 98
 5.4.1 Characterization of AppA W104F 98
 5.4.2 Time resolved fluorescence spectroscopy 100
 5.4.3 D_{2}O and imidazol affect the ground state recovery rate 102
 5.4.4 Thermodynamics of the recovery 103
5.5 Discussion 1045
Chapter 6: Domain-domain interactions in Cph1

6.1 Abstract 110
6.2 Introduction 110
6.3 Materials and methods 114
 6.3.1 Strains and growth conditions 114
 6.3.2 Cloning 114
 6.3.3 Protein expression, reconstitution and purification 115
 6.3.4 UV-Vis spectroscopy 116
 6.3.5 Titration of PG-PCB with PHY, Pfr dark-reversion 116
 6.3.6 Gel filtration 116
 6.3.7 Homology modeling 117
6.4 Results 118
 6.4.1 Interactions of the PHY domain 118
 6.4.2 Homology modeling of the domains of Cph1 122
6.5 Discussion 125

Chapter 7: General discussion

7.1 Introduction 132
7.2 The expression system 132
7.3 The structure of the BLUF domain 133
7.4 The BLUF photocycle 134

References 143

Summary 154

Samenvatting 157

List of publications 161

Acknowledgements 162