Children of mothers with epilepsy exposed to antiepileptic drugs during pregnancy

Long-term neurocognitive and behavioral functioning from a family perspective

Huber-Mollema, Y.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Abstract

Background: Children exposed to antiepileptic drugs (AEDs) in utero are at higher risk for congenital malformations. Less is known about the long-term association with neurocognition and behavior. Research into family factors related to long-term developmental outcomes of children of women with epilepsy is also rare. We present a protocol to investigate the neurocognitive and behavioral development in children of mothers with epilepsy from a family perspective.

Methods: This is a prospective observational longitudinal study, of children exposed in utero to monotherapy carbamazepine, lamotrigine, valproate or levetiracetam whose mother were previously included in the European Registry of Antiepileptic Drugs and Pregnancy (EURAP-NL) database. Children are tested at age six or seven years (T1) and at eight or nine years (T2). Children, mothers and fathers are asked to undergo neuropsychological assessments and to complete questionnaires on behavioral functioning and distinct family factors.

Discussion: This study contributes to future counseling of women with epilepsy who have children or wishes to start a family. Strengths are the inclusion of levetiracetam, the longitudinal design, and alongside neurocognition, the inclusion of differential behavioral and family outcome measures. Anticipated limitations are discussed.

Trial registration: Dutch Trial register: NTR4800. Registered 22 September 2014.
Introduction

Epilepsy is a common neurological disorder occurring in 0.4-1.0% of the population\(^1\). Prenatal exposure to antiepileptic drugs (AEDs) is also common: 0.3-0.5% of all pregnant women have epilepsy and most use AEDs\(^2\). Women with epilepsy wanting to get pregnant or already pregnant have to make difficult decisions regarding use of AEDs. Seizures can cause greater harm to the mother and the fetus compared to the potential adverse effects of medication on embryonic development. Most are advised to continue using AEDs during pregnancy\(^3\). About 0.4% of all newborns have been exposed to AEDs \textit{in utero}\(^4\).

The use of AEDs increases the risk of birth defects, such as heart defects, cleft lip or palate, dysmorphic disorders, defects in the limbs, defects in the genitals and urinary tract, and neural tube defects\(^5\)\(^-\)\(^7\). It is not fully known which AEDs play a role, but the risk seems especially related to valproate (VPA), higher doses and polytherapy\(^7\).

\textit{In utero} exposure to AEDs is also associated with difficulties in cognitive and behavioral functioning. A correlation between prenatal VPA exposure and a lower verbal IQ (VIQ) has been found\(^8\)\(^-\)\(^16\). Delays in speech and motor development, conduct disorder, ADHD, and school problems have also been associated with prenatal exposure\(^9\)\(^,\)\(^17\)\(^-\)\(^20\). VPA exposure also appears to be related to an increased risk of autism spectrum disorders (ASD), as up to 11% of children were diagnosed with autism or Asperger syndrome\(^19\)\(^,\)\(^21\).

Certain cognitive and behavioral developmental outcomes such as language development, memory, executive functioning, and child psychiatric problems, including ASD, can only be assessed later in childhood. Previous assessments of children of mothers with epilepsy were often inadequate as studies used retrospective designs or small samples. High quality prospective research is warranted to assess the safety of AED use during pregnancy regarding developmental outcomes. Therefore, the central project commission (EURAP CPC) developed a neurocognitive extension protocol (NCEP) to follow prospectively neurocognitive development of children exposed \textit{in utero}\(^22\). The NCEP includes an extensive neuropsychological screening, with VIQ at the age of six years as main outcome measure\(^22\).

As it is unknown whether effects of AEDs used during pregnancy are persistent or whether children catch up later, it’s important to investigate long-term development prospectively. A systematic screening for attention deficit disorder, autism, and other behavioral problems, will provide better insight of behavioral development. It is not known how mothers with epilepsy experience the upbringing of their children, whether
they feel competent to care, whether they experience parenting stress, and whether they receive social support. These topics need addressing as parenting and family factors could also contribute to developmental problems in children from special populations23–25. As \textit{in utero} AED exposure seems a risk factor for child development, parenting and other family factors should be also examined as they may buffer against developmental problems or may help parents to cope better with child behavior26. Thus, further data on parenting as either a risk or a protective factor in the development of exposed children could contribute to fine-tuning treatment and guidance for these children and their families.

The aim of the Dutch EURAP & Development study is to extend the NCEP further: firstly through a longitudinal design with two measurement points at six or seven years and at eight or nine years of age, secondly, by including behavioral and family outcomes in addition to neurocognitive outcomes and lastly by also including children prenatally exposed to levetiracetam (LEV) as monotherapy and to those exposed to monotherapy VPA, carbamazepine (CBZ) or lamotrigine (LTG).

Long-term neurocognitive and behavioral functioning after prenatal exposure

An increasing attention for the long-term neurocognitive and behavioral functioning of children exposed to AEDs \textit{in utero} has developed since the NCEP started and prospective studies have reported27–29. A summary of these is provided in Table 4. Studies vary by children’s age and measures. Cognition appeared to be the main focus, with intelligence (IQ) or the developmental quotient (DQ) in younger children as primary measures. Most data is on children exposed to VPA, with only a few studies on the exposure to newer AEDs such as LEV14,30–32.

Valproate exposed children

VPA exposure is most strongly associated with long-term cognitive and behavioral functioning. Compared to healthy children, children of mothers with epilepsy without prenatal exposure, exposure to other AEDs or standardized norms, infants and toddlers have been shown to have a developmental delay14,18,30,32–35, and lower IQ scores in school age5,10,13,31,36–40. Verbal functioning seems to be particularly affected10,13,41 and, to a lesser extent, attention and memory functions9,42. Children seem at risk for learning problems and have more frequent additional educational needs17.

Children seem more likely to show poor adaptive functioning in daily life43 and are at an increased risk for neurodevelopmental disorders such as attention-deficit
hyperactivity disorder (ADHD) and ASD44,45. Elevated scores on the Child Autism Rating Scale (CARS)46 suggest a dose-related effect47. Other studies have also found dose effects, with higher doses associated with more problems13,31,36,37,48. Some studies did not find significant neurocognitive or behavioral problems after prenatal VPA exposure9,49–51. These different outcomes may be due to lower doses or small sample sizes.

Carbamazepine exposed children

Most studies did not find differences in cognitive functioning compared to controls5,9,10,37,52–54. Other studies, however, reported increased rates of developmental delay18,32,55–57. A recent meta-analysis showed that differences were associated with study methodologies27. No dose effect has been found for cognitive outcome measures27.

It seems that CBZ poses less of a risk for development compared with VPA. Children seem comparable to non-exposed on Full Scale IQ (FSIQ)37. Whether certain particular child characteristics or behavioral functioning are susceptible to CBZ exposure needs further studies28.

Lamotrigine exposed children

Many women of childbearing age use LTG58, but less research has been done into the long-term effects of prenatal exposure. LTG seems to have little or no effect on cognitive and behavioral development. Available reports do not suggest issues in the neurodevelopment of infants32,34,57. However, a higher risk was found for parenteral reports of impaired fine motor skills at age six months, and lower language skills at age 36 months35. Deficits have been found in nonverbal abilities, with lower scores on tasks of fine motor skills in early development compared to controls34, but after controlling for confounders (e.g. maternal IQ), this was not significant.

Studies in school-age children showed no difference in IQ compared to controls37,50. No abnormal language development was found41. In comparison to VPA and CBZ, preschoolers exposed to LTG did not significantly differ from CBZ on cognitive functioning, and had less cognitive problems than VPA exposed preschoolers12,34,57. This was also true for school-aged children13,36,59. A risk for specific neurocognitive skills such as motor and sensory integration skills may exist for higher LTG dose50. Other studies did not find any dose effect12,13,37. Children seem to have less behavioral problems and better adaptive functioning compared to VPA at six years of age68. Compared to controls, no differences were found on behavior and attention measures50. No risk for neurodevelopmental disorders was seen44. Parents, however, reported increased
concerns about autistic traits at 36 months60. No increased educational support was seen37.

Levetiracetam exposed children

Only a few studies have investigated the long-term effects of prenatal LEV exposure showing no impairments in neurodevelopment and IQ in infants, toddlers, and school-aged children14,30–32. In comparison with children exposed to VPA, higher levels of early and preschool development were found, indicating less problems. No effect of dose was found.

Confounding factors

There are many other factors that may contribute to cognitive and behavioral development of exposed children. Controlling for potential confounders is crucial. Confounders have seldom been included61. Factors that may influence developmental outcomes are diverse and interrelated, and include aspects of maternal epilepsy and pregnancy, as well as child characteristics and features of the child’s family environment61. Possible confounders are maternal IQ, socio-economic status, maternal age at birth, gestational age, maternal use of tobacco or alcohol, maternal preconception folate use and breastfeeding62.

Frequent convulsions during pregnancy have been found to be associated with reduced child cognitive functioning5, but this has not been replicated10,13. Given the association between type of epilepsy and the choice of AED, the issue of confounding by indication persists: are relationships between long-term child development and AED exposure actually inherent to the type of maternal epilepsy? Of importance also is AED doses taken during pregnancy. Dose related deleterious effects have been found for VPA7,13.

Family factors

As parenting stress, parental psychiatric problems, parenting and family functioning can act as mediating factors between earlier fetal exposure, the current epilepsy and the development of the child, we consider it important that these family factors are included in the research into children of mothers with epilepsy63.
Aim of this study
The purpose of the study is to address the following questions: 1. What is the nature and severity of cognitive and behavioral problems in children at ages six or seven and at follow-up at ages eight or nine? 2. Are there differences between the four AEDs in monotherapy and is there a dose effect? 3. What is the course of child developmental problems at ages eight or nine when compared to when children were six or seven? 4. Which additional epilepsy and family factors contribute to developmental problems in these children?

Methods

Study design and participants
This is a prospective longitudinal observational study, with assessors blinded to the AED exposures. Participants are mother-child pairs identified from the European Registry of Antiepileptic Drugs and Pregnancy database in the Netherlands (EURAP-NL). EURAP registers the prevalence of major congenital malformations following prenatal exposure to AEDs. Women with epilepsy are enrolled in EURAP-NL through referral by their health professional or by self-referral. Recruitment is national and preferably occurs within the first sixteen weeks of pregnancy facilitating prospective collection of information about epilepsy, seizures, health, and well-being during the pregnancy and other potential risk factors.

In order to compare different types of AEDs, a child is only invited if its mother had been on monotherapy. Children receive a complete neuropsychological examination and parents complete behavioral and family factor questionnaires at T1 (six or seven years) and at T2 (eight or nine years). Mothers and fathers complete a short-form intelligence test at T1. The study was approved by the medical ethics committee of the Academic Medical Center (AMC: NL 45505.018.13) and registered with the Dutch trial register (www.trialregister.nl: NTR4800) prior to enrollment of the first participant.

Inclusion criteria
Mother – child pairs must meet the following eligibility criteria: (1) enrolled in the EURAP-NL database with pregnancy ascertained and risk factors assessed prenatally, after delivery, or up until three years of age (possible exposure through breast feeding), (2) with the child born between 2007-2011, (3) prenatally exposed to CBZ, LTG, VPA,
or LEV monotherapy during the entire pregnancy, (4) and aged between six years, 0 months and seven years, 11 months, at T1 and between eight years, 0 months and nine years, 11 months at T2, with two years (minimum 22 months and maximum 30 months) between the first and second neurocognitive assessment.

All pregnancies have also been submitted to the central EURAP registry in Milan. Every effort will be made to enroll all consecutive mother-child pairs. Information about reasons for not participating are recorded and analyzed to minimize possible selection bias. Before the start of the study, and each subsequent year, addresses are checked in the municipal administration.

Exclusion criteria
Participants are excluded if: (1) the mother is unable to take care of the child (e.g., due to severity of epilepsy), (2) the child has a known chromosomal/genetic syndrome or prematurity (gestational age less than 37 weeks), or (3) there are factors other than AED exposure which significantly modify child development, such that reliable assessment is not possible.

Sample size
The sample size was calculated to enable us to find differences in change between children of mothers who use different AEDs. With a medium expected effect size of \(f(V) = 0.25 \) (e.g., a 0.5 SD difference between the most and least changing groups and a 0.5 autocorrelation\(^6\)), a total sample size of 179 suffices for a 80% chance of finding a group by time interaction effect at a 5% level of significance, whereas a sample size of 231 suffices for a 90% chance to find a medium sized effect. Other analyses require smaller sample sizes.

A total of 517 children enrolled in EURAP-NL and born between 2007 and 2011 is invited (Table 1). Assuming that half will agree to join the study, we expect to include about 260 children and their parents. Based on earlier experiences, we assume that parents are interested in, but may also be concerned about, the development of their child, and in general willing to participate.

Procedure
Participants who meet the inclusion criteria receive an invitation letter around the time of the child’s sixth birthday. Parents may use a reply card, email or the website (www.sein.nl/eurap) to indicate whether or not they want to participate. Families who
do not respond receive a reminder after one month. If no reply has been received after three months, families are contacted by telephone to ask whether they are willing to participate. Parents who do not wish to participate are asked to complete the survey part of the study by completing online questionnaires. If the child has had a psychological examination within the last year, we ask parents for the reports (e.g., IQ test). For families willing to participate, an appointment is made at one of our test sites for the first assessment with, ideally, both parents and the child. If the father is unable to attend, he is asked to complete the online questionnaires at home.

The study is carried out within one day, from 9:30 in the morning until approximately 15:00 hours (Daily schedule, Table 2). A fixed test sequence is used for children and parents (Figure 2 and 3). To minimize the study load for the family, mother, father, and child have their assessments simultaneously. To minimize bias, the parent interview about the child is at the end of the day. The parents and the child are examined by assessors in nearby rooms. Assessors are child (neuro)psychologists who are authorized to conduct clinical testing in children, and who are trained and monitored according to the test protocol. If the child does not want to be examined without the presence of the parent, changes in the protocol are made to accommodate to this. Any change in procedure is noted in the case record form; the child’s assessment is recorded on video for possible clinical consultation.

At T1 there are two assessors and at T2 one assessor, because at T2 only the child has an assessment. Prior to the assessment, parents sign a written informed-consent form for the child and themselves. Parents are enabled to claim traveling expenses and receive a voucher of 50 euros as a reward for participation. After participating in both T1 and T2 parents receive a report with feedback from the child’s assessment. If

<table>
<thead>
<tr>
<th>Year</th>
<th>CBZ</th>
<th>LTG</th>
<th>VPA</th>
<th>LEV</th>
<th>Total of potential children</th>
<th>Expected inclusion 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>34</td>
<td>38</td>
<td>16</td>
<td>7</td>
<td>95</td>
<td>47</td>
</tr>
<tr>
<td>2008</td>
<td>23</td>
<td>29</td>
<td>16</td>
<td>11</td>
<td>79</td>
<td>39</td>
</tr>
<tr>
<td>2009</td>
<td>29</td>
<td>39</td>
<td>16</td>
<td>16</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2010</td>
<td>40</td>
<td>47</td>
<td>16</td>
<td>17</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>2011</td>
<td>20</td>
<td>57</td>
<td>12</td>
<td>34</td>
<td>123</td>
<td>61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study population</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>517</td>
<td>257</td>
</tr>
</tbody>
</table>
necessary, parents receive further explanation, advice, or a referral (i.e., to their family
doctor, neurologist or child psychologist).

Table 2. Daily schedule Dutch EURAP & Development study

<table>
<thead>
<tr>
<th>T1</th>
<th>Parent(s)</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30</td>
<td>Arrival / introduction, informed consent</td>
<td></td>
</tr>
<tr>
<td>10:00-12:00</td>
<td>Mother: short intelligence test and vocabulary task</td>
<td>First part test assessment</td>
</tr>
<tr>
<td></td>
<td>Father: questionnaires and vocabulary task</td>
<td></td>
</tr>
<tr>
<td>12:00-13:00</td>
<td>Lunch break</td>
<td></td>
</tr>
<tr>
<td>13:00-14:30</td>
<td>Father: short intelligence test</td>
<td>Second part test assessment</td>
</tr>
<tr>
<td></td>
<td>Mother: questionnaires</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mother and father: interview about child</td>
<td></td>
</tr>
<tr>
<td>14:30/15:00</td>
<td>Close of day</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2</th>
<th>Parent (s)</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30</td>
<td>Arrival / introduction, informed consent</td>
<td></td>
</tr>
<tr>
<td>10:00-12:00</td>
<td>Questionnaires</td>
<td>First part test assessment</td>
</tr>
<tr>
<td>12:00-13:00</td>
<td>Lunch break</td>
<td></td>
</tr>
<tr>
<td>13:00-14:00</td>
<td>Second part test assessment</td>
<td></td>
</tr>
<tr>
<td>14:00-14:30</td>
<td>Parent interview (meanwhile child will play/draw)</td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td>Close of day</td>
<td></td>
</tr>
</tbody>
</table>

Study settings

Participants live all across the Netherlands, and therefore the study is conducted in
different locations. If travel to one of the study locations is not possible, the examination
takes place at home. The study locations are at: Heemstede (epilepsy center SEIN),
Amsterdam (University of Amsterdam), Rotterdam and Zwolle (outpatient clinics SEIN)
and Heeze (epilepsy center Kempenhaeghe).

Measures

The study examines different domains of development from a bio-ecological
perspective: (1) child neurocognition, (2) child behavior, and (3) family factors (Figure
1). Primary study parameters are: (1) Verbal IQ (VIQ), Performance IQ (PIQ), Full Scale IQ
(FSIQ) and processing speed index (PSI), attention and executive functioning, language
skills, verbal fluency and vocabulary, visuospatial skills, fine motor skills, memory
and learning, and social cognition (theory of mind and affect recognition); (2) Child
behavioral problems and psychiatric symptoms, including ADHD and autism. Secondary
outcome measures (3) are parenting stress, parental psychiatric symptoms, impact of
maternal epilepsy on self and family, quality of parent child relationship, parenting and
family functioning. Table 3 presents an overview of the measures and the time points of study assessments.

Figure 1. Dutch EURAP & Development study domains

Note: EURAP: European Registry of Antiepileptic Drugs and Pregnancy, AED: antiepileptic drug.

Table 3. Dutch EURAP & Development Study constructs with concomitant child- and parent-measures

<table>
<thead>
<tr>
<th>Construct</th>
<th>Measure</th>
<th>T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child assessment</td>
<td>Intelligence (verbal, performance, full scale and processing speed)</td>
<td>WISC-III-NL (9 subtests)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Attention and executive functioning, Language skills, Memory and learning, Fine motor skills, Visuomotor skills and Social cognition</td>
<td>NEPSY-II-NL (18 plus 2 delayed tasks)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Vocabulary</td>
<td>PPVT-III-NL</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Verbal fluency</td>
<td>Lindeboom</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Visual attention</td>
<td>Tea-CH</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Auditory synthesis</td>
<td>TvK</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Phoneme deletion</td>
<td>DST</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Autism</td>
<td>CARS2-HF</td>
<td>X</td>
</tr>
<tr>
<td>Construct</td>
<td>Measure</td>
<td>Time points</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Parent Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intelligence</td>
<td>WAIS-III-NL</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Vocabulary</td>
<td>PPVT-III-NL</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Questionnaires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographics, health and education child and parents</td>
<td>General information</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Development of child from birth until 6</td>
<td>Development history</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Child behavioral problems</td>
<td>CBCL, SEV</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Autism</td>
<td>CARS2-QPC</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Adult behavioral problems</td>
<td>ASR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Impact of maternal epilepsy on self/family</td>
<td>IPES</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Quality of life of mother with epilepsy</td>
<td>Qlife</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Parenting stress</td>
<td>OBVL</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Family functioning</td>
<td>VGFO</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Parenting</td>
<td>VSOG</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Family events</td>
<td>VMG</td>
<td>X X</td>
<td></td>
</tr>
<tr>
<td>Quality of parent child relationship</td>
<td>OKIV-R</td>
<td>X X</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Test sequence child assessment Dutch EURAP & Development study T1

<table>
<thead>
<tr>
<th>Test</th>
<th>Duration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WISC-III-NL PC</td>
<td>5-10 min</td>
<td>Picture Completion</td>
</tr>
<tr>
<td>WISC-III-NL IN</td>
<td>5 min</td>
<td>Information</td>
</tr>
<tr>
<td>WISC-III-NL OA</td>
<td>10-15 min</td>
<td>Object Assembly</td>
</tr>
<tr>
<td>WISC-III-NL SI</td>
<td>5-10 min</td>
<td>Similarities</td>
</tr>
<tr>
<td>WISC-III-NL BD</td>
<td>10 min</td>
<td>Block Design</td>
</tr>
<tr>
<td>WISC-III-NL CO</td>
<td>10 min</td>
<td>Comprehension</td>
</tr>
<tr>
<td>WISC-III-NL CD</td>
<td>5 min</td>
<td>Coding (A)</td>
</tr>
<tr>
<td>WISC-III-NL SS</td>
<td>5 min</td>
<td>Symbol Search (A)</td>
</tr>
<tr>
<td>WISC-III-NL DS</td>
<td>5 min</td>
<td>Digit Span</td>
</tr>
<tr>
<td>NEPSY-II-NL SN</td>
<td>5 min</td>
<td>Speeded Naming</td>
</tr>
</tbody>
</table>
| NEPSY-II-NL MF | 5 min | Memory for Faces [after 15-25 min MFD!]
| NEPSY-II-NL ST | 2-3 min | Statue (only for 6 year olds) |
| NEPSY-II-NL AA+RS | 10 min | Auditory Attention and Response Set (all ages) |
| Lindeboom VP | 3 min | Visuomotor Precision |
| NEPSY-II-NL MFD | 2 min | Memory for Faces Delayed |
| NEPSY-II-NL CI | 5 min | Comprehension of Instructions |
| NEPSY-II-NL TM | 10-15 min | Theory of Mind |
| NEPSY-II-NL IN | 6-10 min | Inhibition |
| NEPSY-II-NL NM | 6 min | Narrative Memory |
| NEPSY-II-NL MN | 10 min | Memory for Names [after 25-35 min MND!]
| NEPSY-II-NL AW | 5-7 min | Arrows |
| NEPSY-II-NL IH | 5 min | Imitating Hand Positions |
| NEPSY-II-NL DC | 5 min | Design Copying |
| NEPSY-II-NL WG | 3-4 min | Word Generation (extra) |
| NEPSY-II-NL DF | 4 min | Design Fluency (extra) |
| NEPSY-II-NL MND | 2 min | Memory for Names Delayed |
| NEPSY-II-NL AS | 8 min | Animal Sorting (extra) [only for 7+ years old] |
| PPVT-III-NL | 10-15 min | Peabody Picture Vocabulary Test |

Extra:
- Visual Sky Search ("Ruimteschepen" task from Tea-Ch) - version A 5-10 min
- Auditory synthesis (part of language test "Taaltest voor kinderen") 3-5 min
- Phoneme Deletion task ("Klanksplitsing" from Dyslexia screening test) >> from 6;6 years! 3-5 min

Note. The sequence of subtests taken may have an impact on the test results, e.g., because of initial shyness of the child at the beginning of the day, or fatigue occurring during the course of the day. Therefore, the sequence of subtests was hold the same for all children. This may also help to repeat our study.
Statistical analyses

The nature and severity of cognitive and behavioral problems in children at ages six or seven (T1) and at follow-up at ages eight or nine (T2) are investigated through descriptive analyses, and by comparing the mean scores of prenatally exposed children with normative mean scores. This gives a comprehensive description of the neurocognitive and behavioral development of prenatally exposed children.

Figure 3. Test sequence child assessment Dutch EURAP & Development study T2

<table>
<thead>
<tr>
<th>Test Code</th>
<th>Test Name</th>
<th>Duration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WISC-III-NL PC</td>
<td>Picture Completion</td>
<td>5-10 min</td>
<td></td>
</tr>
<tr>
<td>WISC-III-NL IN</td>
<td>Information</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>WISC-III-NL OA</td>
<td>Object Assembly</td>
<td>10-15 min</td>
<td></td>
</tr>
<tr>
<td>WISC-III-NL SI</td>
<td>Similarities</td>
<td>5-10 min</td>
<td></td>
</tr>
<tr>
<td>WISC-III-NL BD</td>
<td>Block Design</td>
<td>10 min</td>
<td></td>
</tr>
<tr>
<td>WISC-III-NL CO</td>
<td>Comprehension</td>
<td>10 min</td>
<td></td>
</tr>
<tr>
<td>WISC-III-NL CD</td>
<td>Coding (B)</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>WISC-III-NL SS</td>
<td>Symbol Search (B)</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL SN</td>
<td>Speeded Naming</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL MF</td>
<td>Memory for Faces</td>
<td>5 min</td>
<td>[after 15-25 min MFD!]</td>
</tr>
<tr>
<td>NEPSY-II-NL AS</td>
<td>Animal Sorting</td>
<td>8 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL AA+RS</td>
<td>Auditory Attention and Response Set</td>
<td>10 min</td>
<td></td>
</tr>
<tr>
<td>Lindeboom</td>
<td>version A</td>
<td>2 min</td>
<td>[depending on time first MFD]</td>
</tr>
<tr>
<td>NEPSY-II-NL MFD</td>
<td>Memory for Faces Delayed</td>
<td>2 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL VP</td>
<td>Visuomotor Precision</td>
<td>3 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL CI</td>
<td>Comprehension of Instructions</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL TM</td>
<td>Theory of Mind</td>
<td>10-15 min</td>
<td></td>
</tr>
<tr>
<td>(extra) Phoneme Deletion task</td>
<td>“Klanksplitsing” from Dyslexia screening test</td>
<td>3-5 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL IN</td>
<td>Inhibition</td>
<td>10 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL AR</td>
<td>Affect Recognition</td>
<td>4-6 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL NM</td>
<td>Narrative Memory</td>
<td>6 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL MN</td>
<td>Memory for Names</td>
<td>10 min</td>
<td>[after 25-35 min MND!]</td>
</tr>
<tr>
<td>NEPSY-II-NL FT</td>
<td>Fingertip Tapping</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL IH</td>
<td>Imitating Hand Positions</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>Tea-CH</td>
<td>Visual Sky Search (“Ruimteschepen”) - version B</td>
<td>5-10 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL WG</td>
<td>Word Generation</td>
<td>3-4 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL DF</td>
<td>Design Fluency</td>
<td>4 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL DC</td>
<td>Design Copying (extra)</td>
<td>5 min</td>
<td></td>
</tr>
<tr>
<td>NEPSY-II-NL MND</td>
<td>Memory for Names Delayed</td>
<td>2 min</td>
<td></td>
</tr>
</tbody>
</table>
Regression analysis will be used to investigate whether there are significant differences between the children from the four AED groups at T1 as well as T2, and whether there is a dose effect, while taking into account potential confounders. In order to select confounding factors, we first check the relationships of confounders with medication as well as with the outcome variables. Variables included as potential confounders are type of maternal epilepsy, occurrence of tonic-clonic seizures during pregnancy, use of folic acid, alcohol and nicotine exposure during the first trimester and during the second and third trimesters, breastfeeding, maternal age at birth, maternal IQ, paternal IQ, socioeconomic status (based on parental education), gestational age, gender, age at assessment, congenital malformations and time of inclusion in EURAP-NL database. Variables showing a relationship ($p < 0.15$) with both medication and outcome measures, or variables that are expected to influence child development (e.g., maternal IQ) are entered one by one, each in a separate multiple regression analysis that also includes AED-exposure type (with the VPA-exposed group as the reference group) and standardized dose (taking the percentage relative to the median according to the formula [dose 1st trimester – median AED dose / median AED dose] x 100%).

To examine the course of child developmental problems at ages eight or nine when compared to children aged six or seven, multilevel multiple regression analyses are conducted with repeated measures ‘nested’ within children. Factors such as epilepsy, parenting, family factors that may contribute to developmental problems are included in the models to investigate interaction effects.

Discussion

We hope to obtain insights in neurocognitive, behavioral and family functioning of children who were exposed to AEDs in pregnancy. Findings may help future parents to minimize developmental problems or to cope better with child behavior. We anticipate that strengths are the extensive developmental, neurocognitive and behavioral measurements of both children and parents, with standardized tests and trained assessors blinded to AED exposure. This study extends the NCEP protocol by including children exposed to LEV, which is increasingly prescribed for pregnant women with epilepsy. LEV seems to be associated with fewer malformations after birth, but the long-term neurocognitive and behavioral outcomes should also be investigated.
The follow up on children at eight or nine years allows us to investigate whether their development will improve or deteriorate over time. To date, no studies are available on the long-term outcome for these AEDs in relation to epilepsy and family factors. Examining children at an older age allows us to examine areas of neurocognitive functioning, such as executive functioning, which emerge only later in development. Previous studies have included children up to six years only, or were cross-sectional, using a wider age range5,13,15,31,37,42,51.

An anticipated limitation is that the presence of early developmental concerns in children may lead to a bias in the participation in the study. Families of children who experienced problems at a younger age and who may already have been diagnosed may not want to participate. The opposite may also be conceivable, that parents who experience problems with their child are more likely to participate.

Our study is expected to contribute to clinical practice, offering new information to treating neurologists and other health care professionals to help fine-tuning the counselling of women with epilepsy, before, during, and after pregnancy. The study may not only be of help with the choice of a suitable AED but may also reveal which topics associated with the upbringing of the child should be discussed. Professionals counselling mothers with epilepsy may use the outcomes to ask about family life, parenting, and child development. As such, mothers with epilepsy can be continuously given appropriate support and referral if needed. We hope that this will contribute to the quality of life in mothers with epilepsy, their children, and their families. Finally, by publishing this study protocol, we intend to provide other researchers and healthcare professionals with the tools to set up future studies into child developmental outcome in the context of having been exposed to AEDs and growing up with a mother with epilepsy.
Table 4. Studies on long-term associations between child development and prenatal exposure to antiepileptic drugs

<table>
<thead>
<tr>
<th>Study (publication year)</th>
<th>Design</th>
<th>Sample size</th>
<th>AEDs (n)</th>
<th>Age of assessment</th>
<th>Domain of measurement</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Videman et al. (2016)</td>
<td>Prospective</td>
<td>56 exposed 59 non-exposed</td>
<td>Monotherapy (40): CBZ (9), OXC (10), VPA (5), LTG (8), LEV (7) Polytherapy (16)</td>
<td>7 months</td>
<td>DQ (GMDS) clinical neurological status (HINE)</td>
<td>CBZ, OXC, and VPA, but not LTG or LEV, were each associated with impaired early language abilities compared to control children. The general speed of visuospatial orienting or attentional bias for faces did not differ between AED-exposed and control children.</td>
</tr>
<tr>
<td>2 Wide et al. (2000)</td>
<td>Prospective</td>
<td>81 exposed 81 non-exposed</td>
<td>Monotherapy (65): including CBZ (35), PHT (21) Polytherapy (16)</td>
<td>9 months</td>
<td>Griffiths’ test</td>
<td>Drug exposure did not influence Griffiths’ score. No significant difference between the exposed and the non-exposed children.</td>
</tr>
<tr>
<td>3 Veiby et al. (2013)</td>
<td>Prospective</td>
<td>503 CME, with 223 exposed to AED; 471 children had a father with epilepsy and 77770 reference group</td>
<td>Monotherapy (182): LTG (71), CBZ (48), VPA (27) Polytherapy (41)</td>
<td>6 months</td>
<td>Ages and Stages Questionnaire; BSID (motor and communication skills, social skills and language skills)</td>
<td>Children of mothers using AEDs had higher risk of impaired fine motor skills than reference group; similar risks for monotherapy LTG, CBZ and VPA. Polytherapy highest risks - significant effects on fine motor and social skills. Other developmental measures within normal range. Continuous breastfeeding associated with less impaired development than breastfeeding < 6 months. CME who did not use AEDs and children of fathers with epilepsy - normal development.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Thomas et al. (2008)</td>
<td>Prospective</td>
<td>395 CME with 363 exposed and 32 non-exposed</td>
<td>Monotherapy (246): CBZ (101); VPA (71); PB (41); PHT (29) Polytherapy (122)</td>
<td>1-1.5 years (M age 15.3 months)</td>
<td>Motor and mental development (Indian BSID)</td>
<td>Mean MeDQ 89.1 and mean MoDQ 90.7, was impaired (<84) for 37.6% and 33.5% children respectively. Maternal age, type of epilepsy, seizure frequency, or use of folic acid did not correlate. Maternal education was significantly correlated with MoDQ, but not with MeDQ. Non-exposed had higher scores than exposed. Polytherapy significantly lower DQ than monotherapy. Multiple regression analysis showed that polytherapy was stronger predictor of lower DQ than dose. Compared with CBZ monotherapy, VPA monotherapy was associated with significantly lower scores, but the differences between other AEDs were not significant.</td>
</tr>
<tr>
<td>5 Bromley et al. (2010)</td>
<td>Prospective</td>
<td>194 CME with 167 exposed and 27 non-exposed and 230 control</td>
<td>Polytherapy (30) monotherapy (137): CBZ (48); VPA (42); LTG (34); PHT (7)</td>
<td>2-24 months (M age 10 months)</td>
<td>GMDS</td>
<td>VPA significantly increased risk of delayed early development compared to control children. 29% of children exposed to VPA fell below average (<84) with a relative risk of 3.6. CBZ or LTG did not differ significantly from control children. Dose-dependent relationship was found for VPA, with daily doses >900 mg being associated with statistically poorer scores. No other AED showed a significant relationship with dose.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Prospective</td>
<td>95 exposed</td>
<td>LEV (51); VPA (44)</td>
<td>3-24 months; (M age 14 months)</td>
<td>GMDS</td>
<td>LEV exposed children had higher scores compared to VPA exposed children. LEV did not differ from control children. 8% of LEV exposed with DQ <84, compared to 40% of children exposed to VPA. After controlling for maternal epilepsy and demographic factors, exposure to LEV was not associated with outcome.</td>
</tr>
<tr>
<td>Shalcross et al. (2011)</td>
<td></td>
<td>97 non-exposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>Prospective</td>
<td>726 CME, with 333 exposed to AED; 653 children with a father with epilepsy and 107597 control group</td>
<td>Monotherapy : LTG (104), CBZ (69), VPA (40), LEV (17) Polytherapy (62)</td>
<td>18 months 36 months</td>
<td>Questionnaire motor, language and social development</td>
<td>Questionnaires with symptoms of ASD and ADHD</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Toddlers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Meador et al. (2009)</td>
<td>Prospective</td>
<td>258 exposed CME</td>
<td>Monotherapy: CBZ (73); LTG (84); PHT (48); VPA (53)</td>
<td>2-3 years</td>
<td>BSID-II; DAS</td>
<td>VPA significantly lower IQ than those exposed to other AEDs. After adjustment for maternal IQ, maternal age, dose, gestational age at birth, and maternal preconception use of folate, the mean IQ was 101 for LTG, 99 for PHT, 98 for CBZ, and 92 for VPA. The association between VPA and IQ was dose dependent. Child IQ was significantly related to maternal IQ for CBZ, LTG, and PHT but not with VPA.</td>
</tr>
<tr>
<td>North America/UK [NEAD study]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Scolnik et al. (1994)</td>
<td>Prospective</td>
<td>70 exposed 70 non-exposed</td>
<td>CBZ (36); PHT (34)</td>
<td>18-36 months</td>
<td>BSID / McCarthy</td>
<td>Language (Reynell)</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Rovet et al. (1995)</td>
<td>Prospective</td>
<td>58 exposed 58 non-exposed</td>
<td>Monotherapy CBZ (29); PHT (29)</td>
<td>7-85 months (M age 30 months; 3 years)</td>
<td>BSID / McCarthy</td>
<td>Language (Reynell)</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Continued

<table>
<thead>
<tr>
<th>Study (publication year)</th>
<th>Design</th>
<th>Sample size</th>
<th>AEDs (n)</th>
<th>Age of assessment</th>
<th>Domain of measurement</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Meador et al. (2011)</td>
<td>Prospective</td>
<td>216 exposed CME</td>
<td>Monotherapy: CBZ (59); LTG (70); PHT (39); VPA (43)</td>
<td>3 years (36-45 months)</td>
<td>DAS Preschool language scale; PPVT-IV; Beery</td>
<td>Verbal abilities lower than non-verbal in all exposed children. Folate use associated with higher verbal outcomes. VPA associated with poorer cognitive outcomes and negatively associated with dose for both verbal and non-verbal domains. CBZ dose associated with verbal performance. No dose effects for LTG and PHT.</td>
</tr>
<tr>
<td>12 Cohen et al. (2011)</td>
<td>Prospective</td>
<td>229 exposed CME</td>
<td>Monotherapy: CBZ (61); LTG (76); PHT (40); VPA (46)</td>
<td>3 years (36-45 months)</td>
<td>BSID-II ABAS-II; BASC Parental stress (PSI)</td>
<td>Adjusted mean scores for the four AED groups were in the low average to average range for motor, adaptive, and emotional/behavioral functioning. Dose-related performance decline in motor functioning for both VPA and CBZ and performance decline in adaptive functioning for VPA. Parents endorsed a significant decline in social skills for VPA that was dose related. VPA exposed children at higher risk for future diagnosis of ADHD. No significant group differences on Parenting Stress Index.</td>
</tr>
<tr>
<td>13 Cummings et al. (2011)</td>
<td>Observational cohort study</td>
<td>186 exposed CME; 44 control</td>
<td>LTG (35); VPA (58); CBZ (49)</td>
<td>9-60 months (Age CME 3 years; control 4 years)</td>
<td>BSID; GMDS</td>
<td>39.6% of VPA, 20.4% of CBZ and 2.9% of LTG exposed had mild (≥1, <2 SD below the mean) or significant developmental delay (score ≥2 SD below the mean), compared to 4.5% of control children. Multivariable analysis demonstrated exposure to VPA (OR 26.1) and CBZ (OR 7.7) but not LTG had a significant detrimental effect on neurodevelopment.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Shallcross et al. (2014)</td>
<td>Prospective</td>
<td>228 CME with 97 exposed and 131 control</td>
<td>LEV (53); VPA (44)</td>
<td>3 - 4.5 years (M age 3.5 years)</td>
<td>GMDS</td>
<td>After controlling for confounding variables, children exposed to LEV did not differ from unexposed control children. VPA scored, on average, 15.8 points below children exposed to LEV on measures of gross motor skills, 6.4 points below on comprehension language abilities, and 9.5 points below on expressive language abilities. No dose effect was detected for either LEV or VPA. Maternal seizures during pregnancy were predictive of poorer developmental outcomes.</td>
</tr>
<tr>
<td>UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ornoy & Cohen, 1996</td>
<td>Prospective (national teratogen information service)</td>
<td>47 exposed 47 non-exposed</td>
<td>CBZ (47)</td>
<td>6 months – 6 years</td>
<td>Bayley developmental scales for children up to 2.5 years of age, or McCarthy’s developmental scales for children above 3 years.</td>
<td>6 of the 47 children exposed to monotherapy CBZ had typical facial features of ‘carbamazepine syndrome’. Cognitive scores of exposed children significantly lower than non-exposed. All six children with CBZ syndrome had DQ or IQ below 90. No differences between the two groups in physical growth, rate of major anomalies or motor scores.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School age children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Kasradze et al. (2017)</td>
<td>Prospective</td>
<td>50 exposed 50 non-exposed</td>
<td>VPA (18); CBZ (16); Other AED: 3 LGT; 3 PB; 1 LEV</td>
<td>36-72 months (M age 4 years)</td>
<td>WPSI-4</td>
<td>Exposure to VPA was associated with lowest cognitive performance regarding FSIQ and verbal comprehension (VCI). Maternal IQ, and child’s age at first phrases were independent factors negatively associated with the cognitive development of children.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>McVearry et al. (2009)</td>
<td>Prospective</td>
<td>42 exposed CME</td>
<td>Monotherapy CBZ (16); LTG (17); VPA (9)</td>
<td>Age 4.2 years</td>
<td>Cognitive fluency (TCAM)</td>
<td>Both for cognitive fluency and originality, main effect was found for exposure to AEDs. For fluency and originality, the group mean for VPA was significantly different from LTG and CBZ. No significant difference found between LTG and CBZ.</td>
</tr>
<tr>
<td>Meador et al. (2012)</td>
<td>Prospective</td>
<td>209 exposed CME</td>
<td>Monotherapy CBZ (53); LTG (72); PHT (40); VPA (38)</td>
<td>4.5 years (51-61 months)</td>
<td>DAS</td>
<td>IQ of VPA was lower compared to other AEDs and negatively associated with dose. Adjusted means were CBZ 106, LTG 106, PHT 105, VPA 96. Maternal IQ correlated with child IQ for children exposed to the other AEDs, but not VPA. Age 4.5 IQ correlated with age 2 BSID and age 3 IQ. Frequency of marked intellectual impairment diminished with age except for VPA (10% with IQ < 70). Verbal abilities were impaired for all 4 AED groups compared to nonverbal skills.</td>
</tr>
<tr>
<td>Kjaer et al. (2013)</td>
<td>Follow-up study</td>
<td>81 exposed CME, 208 non-exposed CME and 828 control</td>
<td>Not enough power to analyze between different AEDs</td>
<td>4–5 years</td>
<td>SDQ</td>
<td>Prenatal AED exposure may increase risk of behavioral problems even after adjustment for potential confounders and maternal epilepsy. Children prenatally exposed to AEDs more often abnormal total SDQ score as compared with children of women without epilepsy and compared with CME not on AEDs during pregnancy.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Wide et al. (2002) Sweden</td>
<td>Prospective</td>
<td>67 exposed 66 non-exposed</td>
<td>CBZ (35); PHT (16)</td>
<td>4.5 – 5 years</td>
<td>Griffith’s test</td>
<td>No significant difference between the two groups of children. PHT showed a significant but subtle reduction in the scores for locomotor development compared to the unexposed children. No such difference for the children exposed to CBZ.</td>
</tr>
<tr>
<td>Natarajan (2016) India</td>
<td>Prospective</td>
<td>55 exposed 55 non-exposed</td>
<td>Monotherapy: PHT (10); CBZ (5); VPA (10); Polytherapy (30)</td>
<td>3-10 years</td>
<td>Vineland social maturity scale, Binet Kamat scale</td>
<td>Compared to non-exposed children, monotherapy VPA and polytherapy had significantly more neurodevelopmental delay. Polytherapy and VPA exposed had low IQ scores 79.4 and 82.8, respectively. PHT IQ score of 94.2 and CBZ 95.2. Exposed children had lower scores in language, vocabulary, sentence building, similarities and differences, analogies sentence repetition and conceptual thinking. No significant difference on visuomotor tasks, auditory perception, and social skills between exposed and non-exposed children.</td>
</tr>
<tr>
<td>Vanoverloop et al. (1992)</td>
<td>Retrospective</td>
<td>20 exposed 98 non-exposed</td>
<td>PHT monotherapy and polytherapy with PB</td>
<td>4-8 years</td>
<td>WPPSI/ WISC-R, Visual motor integration (VMI); Grammatic closure and Auditory Association (language), Spontaneous activity (play)</td>
<td>No children with below average IQ. PHT-exposed children significantly lower scores for both PIQ, FSIQ, Visual Motor Integration Test and time in quadrant, as well as several subtests.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Prospective</td>
<td>72 exposed 52 unexposed</td>
<td>VPA (30) LTG (42)</td>
<td>3-6.11 years (M age 50-60 months)</td>
<td>SBS</td>
<td>Fine and gross motor (DCDQ; M-FUN), Visual motor integration (BEERY) Sensory processing (SP), Executive function (BRIEF)</td>
</tr>
<tr>
<td>Israel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Prospective</td>
<td>130 exposed 55 non-exposed</td>
<td>Monotherapy: LEV (42); TPM (27); VPA (47); GBT (14)</td>
<td>5-9 years</td>
<td>WISC-IV/ WPSI-III</td>
<td>NEPSY BASC</td>
</tr>
<tr>
<td>UK [overlap in sample with Shallcross et al., 2011, 2014]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In both comparison between AED vs control and VPA-LTG vs control, control children performed better in all areas. No significant differences were found between VPA and LTG. But more differences were found between VPA and control than LTG and control. Compared to control group VPA exposed children scored lower on motor and sensory tasks, and according to parent report higher on behavior/attention problems. LTG exposed children had lower scores on motor and sensory tasks when compared to control children, but did not have behavior/attention problems. Notable were relatively low doses, with mean daily dose of 546.3 mg for VPA.
<table>
<thead>
<tr>
<th>Study (publication year)</th>
<th>Design</th>
<th>Sample size</th>
<th>AEDs (n)</th>
<th>Age of assessment</th>
<th>Domain of measurement</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Thomas et al. (2007)</td>
<td>Prospective</td>
<td>71 exposed CME, 201 non-exposed</td>
<td>PB; PHT; CBZ; VPA</td>
<td>6 years (M age 6.4 years)</td>
<td>DQ / developmental outcomes</td>
<td>Indian IQ test, Indian language test</td>
</tr>
<tr>
<td>26 Bromley et al. (2013)</td>
<td>Prospective</td>
<td>201 CME, 214 control</td>
<td>Monotherapy: CBZ; LTG; VPA; Polytherapy</td>
<td>6 years</td>
<td>Neurodevelopmental problems (e.g. diagnoses ASD/ADHD)</td>
<td>Neurodevelopmental disorders more frequently reported in children of WWE (7.46%) than in control group (1.87%). Increase in risk of neurodevelopmental disorders in children exposed to monotherapy VPA (12.0%; a OR 6.05) and in those exposed to polytherapy with VPA (15.0%; a OR 9.97) compared with control children. ASD was the most frequent diagnosis. No significant increase was found among children exposed to CBZ or LTG. Children of women with untreated epilepsy had no neurodevelopmental disorders.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Meador et al. (2013)</td>
<td>Prospective</td>
<td>224 exposed CME</td>
<td>Monotherapy CBZ (61); LTG (74); PHT (40); VPA (49)</td>
<td>6 years (70-87 months, M age 74 months)</td>
<td>DAS CMS; BRIEF; NEPSY; Beery</td>
<td>IQ was lower after exposure to VPA (97) than CBZ (105), LTG (108), or PHT (108). VPA did poorly on verbal and memory abilities compared with those exposed to other AEDs and on non-verbal and executive functions compared with LTG (but not CBZ or PHT). High doses of VPA were negatively associated with IQ, verbal ability, non-verbal ability, memory, and executive function, but other AEDs were not. Age-6 IQ correlated with IQs at younger ages, and IQ improved with age for infants exposed to any AED. Verbal abilities were worse than non-verbal abilities and in the LTG and VPA groups in particular.</td>
</tr>
<tr>
<td>Cohen et al. (2013)</td>
<td>Prospective</td>
<td>195 exposed CME</td>
<td>Monotherapy: CBZ (53); LTG (63); PHT (31); VPA (45)</td>
<td>6 years</td>
<td>ABAS-II; BASC Parental stress (PSI)</td>
<td>Adjusted mean scores for all AED groups were in the low average to average range for adaptive and emotional/behavioral functioning. VPA had significantly lower adaptive functioning than LTG and PHT. With dose-related performance decline for VPA and PHT, VPA had more atypical behaviors and inattention than children exposed to LTG and PHT. Children exposed to VPA at a significantly greater risk for a diagnosis of ADHD. No significant group differences on Parenting Stress Index.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Prospective</td>
<td>198 CME</td>
<td>AEDs (n)</td>
<td>6 years</td>
<td>DQ/developmental</td>
<td>Adjusted mean IQ 9.7 points lower for children exposed to high-dose VPA (>800 mg daily); similar significant effect for verbal, nonverbal, and spatial subscales. VPA > 800 mg had an 8-fold increased need of educational intervention relative to control children. VPA at doses < 800 mg daily was not associated with reduced IQ, but was associated with impaired verbal abilities and a 6-fold increase in educational intervention. CBZ or LTG did not have a significant effect on IQ, but CBZ was associated with reduced verbal abilities and increased frequency of IQ < 85. No association with increased educational intervention and no dose effect for CBZ.</td>
</tr>
<tr>
<td>Baker et al. (2015)</td>
<td></td>
<td>173 exposed</td>
<td>VPA (51); CBZ (50); LTG (29); other (13) and polytherapy (30)</td>
<td></td>
<td>IQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 non-exposed and 210 control</td>
<td></td>
<td></td>
<td>Neurocognition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Family/parenting</td>
<td></td>
</tr>
<tr>
<td>Scotland/UK</td>
<td>Retrospective clinical study</td>
<td>57 exposed</td>
<td>VPA (46 with 34 monotherapy); PHT(4); CBZ(4)</td>
<td>0-16 years (M age 6.48 years)</td>
<td>Developmental delay</td>
<td>81% reported behavioral problems, 39% with hyperactivity or poor concentration of whom 7% had a diagnosis of ADHD. 60% reported two or more autistic features, of whom four had a diagnosis of autism and two of Asperger’s syndrome. 77% had learning difficulties, 81% speech delay, 60% gross motor delay, and 42% fine motor delay.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 Mawer et al. (2002)</td>
<td>Prospective</td>
<td>69 exposed (56 follow-up)</td>
<td>Monotherapy: VPA (23); CBZ (18); PHT (7); LTG (4); Polytherapy (15)</td>
<td>4 months – 10 years</td>
<td>Developmental delay, dysmorphic features and structural anomalies</td>
<td>Dystrophic features in more than half of the children and developmental delay in about one-quarter. Structural anomalies were found in about one-third. Adverse features were mild but in about 10% moderate or severe. Developmental delay was associated with dysmorphic features but not with structural anomalies. Positive association between adverse outcome in all domains and VPA dose. With VPA <1000 mg adverse features were absent or mild but at higher doses moderate or severe. No significant association between adverse outcome and CBZ dose.</td>
</tr>
<tr>
<td>32 Nadebaum et al. (2011) Australia</td>
<td>Prospective</td>
<td>57 exposed CME</td>
<td>Monotherapy VPA (23); Polytherapy with VPA (15) and (19) without VPA</td>
<td>6-8 years (M age 7.4 years)</td>
<td>WISC-IV</td>
<td>All groups had elevated frequencies of Extremely Low (<70) or Borderline (70–79) FSIQ. Verbal Comprehension and Working Memory scores in all groups fell significantly below the standardized test mean, while Perceptual Reasoning and Processing Speed scores were relatively intact. Multivariate analysis of covariance analysis revealed significant main effects of VPA on Verbal Comprehension and Working Memory, and of polytherapy on Verbal Comprehension and Processing Speed. Results suggest that VPA has a dose-dependent negative impact on verbal intellectual abilities, and may also affect working memory.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Nadebaum et al. (2011)</td>
<td>prospective</td>
<td>102 exposed CME</td>
<td>Monotherapy: VPA 23; CBZ 34; LTG 9; polytherapy with VPA 15 and without VPA 10</td>
<td>6-8 years (M age 7.4 years)</td>
<td>Language (CELF-4)</td>
</tr>
<tr>
<td></td>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Gaily et al. (2004)</td>
<td>Prospective</td>
<td>182 CME with 137 exposed, 45 non-exposed and 141 control</td>
<td>Monotherapy (107): CBZ 86; VPA 13 and Polytherapy (30, with VPA 17)</td>
<td>M age CME 7.0 years control; 7.4 years</td>
<td>WPPSI-R</td>
</tr>
<tr>
<td></td>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Adab et al. (2001)</td>
<td>retrospective</td>
<td>400 CME with 224 exposed and 176 non-exposed</td>
<td>Monotherapy (150); CBZ 63; VPA 56; LTG 5; PHT 22; polytherapy (74)</td>
<td>4-18 years (M age 8.95)</td>
<td>Additional educational needs</td>
</tr>
<tr>
<td></td>
<td>UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Christensen et al. (2013)</td>
<td>Population based cohort study; follow-up</td>
<td>655615, of which 2644 exposed and 655107 non-exposed</td>
<td>VPA (508)</td>
<td>M age at follow-up 8.84 years (4-14 years)</td>
<td>ASD diagnoses</td>
</tr>
<tr>
<td></td>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Continued

<table>
<thead>
<tr>
<th>Study (publication year)</th>
<th>Design</th>
<th>Sample size</th>
<th>AEDs (n)</th>
<th>Age of assessment</th>
<th>Domain of measurement</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 Wood et al. (2015)</td>
<td>Prospective follow up study</td>
<td>105 exposed</td>
<td>VPA (26); CBZ (34); other monotherapy (11) and polytherapy (34 including 15 with VPA)</td>
<td>6-8 years M age 7.4 years</td>
<td>DQ / developmental outcomes, IQ, Neurocognition, Behavior, Family/parenting</td>
<td>Children exposed to polytherapy with VPA scored significantly higher than all other groups. Linear regression analysis showed that the mean VPA dose during pregnancy was a significant predictor of CARS scores after controlling for polytherapy, mean CBZ dose, folic acid use, seizures during pregnancy, tobacco and marijuana use, maternal IQ, and SES.</td>
</tr>
<tr>
<td>38 Dean et al. (2002)</td>
<td>Retrospective</td>
<td>293 CME with 255 exposed and 38 nonexposed</td>
<td>CBZ; PB; VPA; PHT</td>
<td>Age 2 days – 39 years (M age 9 years)</td>
<td>Developmental delay, including speech delay</td>
<td>Behavioral problems</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 Rasalam et al. (2005)</td>
<td>Retrospective</td>
<td>260 of which 14 exposed children are further reviewed</td>
<td>VPA; CBZ</td>
<td>M age 9;10 years</td>
<td>Characteristics of fetal anticonvulsant syndrome; speech and language development</td>
<td>Prenatal exposure to AED is a risk factor for the development of an ASD. 26 children were reported by parents to have social or behavioral difficulties. 11 children fulfilled the criteria for autistic disorder and one fulfilled the criteria for Asperger syndrome (AS). These children comprised 4.6% of the exposed children studied, and 1.9% of all exposed children born during the study period. VPA was most associated with autistic disorder, 8.9% of children exposed to VPA had either autistic disorder or AS.</td>
</tr>
<tr>
<td>Scotland/UK [subgroup Dean 2002]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 Erikson et al. (2005)</td>
<td>Population based observational study</td>
<td>26 exposed, 13 non-exposed</td>
<td>VPA (13); CBZ (13)</td>
<td>6.6-13.4 years (M age 9.7 years)</td>
<td>WISC-III; NEPSY (Attention and Executive functions, Language, Sensorimotor and Visuospatial domain, and Memory and Learning functions)</td>
<td>Prevalence of low intelligence (FIQ < 80) was 19%, and exceptionally low intelligence (FIQ < 70) 10% in VPA exposed children. Children exposed to CBZ and children of WWE not exposed to AED during pregnancy had all at least low average intelligence. Mean IQs of children exposed to VPA were 11–17 points lower than CBZ and non-exposed group, however mean difference of children on FIQ, VIQ and PIQ were not statistically significant. On NEPSY subtests VPA exposed children performed significantly lower on Memory for Faces compared with CBZ and lower than non-exposed on List Learning.</td>
</tr>
</tbody>
</table>
Table 4. Continued

<table>
<thead>
<tr>
<th>Study (publication year)</th>
<th>Design</th>
<th>Sample size</th>
<th>AEDs (n)</th>
<th>Age of assessment</th>
<th>Domain of measurement</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 Viinikainen et al. (2006)</td>
<td>Observational population based</td>
<td>26 exposed 13 non-exposed</td>
<td>VPA (13); CBZ (13)</td>
<td>6.6-13.4 years (M age 9.7 years)</td>
<td>DQ / developmental outcomes</td>
<td>IQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>School problems/ additional educational needs</td>
<td>Conners teacher rating scale (CTRS)</td>
</tr>
<tr>
<td>42 Adab, Kini et al. (2004) UK</td>
<td>Retrospective</td>
<td>249 CME with 169 exposed and 80 non-exposed</td>
<td>Monotherapie: CBZ (52); VPA (41); PHT (21); other (6) polytherapy (49)</td>
<td>6-16 years (M age 10.4 years)</td>
<td>WISC</td>
<td>FSIQ was at the low end of the average range for children exposed to monotherapy and was similar to the mean score in unexposed children. The mean PIQ was within or close to the average range in all AED groups, with no significant difference among the different exposures. Mean VIQ was significantly lower in VPA group compared to unexposed and other monotherapy groups. Multiple regression analysis showed that both VPA exposure and frequent tonic-clonic seizures in pregnancy were significantly associated with lower verbal IQ despite adjusting for other confounding factors.</td>
</tr>
<tr>
<td>Study (publication year)</td>
<td>Design</td>
<td>Sample size</td>
<td>AEDs (n)</td>
<td>Age of assessment</td>
<td>Domain of measurement</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 Vinten et al. (2005)</td>
<td>Retrospective</td>
<td>249 CME with 169 exposed and 80 non-exposed</td>
<td>Monotherapie: CBZ (52); VPA (41); PHT (21); other (6) polytherapy (49)</td>
<td>6-16 years (M age 10.4 years)</td>
<td>WISC-III Memory test (RMBTC)</td>
<td>Children exposed to VPA had a significantly lower VIQ when compared to children exposed to other AEDs or non-exposed children. VPA exposed were more likely to have IQ < 69 and more likely to have memory impairment when compared to other groups. Maternal IQ, exposure to VPA, and number of tonic-clonic seizures during pregnancy were significant predictors of VIQ.</td>
</tr>
<tr>
<td>UK [Same sample as Adab, Kini, et al. 2004]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44 Vinten et al. (2009)</td>
<td>Retrospective</td>
<td>242 CME with 162 exposed and 80 unexposed</td>
<td>Monotherapy: CBZ (49); VPA (41); PHT (20); Polytherapy with VPA (28) and without (24)</td>
<td>6-16 years (M age 10.4 years)</td>
<td>Adaptive behavior and maladaptive behavior (VABS) Parental stress (PSI)</td>
<td>VPA exposure was associated with high levels of parental stress induced by child maladaptive behavior. VPA exposed children also had poorer daily living skills and socialization skills. VABS and PSI were strongly affected by child FSIQ; however, no significant differences were found between the groups on FSIQ.</td>
</tr>
<tr>
<td>UK [Same sample as Adab, Kini, et al. 2004]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 Kantola-Sorsa et al. (2007)</td>
<td>Prospective</td>
<td>154 exposed and 130 non-exposed</td>
<td>Among others CBZ and VPA both mono- and polytharpy</td>
<td>5-11 years (M age 7 years)</td>
<td>Developmental interview WPPSI-R; WISC-R Attention, Language skills, Fine motor skills, Visuospatial skills and Memory and learning (NEPSY)</td>
<td>Despite similar IQ, CME scored significantly lower than control children on measures of attention, memory, and fine-motor function. Deficits were more marked in but not limited to the subset of the study group exposed to maternal AEDs. Group differences on auditory attention were found only in younger children. VPA-exposed children had lower scores on sentence repetition and on the more demanding part of auditory attention, than other children in the study group, suggesting weaknesses in working memory.</td>
</tr>
</tbody>
</table>
Table 4. Continued

<table>
<thead>
<tr>
<th>Study (publication year)</th>
<th>Design</th>
<th>Sample size</th>
<th>AEDs (n)</th>
<th>Age of assessment</th>
<th>Domain of measurement</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gopinath et al. (2015)</td>
<td>Prospective</td>
<td>190 CME with 115 exposed; 11 non-exposed and 149 controls</td>
<td>Monotherapy (67); VPA (36); PB (22); PHT (11); CBZ (40); LTG (1); CNZ (1) and polytherapy (48)</td>
<td>10-12 years (M age 11.4 years)</td>
<td>WISC-IV</td>
<td>Attention (TMT); Visual and verbal memory (RAVLT; WMS-VR)</td>
</tr>
</tbody>
</table>

References

22. Eriksson K, Gaily E. Neurocognitive extension protocol (NCEP) for children exposed to antiepileptic drugs in utero International, multicentre, semi/prospective evaluation of children exposed to carbamazepine, lamotrigine or valproate monotherapy during the prenatal period. Helsinki, Finland: helsinki university Hospital; 2011.

46. Schopler E, Reichler RJ, Renner BR. The childhood autism rating scale (CARS). Western Psychological Services Los Angeles, CA; 2002.

