EDiFy: An Execution time Distribution Finder

Braams, B.; Altmeyer, S.; Pimentel, A.D.

DOI
10.1145/3061639.3062233

Publication date
2017

Document Version
Final published version

Published in
2017 54th ACM EDAC IEEE Design Automation Conference (DAC 2017)

License
Article 25fa Dutch Copyright Act

Citation for published version (APA):
https://doi.org/10.1145/3061639.3062233
EDiFy: An Execution time Distribution Finder

Boudewijn Braams
University of Amsterdam
bbx1992@gmail.com

Sebastian Altmeyer
University of Amsterdam
altmeyer@uva.nl

Andy D. Pimentel
University of Amsterdam
a.d.pimentel@uva.nl

ABSTRACT
Embedded real-time systems are subjected to stringent timing constraints. Analysing their timing behaviour is therefore of great significance. So far, research on the timing behaviour of real-time systems has been primarily focused on finding out what happens in the worst-case (i.e., finding the worst case execution time, or WCET).

While a WCET estimate can be used to verify that a system is able to meet deadlines, it does not contain any further information about how the system behaves most of the time. An execution time distribution does contain this information and can provide useful insights regarding the timing behaviour of a system. In this paper, we present EDiFy, a measurement-based framework that derives execution time distributions by exhaustive evaluation of program inputs. We overcome the scalability and state-space explosion problem by i) using static analysis to reduce the input space and ii) using an anytime algorithm which allows deriving a precise approximation on the execution time distribution. We exemplify EDiFy on several benchmarks from the TACLeBench and EEMBC benchmark suites, and show that the anytime algorithm provides precise estimates already after a short time.

1. INTRODUCTION
Research on the timing behaviour of embedded real-time systems has been primarily focused on determining the worst-case execution time (WCET). This focus is clearly motivated by the need for timing verification, i.e., the need to guarantee at design time that all deadlines will be met. Figure 1 taken from the survey paper on WCET analyses [15] illustrates the simplification of this focus: It shows the fictitious execution time distribution of a real-time task, i.e. the smallest individual software component within the system. A WCET analysis reduces the often complex timing-behaviour of a task to a single value. Speaking in terms of Figure 1, all values left of the WCET are ignored. Timing verification, in its traditional form, only requires bounds on the WCET of all tasks in the system. It assumes conservatively that the system operates correctly, only if it does so when all tasks run up to their WCET value. For many industries, this assumption is unnecessarily conservative and leads to costly over-provisioning of hardware resources. In fact, only very few real-time applications, mostly from the avionics industry, require a timing verification up to the highest standard. In most cases, infrequent deadline misses are acceptable and also preferable to excessive hardware costs. The state-of-the-art in timing analysis, however, does not provide the necessary means to derive richer information about the timing behaviour.

Figure 1: An execution time distribution, with annotated best-case execution time (BCET) and worst-case execution time (WCET), source [15] (modified)

In this paper, we close this gap and present EDiFy, a framework for the estimation of execution time distributions of embedded real-time tasks. While a WCET estimate merely describes the execution time in the worst case scenario, a distribution describes the execution times in all possible scenarios. It can therefore be a valuable asset to the development process of real-time embedded systems, and can answer questions such as: is the worst-case a common or a rare case, what is the average execution time, or, what is the difference between best and worst-case execution time.

Deriving execution time distributions is an even more complex task than bounding the WCET value, as it subsumes the former: A correct and complete execution time distribution would also contain the information about the WCET value. Consequently, we have to restrict the problem setting: First of all, we rely on measurements instead of static analyses. Relying on measurements implies that the resulting execution time distribution will never show the full picture, unless the input space allows for exhaustive measurements, which is highly unlikely. Secondly, EDiFy is task-centric: we assume that only the task under examination is running on the hardware. Analysing the timing behaviour of a complete task set and schedule is future work. Thirdly, we assume an input value probability distribution to be provided. Even though it may seem as a strong assumption, it is an absolute necessity. Not even the average execution time is well defined, if we do not know which inputs occur how often. The burden of providing these distributions is clearly on the system designer. We...
also consider this assumption feasible as sample data can be derived via test runs, control simulations and so on. Last but not least, we concentrate for now on control applications, instead of data-intensive image or video-processing benchmarks due to the size of the input data. With these restrictions in place, which we consider reasonable and realistic, the problem remains computationally intractable. EDiFy overcomes this obstacle by a combination of i) a static analysis to reduce the state-space, ii) a distributed anytime algorithm, and iii) an evenly-distributed state-space traversal that ensures quick convergence of the anytime algorithm.

We note that our work differs fundamentally from probabilistic timing analyses as currently advocated for real-time verification. We do not employ any statistical methods. Instead, EDiFy uses a heuristic to approximate the distribution. If executed for a sufficiently long time, EDiFy will eventually result in the ground-truth under the restriction detailed above, and assuming that the distribution of the distribution of the input values is provided. Hence, as a side-effect, the EDiFy framework enables us to evaluate the precision and correctness of measurement-based probabilistic timing analyses [4]. Yet, we are ultimately interested in providing a precise approximation on the execution-time distribution, and not in providing estimates on the WCET.

Related Work. Execution time analyses can be classified as static analyses or measurements-based analyses [15]. Static analyses are based on analysing program code and control flow and do not involve any actual execution of program code. nIT [11] and Bound-T [12] are examples of commercial static analysis tools used in the real-time embedded systems industry. However, these tools are designed for producing WCET estimates only, and are not suited for deriving execution time distributions. In 2004, David and Puaut [9] developed a static analysis to derive complete execution time distributions, but without considering any hardware effects, such as caching, branch-prediction or pipelining. Their approach consists purely of a source-code analysis, hence the resulting distribution can only be an abstract indication of the actual execution times on real hardware.

Measurement-based analyses, in contrast, extract timing behaviour by taking actual run-time measurements of execution times. This method is inherently simpler and merely requires the program code and/or binary and a means to execute it (either on real hardware or in a simulated environment). RapiTime [3] represents an example of a commercial measurement-based tool. As it is in general intractable to derive all measurements, measurement-based WCET analyses tend to steer the input values towards the worst-case. This is again in stark contrast to our approach, where we need to cover a wide range of input values. Recently, probabilistic timing analyses, especially measurement-based probabilistic timing analyses [4], have received ample attention in the real-time community. Despite arguing about execution time distributions in general, these approaches only serve to derive upper bounds on the execution and employ extreme-value theory [8] or copulas [5] to this end. As a consequence, these methods rely on strong assumptions about the probabilistic nature [13] of the hardware and input values, and foremost, they only derive cumulative distribution functions to assign exceedance probabilities to WCET estimates. To the best of our knowledge, no methods are available so far to derive complete execution time distributions on modern hardware.

Structure. The paper is structured as follows: Section 2 introduces the EDiFy framework, its inputs and outputs and the tools used. In Section 3 we detail the state-space pruning, and in Section 4, we detail the anytime algorithm. Section 5 provides an evaluation based on selected TACLeBench and EEMBC benchmarks, and Section 6 concludes the paper.

2. THE EDIFY FRAMEWORK

In this section, we explain the overall structure of the EDiFy framework and the required input and derived output. The input to the framework is the C-code of the program to be analysed, and the input value probability distributions of each input variable. The output is an approximation on the corresponding execution time distribution. We define an execution time distribution (ETD), as a probability distribution, which gives the likelihood of a certain execution time occurring: ETD: N → R with \(\sum ET(t) = 1 \). Such a distribution captures the complete timing behaviour of a system.

We note that for real-world applications of embedded real-time systems it can be assumed that input values are not uniformly distributed. Take for example a control system in a modern car where the engine temperature is an input variable. Initially, the engine temperature will be low, but after driving the car for a while the engine will remain warm. It is hence evident that the input value distribution (IVD) influences the ETD, and must therefore be taken into account. An IVD assigns each value of an input variable its likelihood: IVD: \(\forall v \rightarrow \mathbb{N} \) with \(\sum v \in V \text{ IVD}(v) = 1 \) where \(V \) is the set of values of a variable of type \(T \). We require an IVD for each independent input variable, and a conditional probability distribution for a dependent variable. We note that dependency between variables do not change the complexity of the EDiFy framework, as the input probabilities are solely used to weight the measured execution times.

For the sake of simplicity, we only present the equations assuming independent variables. Further details on handling depending types can be found in [7].

2.1 Structure of the EDiFy Framework

The framework (see Figure 2) consists of two main components, a static part to prepare the input space, shown on the left side, and a dynamic part to run the measurements, shown on the right side. The input preparation is executed once, and performs a static program analysis to derive the set of variables that indeed influence the execution time of the task, and how these variables influence the execution time. The rational behind this step is to reduce the input space by pruning irrelevant input variables and variable ranges: not each input variable influences the execution behaviour, and not each input value leads to a distinct execution time. Section 3 provides the details on the input preparation. The measurements, i.e. the dynamic part of the EDiFy framework, are executed distributively by a fixed number of worker processes. Each process is assigned a dedicated range of the complete input space, and traverses this range until either each input value of the assigned range has been visited, or until the algorithm is aborted. In each iteration for each process, an input generator computes the next state of the input space to be visited, injects these values in the test-harness of the C-code provided by the user, and creates a stand-alone executable to be executed in the simulator. The result of each measurement is forwarded to the execution time distribution calculator, which weighs the measured execution times with the input distribu-
tion. The ETD calculator continuously updates the resulting ETD estimation. The algorithm can thus be aborted at any
time, while still producing meaningful results. Section 4 pro-
vides the details on the anytime algorithm.

![Diagram of the EDiFy Framework]

Figure 2: Toolchain of the EDiFy Framework. The input to the framework are the C-code, and the Input
distributions for each input variable, the output is the
corresponding execution time distribution. The left part
of the toolchain (input preparation) is executed exactly once, whereas the right part (measurements)
is executed iteratively and distributively.

2.2 Supported Input Types

For each supported type, we require a bijective function
that maps the complete domain of the variable to the natural
numbers \(N \), which enumerates all values of that type \(E: \mathbb{T} \rightarrow N \). For example, the enumeration function for Boolean values
simply assigns 0, resp. 1, to the values true and false. The
enumeration function for integer shifts the complete range by
the minimum integer value, i.e., \(E_{\text{int}}(x) = x + \lfloor \text{INT_MIN} \rfloor \)
to ensure that the enumeration function starts at 0, instead
of a negative value. For arrays with \(n \) unique values, the
lexicographic order is used as an enumeration function.

Built-in types such as floats and doubles can also be in-
tegrated: We can simply interpret the bit-representation
of a float value as an integer value, and apply the enumeration
function for in integers \(E_{\text{int}} \). Compound types such as structs,
or arrays are supported by interpreting each component as an
independent input variables. Only domain specific knowledge
must be encoded using a dedicated enumeration function.

We note that input variables can influence the execution
time either by influencing the control flow directly, i.e., through
conditionals, or loop-statements, or through instructions with
variable execution times, such as floating-point or memory
operations. While the EDiFy framework also supports vari-
able instruction execution times by exhaustive evaluation of
pointer or floating point values, dedicated support for this
type of input-dependent execution time is future work.

2.3 Hardware State

The EDiFy Framework is task-centric, meaning that we
assumed no other tasks or code to be executed on the same
hardware system. Consequently, there are only two hardware
states that can occur, a cold system, where no data or in-
structions have yet been cached, or a warm system, where the
cache has already been filled with data from the task under
examination. Results for the first can be achieved by reset-
ting the simulation after each measurement, and the second
by executing the same task with the same input data twice,
but only measuring the second iteration.

We acknowledge that this restriction is rather substantial.
We do however believe that the information about the execu-
tion time distribution based on warm or cold system hardware
states only, is already valuable on its own. The extension to
other hardware states is considered future work.

2.4 Implementation details

The EDiFy framework is implemented using Python to con-
trol the tool chain and the anytime algorithm. The static pro-
gram analysis is implemented within the CIL framework [14].
As target architecture, we have selected the ARMv8, for which
a cycle accurate simulator (gem5) [6] and a gcc cross-compiler
are freely available. The implementation of the framework is
made available online [2].

3. INPUT-SPACE ANALYSIS

The main obstacle to overcome is the prohibitively large
number of input variations. The input space is simply too
large to naively derive an execution time measurement for
each element in the input space. Our first goal is thus to remove
superfluous input values and to cluster input ranges
for which we can guarantee that the execution time values will
be the same. The questions we need to ask here are:

- How do they influence the execution time?
- Which input parameters influence the execution times?
- How do they influence the execution times?

Static program analysis is the natural way to provide safe
and complete answers to these question. The input analysis
is implemented as a backwards program analysis that derives the
set of variables that influence the execution time either directly
or indirectly. With directly, we mean that the variables appear
in the expression within an if-statement or loop-statement
(or within a float or pointer operation, in case of variable
instruction times) and with indirectly, we refer to variables
that only influence variables from the first set.

3.1 Program Analysis

In the following, we describe the basic program analysis,
which derives the set of all variables that influence the control-
flow of the program. All other program analyses are derived
from this basic analysis using minor modifications.

The domain of the analysis is the powerset of the set of
variables \(V: D = 2^V \) with \(\emptyset \) being the bottom and \(V \) the top
element. Since we are interested in a safe analysis, we use
set-union \(\bigcup \) as the combine-operator to be invoked in case of
control-flow merges. The auxiliary function \(\text{varUsed} : \text{Expr} \rightarrow 2^V \)
derives the set of variables used within an expression. The
transfer function \(\text{tf}: \text{Instr} \rightarrow (2^V \rightarrow 2^V) \) selects all variables
used within an expression in an if or loop statement, and also
all variables used within an expression if the result of the ex-
pression is assigned to an execution time influencing variable.
It is defined as follows:

\[
\text{tf}(I)(V) = \text{match } I \text{ with } \\
\text{ if } (\text{exp}) \rightarrow V \bigcup \text{varUsed}(\text{exp}) \\
\text{ while } (\text{exp}) \rightarrow V \bigcup \text{varUsed}(\text{exp}) \\
\text{ v = exp } \rightarrow \text{if}(v \in V) \text{ then } V \bigcup \text{varUsed}(\text{exp}) \text{ else } V \\
\text{ - } \rightarrow V
\]
where I is an instruction and V is the set of input-influencing
variables. We assume for the sake of simplicity a simplified
instruction set where all loops have been transformed to \textit{while}
loops, as within the CIL framework [14], in which we have
implemented the program analysis.

The analysis can be modified to cover instructions with
variable execution times. The analysis iterates over all ex-
pressions within a program, whenever the analysis encounters
an expression of type \textit{float}, or an expression used to index
a memory address, respectively, all variables used within the
expression are added to the current data-flow value.

The presented analysis derives all directly and indirectly
influencing variables. To derive directly influencing variables
only, we simply have to omit the case distinction $v = exp$ and
directly forward the data flow value V without any additions.

We acknowledge that further program analyses, such as a
\textit{value-} or a \textit{pointer-}analysis can be integrated to further reduce
the input-space. These analyses, however, exceed the scope
of the paper. The main purpose of the presented program
analysis is to correctly classify all input variables and to en-
sure completeness, i.e., to ensure that each input-influencing
variable is correctly identified. Bounds on the minimal or
maximal values of variables, or additional information about
the input variables can be provided by the user.

3.2 Classification

The result of these program analyses is a classification of
the input variables along two orthogonal lines: directly or in-
directly influencing, and through loops, conditionals or vari-
able instruction times. This classification is a prerequisite
to divide the input space in a meaningful manner. We note
that this classification is not exclusive, i.e., a variable may
influence the execution times in more than only one single
category. Furthermore, as an implicit result of this classifica-
tion, we can validate whether the user has specified an input
distribution for all relevant variables, and we can omit irre-
levant variables from further examination. We denote the set
of execution time influencing variables with \mathcal{V}_I.

3.3 Handling Multiple Variables

In case of multiple variables, we project the multi-dimensional
input space to the natural numbers \mathbb{N} using $E: \mathcal{V}_1 \times \mathcal{V}_2 \times
\ldots \mathcal{V}_n \rightarrow \mathbb{N}$ with

$$E(v_1, v_2, \ldots, v_i) = \sum_{i=1}^{l} \left(\prod_{j < i} E_{V_j}^{\max} \right) \ast E_{V_i}(v_i)$$ \hspace{1cm} (2)

where E_{V_i} is the enumeration function for Type T_i and $E_{V_j}^{\max}$
denotes the size of the domain of variable V_j.

Similarly, we compute the input probability for the tuple of
input variables (v_1, v_2, \ldots, v_i) assuming that all variables are
independent as follows:

$$\text{IVD}'(v_1, v_2, \ldots, v_i) = \prod_{j < i} \text{IVD}(v_j)$$ \hspace{1cm} (3)

Dependent variables have to be handled and defined explicitly,
see [7] for further details.

3.4 Input Range Division

The measurements will be distributed to different processes
so that we can exploit the parallelism of modern architectures.
To this end, we evenly distribute the entire input space to all
spawned processes used by the anytime algorithm.

4. ANYTIME ALGORITHM

The elimination of non-relevant input values is unlikely to
reduce the input space sufficiently for an exhaustive evalu-
ation. In most cases, approximation is inevitable.

In this section, we detail the anytime algorithm. In particu-
lar, we describe how the input ranges assigned to each proc-
essor are traversed to achieve an even coverage, and we describe
how the resulting measurements are weighted by their corre-
sponding input value distribution.

The anytime algorithm works by spawning various worker
processes to perform the measurements, and an additional
process which continuously accumulates and processes the ex-
cution times produced by the worker processes. This pro-
vides immediate availability of the latest results and thereby
allows for the execution time distribution to be derived on the
fly.

To derive a meaningful approximation of the execution time
distribution early on, we divide the input space over several
processes, and employ a specific traversal function. Our as-
sumption is that the execution time distribution can be ap-
proximated quickly by evaluating the input space \textit{evenly}.

4.1 Range Traversal

We have to ensure that we traverse the input space, or to
be specific, the range of the input space assigned to a worker
process, in a meaningful way. When we start to traverse the
range from one corner and move to the other step by step, we
achieve a full coverage of a part of the range, whereas the other
side remains unvisited until the entire range has been visited.
We refer to this type of state traversal as \textit{linear traversal}.

To cover the entire input space evenly already early on we
propose an alternative traversal function tr. The rational be-
hind this function is to always hit the middle of the unvisited
space. Assuming an input range given by $[0 : 127]$. The traversal
function starts in the middle of the range, $tr(1) = 63$, followed
by the middle of the left sub-range $[0 : 63]$, $tr(2) = 32$, and of
the right subrange $[63 : 127]$, $tr(3) = 96$, and so on. We refer
to this traversal function as \textit{logarithmic traversal}. We first
define an auxiliary function $tr': \mathbb{N} \rightarrow (0 : 1)$ which computes
the range pointer within the range $(0 : 1)$, e.g., $tr'(1) = 0.5$,
$tr'(2) = 0.25$, $tr'(3) = 0.75$, irrespective of the size of the
range of tr. It is defined as follows:

$$tr'(x) = \left(\frac{1}{2^{\lceil \log_2(s) \rceil + 1}} + \frac{x - 2^{\lceil \log_2(s) \rceil}}{2^{\lceil \log_2(s) \rceil}} \right)$$ \hspace{1cm} (4)

Since the function tr' always cuts the unvisited ranges in half,
it works best for range-size of a power of 2. Next, we have to
map the range of tr' to an arbitrary range $[l_{\min} : l_{\max}]$. Let s
be the size of the range, i.e., $s = l_{\max} - l_{\min} + 1$. We define
$tr: \mathbb{N} \rightarrow \mathbb{N} \cup \{\bot\}$, the corrected version of tr' as follows:

$$tr(x) = \begin{cases} l_{\min} + tr'(x) \ast 2^{\lceil \log_2(s) \rceil} & \text{if } tr'(x) \ast 2^{\lceil \log_2(s) \rceil} \leq s \\ \bot & \text{otherwise} \end{cases}$$ \hspace{1cm} (5)

The value \bot indicates that the result will be omitted and we
directly proceed with the next range index. This is necessary
to ensure that each value occurs exactly once, and to avoid
performing measurements with the same input values twice.
The logarithmic traversal function tr is applied to each
worker process, and hence, to each subrange individually. A
weakness of tr is that it visits l_{\min} and l_{\max} very late, resp.
at the very last. The values l_{\min} and l_{\max} tend to result in
the lowest and highest execution time values and hence, determine the overall shape of the distribution more than values from the middle range. To overcome this drawback, \(l_{\min} \) and \(l_{\max} \) will be visited first within each process and only after these two measurements, the traversal using \(tr \) starts.

4.2 Derivation of execution time distribution

The measured execution times are stored in a relative frequency table. This table contains an entry for each observed execution time with a value indicating its relative occurrence in relation to all others: \(rf: \mathbb{N} \rightarrow \mathbb{R} \) with \(\sum_{t \in \mathbb{N}} rf(t) = 1 \).

As we assume the availability of the value probability distributions for each of the input variables, we have to include these in the derivation of the execution time distribution. We do this by utilising the probability functions as weight functions for the frequency table. The relative frequency of a measured execution time \(t \) is determined by the following update function: \(rf(t) := rf(t) + \prod_{i=1}^{n} P(I_i = v_i) \). This ensures that an execution time resulting from a high probability input contributes more to the distribution than one with a low probability input. Note that we assume the probabilities of the individual input variables to be statistically independent (i.e., that the joint probability is given by the product of the individual probabilities).

The final step in deriving the execution time probability distribution is to normalise the data by dividing each value by the sum of all values. This last step ensures that all the combined probabilities add up to 1.

5. EVALUATION AND RESULTS

In this section, we exemplify the EDiFy framework on a selection of benchmarks from the TACLeBench [10] and the EEMBC [1] benchmark suites. TACLeBench is an open source benchmark suite particularly designed for the evaluation of timing analysis tools, whereas EEMBC is a commercial benchmark suite based on realistic automotive use cases. Despite the high number of available benchmarks, only a subset exhibits non-trivial timing behaviour, or an input-dependent execution time. Furthermore, in nearly all cases, a single variable per task influences the execution time behaviour. We have selected three non-trivial benchmarks to highlight different aspects of the EDiFy Framework: bubble-sort (from TACLeBench) has been selected to illustrate the progress of the anytime algorithm over time, and bitmp and pntrch (both EEMBC) to show specific execution time distributions and their dependency on the input value distributions. Due to space constraints, further results are only available online [2].

The EDiFy framework was run on a system featuring a quad-core Intel Core i7-4700MQ processor clocked at 3.4GHz with 16GB of DDR3 RAM. The benchmarks were executed in the \(\text{gem5} \) cycle-accurate simulator and cross-compiled using GCC 5.3.0. The simulator itself targeted the 64-bit ARMv8-A architecture, a clock speed of 500MHz and a cache featuring 128kB of L2 cache, 64kB of L1 data cache and 16kB of L1 instruction cache.

5.1 Anytime Algorithm

For the evaluation of the anytime algorithm, we have chosen the bubble-sort benchmark, as it exhibits non-trivial timing behaviour and is easily scalable. Due to the specific purpose as a benchmark, there is only one parameter which has been correctly identified by the input space analysis. We have assumed equal probability of each permutation, and use the lexicographic order as bijective enumeration function, i.e., to assign each value from \([0 : n! - 1]\) a unique permutation. Figure 3 depicts the execution time distributions derived after 10 minutes using 4 different configurations: linear and logarithmic traversal executed on 1 (with one spawned process only) or on 4 processors (with 8 spawned processes). The anytime algorithm completes around 1000 measurements per processor within 10 minutes. In addition, we have added a line that shows the final, and hence exact execution time distribution after exhaustive evaluation. The measured execution times have been rounded to the closest 0.1ns to smooth the graph.

Figure 3: Approximation on the execution time distribution for benchmark bubble sort (TACLeBench) after 10 minutes of runtime.

The logarithmic traversal function leads to a precise approximation after already 10 minutes, irrespective of the number of processors used, whereas, the linear traversal function shows an heavily skewed approximation on the execution time distribution, which is only slightly alleviated by using 4 processors. We have also evaluated the mean difference with respect to the exact distribution (see Figure 4). Exhaustive evaluation is achieved after around 120, resp. 360 minutes when executed on 4, resp. 1 processor. The graph shows the advantage of combining logarithmic traversal with distributed processing. The logarithmic traversal function ensures a tight approximation early on, irrespective of the number of processors, and the distributed processing reduces the overall runtime resulting in faster convergence. Interestingly, the mean differences are not monotonically decreasing for bubble-sort as some costly permutations are only examined towards the end of the evaluation. We note that for cases with purely integer input variables, we observe monotonic mean differences.

5.2 IVD-Dependency

The other two benchmarks, bitmp and pntrch have been selected as they depict rather peculiar execution time distributions. Both of these benchmarks stem from the EEMBC automotive benchmark suite [1]. We use these benchmarks to
Likelihood of execution time distributions is the computational complexity and the sheer bounds on the execution time to deriving complete execution time distributions of embedded real-time tasks. The anytime algorithm together with a logarithmic traversal function achieves a balanced coverage of the input space – allows to compute a precise approximation even if exhaustive evaluation is infeasible. We have successfully exemplified the EDiFy framework on TACLeBench and EEMBC control applications.

Our framework is currently task-centric, meaning that we assume that only the task under examination is running on the hardware. As future work, we plan to extend the framework towards complete task sets, where we take the interference of different tasks on the hardware into account. Furthermore, we plan to integrate more sophisticated program analyses to further prune the input-space.

References