High-density lipoprotein and C-reactive protein, friend and foe in cardiovascular disease
Bisoendial, R.J.

Citation for published version (APA):
Bisoendial, R. J. (2006). High-density lipoprotein and C-reactive protein, friend and foe in cardiovascular disease

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter

Activation of inflammation and coagulation after infusion of C-reactive protein in humans

Radjesh J. Bisoendial; John J.P. Kastelein; Johannes H.M. Levels; Jaap J. Zwaginga; Bas van den Bogaard; Pieter H. Reitsma; Joost C.M. Meijers; Daniel Hartman; Marcel Levi; and Erik S.G. Stroes

1 Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
2 Department of Hematology, Academic Medical Center, Amsterdam, the Netherlands
3 Department of Experimental Medicine, Academic Medical Center, Amsterdam, the Netherlands
4 Pfizer Global Research and Development, Ann Arbor, USA

Circ. Res. 2005;96:714-716
Abstract

C-reactive protein (CRP) has been postulated to play a causal part in atherosclerosis and its acute complications. We assessed the effects of CRP-infusion on coagulation and inflammatory pathways to determine its role in atherothrombotic disease. Seven male volunteers received an infusion on two occasions, containing 1.25 mg/kg recombinant human CRP (rhCRP) or diluent, respectively. CRP-concentrations rose after rhCRP-infusion from 1.9 (0.3 to 8.5) to 23.9 (20.5 to 28.1) mg/L, and subsequently both inflammation and coagulation were activated. This sequence of events suggests that CRP is not only a well known marker of cardiovascular disease, but is also probably a mediator of atherothrombotic disease.
Introduction

C-reactive protein (CRP) has emerged as an independent predictor of cardiovascular risk in various clinical settings. Evidence showing direct prothrombotic and inflammatory effects of CRP in vitro, has led to the concept that CRP might be an active mediator of atherothrombotic events. Although direct pathophysiological functions of CRP itself are a matter of debate, experimental observations from mice transgenic for human CRP have suggested a contributive role of CRP in the development of cardiovascular complications. To date, no in vivo data in humans exist to support a direct atherogenic action of CRP. In the present study, we assessed the effects of rhCRP-infusion on established pathways in cardiovascular disease progression, including inflammation and coagulation in healthy male volunteers.

Materials and methods

Seven healthy, non-smoking men, aged 33 (26-51) years, were included in this study after written informed consent was obtained. None of the volunteers had febrile illness, or cardiovascular disease, or were on medication. After an overnight fast, a bolus of highly purified rhCRP was given intravenously at a dose of 1.25 mg per kg body weight. Blood was drawn at baseline and 1, 4, 8 and 24 h after infusion. After 4 weeks, a time-control study was performed using the CRP-free diluent. The study was approved by the institutional review board of the Academic Medical Center Amsterdam.

The rhCRP (BiosPacific, Emeryville, CA, USA), derived from E. coli (K12, substrain NM522), was supplied in 20 mM Tris, 140 mM NaCl, 2 mM CaCl2, pH 7.5 and 0.05% (wt/vol) sodium azide and revealed a single 23 kDa band (>99%) after CBBR-staining (1 µg; SDS-polyacrylamide gel). Before purification, the host cell protein concentration was 85 p.p.m., as determined by a high-sensitive ELISA in accordance with manufacturers’ instructions (Cygnus Technologies Inc., Southport, NC, USA). Subsequently, the rhCRP was purified using size exclusion chromatography to remove contaminants including endotoxin and sodium azide (Univalid bv, Leiden, The Netherlands). Purity as well as stability were evaluated using sequential high-performance liquid chromatography and Time-of-Flight mass spectrometry, showing no other protein fractions, including the monomeric variant of CRP, besides the CRP-pentamer. Endotoxin levels were below 1.5 endotoxin units (EU)/mL as evaluated by Limulus assay (turbidimetric kinetic method; ACC inc., East Falmouth, Ma, USA). Purified rhCRP, added to whole blood (final concentration 88 µg/mL) obtained from 3 volunteers for 24 hours at 37°C and 5% CO2, significantly stimulated IL-8 production, whereas boiled or trypsinized rhCRP did not elicit a cytokine response. Moreover, in vitro assays, including cell culture experiments with human umbilical vein endothelial cells revealed no toxicity of the purified rhCRP solution. In separate, single-dose toxicity studies in mice (n=6) at CRP-concentrations more than
4-times higher than peak concentrations obtained in humans, we observed no direct effects of the purified rhCRP-solution on temperature, blood pressure or heart rate. In analogy to the findings in humans, a minor cytokine response was observed upon purified rhCRP infusion (data not shown). The rhCRP was stored in a CaCl2 containing buffer (pH 8.5) at 0-4°C degrees and all experiments were performed within 4 weeks after rhCRP-preparation.

CRP-concentrations were measured with high-sensitivity and immunonephelometric assays (Roche Diagnostics Corporation, Basel, Switzerland). TNFα, interleukin 6, and interleukin 8 were assayed by cytometric bead array analysis (BD Biosciences, San Jose, CA, USA). We measured concentrations of soluble E-selectin, (R&D Systems, Abingdon, UK), von Willebrand factor (vWFAg; Dako, Glostrup, Denmark), prothrombin F1+2 (Dade-Behring, Marburg, Germany), plasminogen activator inhibitor type-1 (Monozyme, Charlottelund, Denmark), and D-dimer (Asserachrom D-dimer, Roche, Almere Netherlands) using ELISA’s. Additionally, serum amyloid A protein (SAA; Anogen, Ontario, Canada) and type II secretory phospholipase A2 (sPLA2; CLB, Amsterdam, the Netherlands) were measured with this technique. Monocytic expression of CD11b and CD18 was quantified using a fluorescence-activated cell sorter Vantage flowcytometer (Becton Dickinson, Mountain View, CA, USA) at baseline, and at 4h and 24 h after infusion. Monocytes were gated by their specific forward and side-scatter pattern and further identified by high CD14 expression.

Data are medians and ranges. Differences between treatment groups were tested by analysis of variance for repeated measures. Comparisons within groups were done with the Wilcoxon signed rank test. A p-value less than 0.05 was regarded significant.

Results

CRP-concentrations rose on infusion of rhCRP from 1.9 mg/L (0.3-8.5) to 23.9 mg/L (20.5-28.1). After an initial fall, concentrations rose again to 29.0 mg/L (17.2-48.9) 24 h after infusion. Hemodynamic measurements and temperature recordings were stable throughout the infusion studies. There was no record of any adverse effect in the volunteers. Haematology indices remained stable, except for transient increases in neutrophil counts.

In accord with previous in vitro studies, vWFAg and E-selectin rose from 82% (60-127) to 127% (84-208) (p<0.01) and 44.1 ng/mL (19.1-69.0) to 67.7 ng/mL (25.8-115.7) (p<0.05), respectively. After 4 h, interleukin 6 increased significantly from less than 1.6 pg/mL (<1.6-14.7) to 99.6 pg/mL (5.0-709.5), p<0.05 versus baseline) and so did interleukin 8 from 14.1 pg/mL (6.4-29.2) to 106.0 pg/mL ((37.7-243.0); p<0.05) (figure 1). TNFα concentrations remained unaltered; furthermore, a trend towards monocytic CD11b and CD18 upregulation was recorded. After 8 h, both serum amyloid A protein (4.7 mg/L (0.3-27.9) to 206.2 mg/L
Individual plasma levels of IL-6 (A), IL-8 (B), sPLA2 (C) and SAA (D) after infusion of either rhCRP (1.25 mg/kg; black solid line) or diluent (grey dotted line) (n=7). CRP induced a systemic proinflammatory response as reflected by the release of IL-6 and IL-8, sPLA2 and SAA. * p<0.05 vs baseline; # p<0.05 between groups.

(27.8-2099.2), p<0.05 versus baseline) and sPLA2 (2.0 ng/mL (2.0-6.0) to 22.0 ng/mL (9.0-60.0), p<0.05) concentrations rose significantly (figure 1).

Coagulation activation was associated with a 3-fold increase in prothrombin F1+2 ng/mL concentrations 4 h after rhCRP-infusion (p<0.05), and a 3.5-fold increase of D-dimer concentrations (p<0.05) (figure 2). Additionally, plasminogen activator inhibitor type-1 was significantly enhanced (35.0 ng/mL (14.0-109.0) to 71.0 ng/mL (18.0-83.0), p<0.05).
Figure 2. Effects of rhCRP infusion on coagulation and fibrinolysis

Individual plasma levels of prothrombin F1+2 (A) and D-dimers (B) after infusion of either rhCRP (1.25 mg/kg; black solid line) or diluent (grey dotted line) (n=7). CRP induced activation of the coagulation pathway (prothrombin F1+2), which was paralleled by activation of fibrinolysis, reflected by D-dimer levels. P-values indicate differences between groups.

Discussion

Our findings strongly suggest that CRP activates several pathways with known consequences for cardiovascular events. Even a short-term increase from a single bolus, obtaining concentrations that are pathophysiologically relevant, induces endothelial cell activation, elicits an acute systemic inflammatory response and activates the coagulation cascade. This striking sequence of events indicates that CRP, beyond its predictive value, probably also has a causal relation to the occurrence of cardiovascular events.

Although CRP-concentrations greater than 3 mg/L already denote heightened cardiovascular risk1, patients are usually exposed to these raised concentrations for many years before potential onset of cardiovascular events. Of note, mechanisms behind this association between modestly elevated CRP levels and cardiovascular events may not necessarily reflect the effects observed here. In view of the acute nature of the present study, CRP-concentrations targeted at 25 mg/L, in accordance with previous in vitro studies4, seemed appropriate to assess potential direct effects of CRP in vivo. The induction of a pro-inflammatory state in response to CRP is illustrated by interleukin 6 and interleukin 8 increases at 4 hours, followed by significant rises in the acute phase reactants SAA and sPLA2 from 8 hours onwards. Accordingly, a second peak of endogenous CRP-release was noted after 24 hours.

A previously reported drawback of inflammatory activation by CRP is potential lipopolysaccharide-contamination in commercially available rhCRP-solutions. Using extensively purified
rhCRP, several details preclude that possibility in our study. First, we did not note an increase in TNFα, which is an established hallmark of lipopolysaccharide-induced inflammatory activation. Second, the calculated quantity of lipopolysaccharide given during rhCRP-infusion was at most 1.75 EU/kg, whereas the critical amount to induce activation of coagulation and/or TNFα release exceeds is 20 EU/kg.9. Last, there was lack of a febrile response in any of the subjects, whereas the kinetics of the observed cytokine responses subsequent to rhCRP-infusion differ profoundly from that evoked by lipopolysaccharide-infusion.

Activation of coagulation induced by CRP might result from enhanced monocytic tissue-factor activity, since in vitro CRP has been shown to induce monocytic tissue-factor expression10. Alternative mechanisms might include downregulation of the anticoagulant protein C pathway secondary to the inflammatory response. The precise mechanisms underlying the CRP-mediated activation of the inflammatory and coagulation pathways need further investigation. Although we evaluated only seven individuals, the consistency of the observations clearly lend further support to the development of compounds that specifically block CRP-bioactivity in vivo.

Acknowledgments

This work was supported in part by a grant from Pfizer. J J P Kastelein is an established investigator of the Netherlands Heart Foundation (2000D039). The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Reference List


10. Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood. 1993;82:513-520.