From solution to solid state: energy- and electron-transfer in complex materials

d’Aléo, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Contents

Chapter 1: Introduction

1.1 Phototinduced electron transfer processes 4
 1.1.1 Thermodynamical considerations 5
 1.1.2 Kinetic considerations 6

1.2 Electronic energy processes 9
 1.2.1 Förster-type energy transfer 9
 1.2.2 Dexter-type energy transfer 10

1.3 Pyrene as electron- or energy donor or acceptor 11
 1.3.1 Pyrene as electron donor or acceptor 12
 1.3.1.a Pyrene as electron donor 12
 1.3.1.b Pyrene as electron acceptor 15
 1.3.2 Pyrene as energy donor or acceptor 16
 1.3.3 Pyrene involved in electron and energy transfer 18
 1.3.4 Conclusion 19

1.4 Scope of the Thesis 20

1.5 References 27

Chapter 2: Extending excited state lifetimes by interchromophoric triplet state equilibration in a pyrene-Ru(II)diimine- dyad system

2.1 Introduction 30

2.2 Synthesis 31

2.3 Electronic absorption spectra 32

2.4 Luminescence spectroscopy 33

2.5 Transient absorption spectroscopy 38

2.6 Conclusion 41
 Final remarks 42

2.7 Experimental section 43

2.8 References 44
Chapter 3: Electronic energy transfer in dinuclear metal complexes containing meta-substituted phenylene unit

- **3.1** Introduction
- **3.2** Results and discussion
- **3.2.1.** Synthesis
- **3.2.2.** Photophysical properties
 - **3.2.3.a.** UV/visible absorption spectroscopy
 - **3.2.3.b.** Steady state luminescence
 - **3.2.3.c.** Time resolved spectroscopy
- **3.3** Conclusion
- **3.4** Experimental part
- **3.5** References

Chapter 4: Enhancement of Intra-Ligand Charge-Transfer character induced by Zinc (II) complexation in terpyridine-pyrene system

- **4.1** Introduction
- **4.2** Synthesis
- **4.3** Electrochemistry
- **4.4** UV/visible absorption
- **4.5** Luminescence study
- **4.6** Estimation of excited state dipole moment
- **4.7** Transient absorption spectroscopy
- **4.8** Conclusions
- **4.9** Experimental part
- **4.10** References

Chapter 5: ‘Y-shaped’ ruthenium bisterpyridine derivatives for Non Linear Optics

- **5.1** Introduction
- **5.2** Background on nonlinear optics
- **5.3** Synthesis and characterization of the functionalized ruthenium bisterpyridine complexes
Chapter 6: Electrochemical and photophysical properties of Ruthenium(II) bipyridyl complexes with pendant alkanethiol chains in solution and anchored to metal surfaces

6.1 Introduction
6.2 Results and discussion
 6.2.1. Synthesis
 6.2.2. Photophysical properties in solution
 6.2.3. Electrochemical characterization of the complexes in solution and as self-assembled layers
 6.2.4. Photophysics of the functionalized surfaces
6.3 Conclusions
6.4 Experimental part
6.5 References

Chapter 7: Oligothia dendrimers for the controlled formation of gold nanoparticles

7.1 Introduction
7.2 Results and discussion
 7.2.1. Synthesis of the ligand and nanoparticle formation
 7.2.2. UV/visible absorption spectroscopy
 7.2.3. 1H-NMR analysis
 7.2.4. High resolution transmission electron microscopy
7.3 Conclusions
7.4 Experimental part
7.5 References
Chapter 8: Instrumentation and experimental methods

8.1 Steady state absorption and emission measurements 170
8.2 Time resolved spectroscopy measurements 170
 8.2.1. Time resolved fluorescence 170
 8.2.1.a. Nanosecond time scale 170
 8.2.1.b. Picosecond time scale 171
 8.2.2. Time resolved absorption 171
 8.2.2.a. Nanosecond time scale 172
 8.2.2.b. Sub-picosecond time scale 172
 8.2.3. Confocal microscopy 174
8.3 Nonlinear optic measurements 174
8.4 Electrochemistry 175
8.5 High resolution transmission electron microscopy 176
8.6 References 177