Reeta L. Veteläinen
Arlène van Vliet
Dirk J. Gouma,
Thomas M. van Gulik
In **chapter 5**, the utility of hepatobiliary scintigraphy (HBS) using 99mTc-mebrofenin for the non-invasive evaluation of functional capacity of the liver is investigated. Assessment using HBS is based on calculations of hepatic uptake and biliary excretion of radioactive 99mTc-labelled iminodiacetic acid (99mTc-mebrofenin). HBS was first established in the diagnosis of biliary diseases but has been recently introduced for the assessment of liver function pre- and postoperatively in patients scheduled for liver resection. This technique was tested for the assessment of liver function in a rat model using dedicated dynamic pinhole scintigraphy. To illustrate the clinical potential of this technique, HBS was further used for the assessment of liver function after partial hepatectomy and portal vein ligation, i.e. in surgical models of liver regeneration.

Asialoglycoprotein (ASGP) is a serum galactose-terminated glycoprotein binding rapidly to its receptor that is expressed extensively in hepatocytes, mainly in the sinusoidal surfaces. The hepatic expression of ASGP receptors decreases and consequently, plasma concentration of ASGP increases significantly in patients with chronic liver disease. For scintigraphic analysis of ASGP, 99m-technetium labelled, diethylenetriaminepentaacetic acid-galactosyl human serum albumin (99mTc-GSA) was used. In **chapter 6**, the utility of 99mTc-GSA SPECT was investigated for the assessment of basic hepatocellular function as well as regeneration in a rat model of partial hepatectomy.

In **chapter 7**, the application of 99mTc-mebrofenin scintigraphy in evaluating the extent and progression of steatosis was assessed in an experimental model of diet-induced steatosis. The gold standard for the diagnosis of steatosis is histopathological evaluation of several liver biopsies as even state-of-art of CT and MRI lack specificity and sensitivity for demonstrating steatosis. These imaging modalities can reliably distinguish steatosis only above 30% and do not detect specific pathological features of steatosis progression to steatohepatitis. The influence of steatosis on 99mTc-mebrofenin scintigraphy was evaluated throughout the whole spectrum of steatosis progression, from mild (<30% hepatocytes affected) to severe (>60% hepatocytes affected) steatosis with prominent inflammation. The calculations of hepatic uptake and biliary excretion of 99mTc-mebrofenin were correlated with biochemical and histopathological parameters of steatosis, inflammation and hepatocellular damage.

In fatty hepatocytes, intracellular fatty acids promote the generation of reactive oxygen species increasing mitochondrial oxidative stress and lipid peroxidation. In addition, steatotic livers have impaired antioxidant scavenging capacity of free radicals causing further reactive oxygen species accumulation and consequently, hepatic macrophage activation. The latter leads to production of proinflammatory cytokines that further exacerbate hepatocellular damage. Even though steatosis has been linked to impaired postoperative recovery after liver resection, the actual mechanisms of injury remain unclear. The underlying pathological derangements induced by fat accumulation together with disturbed liver regeneration have been implicated as potential factors. In **chapter 8**, the influence of lipid peroxidation and impaired antioxidant response in aggravating inflammatory response and hepatocellular injury was examined in a rat model of partial hepatectomy. Furthermore, the potential
effects of these responses on liver regeneration were evaluated in experimental models of mild and severe steatosis.

Interestingly, even though the recovery of hepatocellular volume by liver regeneration appears not to be affected by mild steatosis, posthepatectomy recovery is still impaired in patients with mild steatosis. The role of hepatocellular function in this process is unclear, although it is known that in cases of parenchymal liver disease, liver volume or mass do not always correlate with function. In chapter 9, the potential effect of mild steatosis on the recovery of hepatocellular function was studied after partial hepatectomy in a rat model. The recovery of hepatic function was estimated by hepatobiliary scintigraphy reflecting hepatic uptake and excretion of radioactive labeled 99mTc-mebrofenin.

In chapter 10, we evaluated a new method to increase the remnant liver volume after extensive resection. The efficacy of dual ligation of hepatic artery and portal vein in inducing liver regeneration was compared with single portal vein ligation, used as a surrogate model of portal vein embolization (PVE). Severe postoperative complications and mortality after extensive resection are directly related to the size and function of the remnant liver. Originally, PVE was introduced to enable more extensive liver resections by inducing compensatory hypertrophy in the non-embolized, future remnant liver and atrophy in the embolized lobe planned for resection. Dual embolization of hepatic artery and portal vein has been suggested to induce liver regeneration in patients with impaired liver regeneration with the obvious advantage of complete occlusion of both portal and arterial blood supply to the tumor bearing liver segments. However, complete occlusion of blood supply bears a risk of acute local response triggered by massive, ischemia induced, hepatocellular necrosis, consequently causing the activation of a systemic inflammatory response. The potential local and systemic effects of the different ligation methods were investigated as well as the influence of a sequential approach of dual ligation on these effects.

In chapter 11, liver adenomatosis is introduced, a rare benign parenchymal liver disease. Liver adenomatosis (LA) is defined as multiple (arbitrarily >10) adenoma nodules in normal liver parenchyma diagnosed in a patient without previous medical history of steroid therapy or glycogen storage disease. Because of the rarity of this disease, the etiology and optimal management are unclear. However, in recent studies, a potential connection between LA, deranged glucose metabolism and steatosis has been suggested. All published case reports and patient series of LA were reviewed from literature. In addition, a series of 6 patients with LA managed in our centre (Academic Medical Center, Amsterdam) were assessed with regard to diagnosis and management. The role of steatosis as a potential co-existing feature in patients with LA is analyzed and the potential implications of this feature are discussed in light of management of this condition.
Steatosis as a risk factor in liver surgery
Introduction

Liver resection remains the only curative treatment for most patients with primary or secondary malignant liver tumors. Developments in surgical techniques and postoperative care have increased the number of resectable candidates and have enabled more extended anatomical and non-anatomical resections. Extended resections, however, stand a risk of postoperative liver failure. Liver dysfunction may be only transient if the liver has the ability to regenerate, but is prolonged when regeneration is impaired exposing the patient to potentially life-threatening complications. Mortality of post-hepatectomy liver failure, despite intensive care treatment, remains as high as 60-90%. In particular patients with parenchymal liver disease have an increased risk of postoperative mortality and morbidity due to the underlying pathogenic features affecting liver regeneration and recovery. Fatty liver or hepatic steatosis is a common histological finding in human liver biopsy specimens and it is estimated that over 20% of the patients planned for liver resection have some degree of steatosis. The adverse effects of steatosis in liver surgery was at first acknowledged in transplantation studies reporting impaired outcome of steatotic grafts due to increased risk of primary non-function or dysfunction. Most recent data show that even the mildest form of steatosis increases the incidence of primary non-function and decreases patient survival after liver transplantation. Steatosis has also been gradually associated with an amplified postoperative morbidity and mortality after liver resection. The evolving knowledge about hepatic steatosis combined with the increasing prevalence in the future emphasizes understanding of the implications of steatosis for hepatic surgery.

This review focuses mainly on the aspects of steatosis associated with liver resection since the influence of steatosis in liver transplantation has been extensively reviewed in a number of publications. However, living-donor liver transplantation (LDLT) as a more recent modality of liver transplantation encompasses major liver resection on the part of the donor and will therefore be discussed here. Prevalence, pathogenesis and diagnosis of steatosis are discussed in order to evaluate the impact of steatosis in liver surgery with particular emphasis on patient morbidity and survival. The data gained from experimental and clinical studies are discussed with the intention of clarifying the mechanisms behind the increased vulnerability of steatotic livers in liver surgery. Finally, different approaches including pharmacological and surgical strategies to improve outcome of patients with liver steatosis after resection are presented and discussed.

Definition

Hepatic steatosis is characterized by an accumulation of lipids in the liver and is related to a spectrum of etiological features such as obesity, diabetes, excessive use of alcohol and a variety of drugs and toxins. Fatty accumulation is considered pathological when the hepatic fat content, consisting mainly of triglycerides, exceeds 5% of the actual wet weight of liver. Steatosis can progress to a more severe inflammatory form as a consequence of excessive alcohol abuse or as in non-alcoholic fatty liver disease (NAFLD) in nondrinkers. NAFLD is a clinical and histopathological entity resembling alcohol-induced liver injury occurring in patients with little or no history of alcohol consumption. Recently,
development of steatohepatitis has also been reported after neoadjuvant chemotherapy used to downstage patients with unresectable liver metastases. Steatohepatitis and nonalcoholic steatohepatitis (NASH) are characterized by fat infiltration, hepatocyte ballooning, necroinflammatory changes together with progressive fibrosis and can eventually lead to cirrhosis in some patients.

Incidence and epidemiology of hepatic steatosis
Steatosis is the most common chronic liver disease in the world affecting all racial, ethnic and age groups without sex predilection. Even though the global prevalence has yet to be evaluated, studies report prevalence of 10-20% in lean population (body weight less than 110% of the ideal weight), 60-74% among the obese and over 90% in the morbidly obese (body weight more than 200% of ideal weight). Approximately 3% of lean children are affected and the prevalence increases up to 53% among obese children. Incidence of steatohepatitis ranges from 3% in lean population, to 18% among obese to almost 50% in morbidly obese individuals. The added risk to develop cirrhosis is 10-30% and is, to date, only seen in patients with steatohepatitis being associated with a decreased 5- and 10-years survival of 67% and 59%, respectively. The prevalence of steatosis and steatohepatitis is expected to dramatically increase in the near future due to increasing obesity among the Western population.

Clinical manifestations

Clinical and laboratory abnormalities
Most patients have no clinical manifestations at the time of diagnosis and hepatomegaly is often the only finding on physical examination. Steatosis is usually an incidental finding as it is the most common cause of mild to moderate and asymptomatic elevation of plasma aminotransferases after other chronic liver diseases have been excluded. The ratio of aspartate aminotransferase to alanine aminotransferase is usually less than 1 in the presence of steatosis but the predictive value of this ratio is poor in patients with severe steatosis and advanced parenchymal fibrosis. Serum alkaline phosphatase and gamma-glutamyltransferase are often above normal ranges and also elevated serum lipids and glucose concentrations are a common finding in up to 75% of all patients. Other possible laboratory abnormalities include hypoalbuminemia, prolonged prothrombin time and hyperbilirubinemia. These parameters are, however, infrequently present in the patients with an advanced stage of disease. Anthropometric measurements such as a body mass index [weight in kilograms / (height in meters)^2] and hip-waist ratio have been shown to have some correlation with prevalence and severity of steatosis and might be useful in the assessment of patients for liver surgery.

Methods of quantifying fatty changes

Histopathology findings
The gold standard of diagnosis is histopathological evaluation of several liver biopsies, as a single biopsy can result in substantial misdiagnosis and staging inaccuracies. However, the risk of fatal bleeding after biopsy is estimated to be 0.4% and for
nonfata ll bleeding, 0.57%, and is therefore not routinely performed in patients without apparent complicated liver disease.37 Recently, a uniform quantitative grading for steatosis and steatohepatitis has been suggested combining the identified key pathologic features. The severity is expressed as percentage of fatty hepatocytes of all hepatocytes. Further additional staging for steatohepatitis consists of the degree of portal and lobular inflammation, ballooning degeneration, Mallory bodies and severity of fibrosis.38 Besides quantitative grading, steatosis can be classified qualitatively into micro- and macrovesicular forms. The most common clinical conditions causing these two forms of steatosis are summarized in Table 1. Most frequent is the macrovesicular one, in which the hepatocytes contain one single large fat vacuole, squeezing the nucleus into the cell periphery. This form of steatosis is frequently associated with obesity, non-insulin dependent (type 2) diabetes, some dyslipidemias and alcohol abuse. In microvesicular steatosis more than 9% of the fat vacuoles are smaller than the cell nucleus and therefore remain central. This form is usually related to more acute conditions such as acute viral infections, metabolic disorders and various toxins but also to acute fatty liver of pregnancy.39

<table>
<thead>
<tr>
<th>TABLE 1. Summary of major causes of macro- and microvesicular steatosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrovesicular</td>
</tr>
<tr>
<td>Drugs/toxins</td>
</tr>
<tr>
<td>Alcohol*</td>
</tr>
<tr>
<td>Glucocorticoids*</td>
</tr>
<tr>
<td>Synthetic estrogens*</td>
</tr>
<tr>
<td>Tamoxifen*</td>
</tr>
<tr>
<td>Calcium-channel blockers*</td>
</tr>
<tr>
<td>Warfarin</td>
</tr>
<tr>
<td>Metotrexate*</td>
</tr>
<tr>
<td>Phosphorus*</td>
</tr>
<tr>
<td>Metabolic/Genetic disorders</td>
</tr>
<tr>
<td>Diabetes mellitus*</td>
</tr>
<tr>
<td>Hyperlipidaemia*</td>
</tr>
<tr>
<td>Abetalipoproteinemia*</td>
</tr>
<tr>
<td>Galactosemia</td>
</tr>
<tr>
<td>Tyrosinemia</td>
</tr>
<tr>
<td>Homocysteinemia</td>
</tr>
<tr>
<td>Nutritional</td>
</tr>
<tr>
<td>Obesity*</td>
</tr>
<tr>
<td>Protein malnutrition*</td>
</tr>
<tr>
<td>Rapid weight loss*</td>
</tr>
<tr>
<td>Total parenteral nutrition*</td>
</tr>
<tr>
<td>Gastrointestinal surgery*</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>HIV*</td>
</tr>
<tr>
<td>Inflammatory bowel disease*</td>
</tr>
<tr>
<td>Hepatitis C*</td>
</tr>
</tbody>
</table>

* Discrepancy in hepatic lipid synthesis and export, ** Observed mitochondrial dysfunction
The histopathological features of steatosis are evaluated in preoperative needle biopsies or operative wedge specimens that are frozen and/or deparaffinized. The staining methods currently used are haematoxylin and eosin (H&E) with which the fatty changes are assessed by considering the non-stained regions. In addition, specific fat stains such as Oil Red O and Sudan IV are used. However, there are several problems in clinical application of these staining methods. The conventional techniques applying H&E potentially underestimate the extent of fatty infiltration as they fail to identify microvesicular forms of steatosis. Also the fat specific stains have pitfalls, for example in Oil Red O stained liver tissue, the quality and quantity of the staining is highly operator-dependent and false positive results or overestimation of the severity are possible because of unspecific sinusoidal staining.

Imaging studies

Despite widespread clinical use of imaging methods, ultrasound (US), computed tomography (CT) or magnetic resonance imagining (MRI) can only to some extent detect the degree of steatosis. On US, steatosis generates an area of diffusely increased echogenicity whereas on CT, a parenchyma with low-density is seen. Even though US is the least expensive and most easily available imaging technique, CT can be used for semiquantitative assessment of fat accumulation. Although liver density assessed by CT reflects the presence of steatosis and correlated with a positive biopsy, a false negative rate of 24% has been reported. The advantage of MRI is the possibility to distinguish focal space-occupying lesions from focal fatty infiltrations. However, Saadeh et al reported in a study applying state-of-the-art equipment for US, CT and MRI that only a hepatic fat accumulation above 25-30% can be reliably detected radiologically. Also, none of these modalities was able to either distinguish steatosis from steatohepatitis or to detect individual pathological features important to establish steatohepatitis such as necroinflammatory changes, hepatocyte ballooning and fibrosis. This study demonstrated the limited role of radiological modalities in the management of patients with steatosis.

Clinical impact of steatosis on hepatic surgery

Background

The mortality rate associated with liver resections in the absence of parenchymal disease has declined to far below 5% during the last decade. Even zero mortality can be achieved with systematic preoperative patient selection as a recent study reported a cohort of 915 patients who were routinely screened for preoperative liver function in order to calculate the extent of safe resection. Also the indications for liver resection have much changed and an increasing proportion of patients with extensive hepatobiliary malignancies, including patients with additional cirrhosis, may be curatively resected, sometimes using complex reconstructions of vascular structures. However, the clinical importance of other parenchymal liver diseases, such as steatosis, is unclear and a potentially increased risk of impaired postoperative recovery has been suggested. Especially, the clinical importance of the severity of steatosis and related underlying pathologic derangements remain undefined.
Effect of steatosis on posthepatectomy morbidity and mortality

There are few studies reporting the impact of steatosis on postoperative morbidity and mortality after liver resection (table 2). Mortality is assessed as in-hospital mortality or 60 days mortality after operation and there are no studies evaluating 5- or 10-years’ survival of steatotic patients with hepatic malignancy. As the first in 1998, Behrens et al evaluated in a retrospective study of 135 patients, the safety of major resection in patients with hepatic steatosis. They reported an increased postoperative mortality, morbidity and blood transfusion together with longer operative time in the presence of steatosis. Furthermore,

| Table 2. Clinical studies reporting the impact of steatosis on patient outcome. |
|---|---|---|---|
| Author/ Year | Number of Patients | Type of steatosis | Mortality | Morbidity |
| Behrens KE et al 1998 | 135 | None | 72 (53%) | 3% | 4% |
| | | Mild | 56 (41%) | 7% | 9% |
| | | Moderate-severe | 7 (5%) | 14% | 14% |
| Belghiti et al 2000 | 478 | None | 441 (92%) | 1.0% | 8% |
| | | Steatosis | 37 (8%) | 0% ** | 22% |
| Little SA et al 2002 | 727 | None | 503 (69%) | 2.0% | 45% |
| | | Steatosis | 224 (31%) | 4.9% | 37% |
| Jarnagin WR et al 2002 | 1803 | None | 1275 (71%) | 3.9% | 48% |
| | | Steatosis * | 380 (29%) | 2.8% | 44% |
| Kooby et al 2003 | 325 | None | 160# | 5.0% | 35% |
| | | Mild | 223 (69%) | 5.0% | 48% |
| | | Moderate-severe | 102 (31%) | 9.4% ** | 62% |

* = expressed together with cirrhotic patients, independently analyzed, p=NS, ** = difference not significant, # = matched controls

Steatotic patients had increased plasma aminotransferases and bilirubin levels reflecting postoperative liver dysfunction and 14% had acute liver failure vs. 4% in patients with normal liver parenchyma. Belghiti et al showed in a cohort of 478 elective liver resection patients including 37 patients with steatosis that steatosis was an independent risk factor for postoperative complications. Complications occurred in 8% of patients with steatosis vs. 2% in patients with normal parenchyma. However, in this cohort study no effect on in-hospital mortality was seen. In contrast, Little et al reported a negative effect of steatosis on in-hospital mortality. The main objective of the latter study was to investigate the role of diabetes mellitus in postoperative mortality and morbidity rates within 30 days of operation. Interestingly, in a cohort of 727 patients, 224 patients (31%) had some degree of steatosis with mortality that was significantly increased (4.9% vs. 2.0%, in normal and steatotic patients, respectively). However, no differences were seen in postoperative complications (45% and 37%, in steatotic and non-steatotic livers, respectively). Jarnegin et al published so far the largest cohort of 1803 liver resections performed in one institution. In 997 patients (55%) the non-tumor-bearing liver was histologically normal
whereas steatosis was diagnosed in 325 patients (18%) without further staging of steatosis severity. In contrast to the previous studies of Belghiti and Behrns, Jarnegi et al did not report any effect of steatosis on perioperative outcome. However, the authors speculated that this was probably because of the small number of steatotic patients and the much larger proportion of patients with normal parenchyma in their study. Therefore, Kooby et al reviewed the above mentioned cohort of 1803 patients in a following study. In this study, 160 patients with normal liver parenchyma were randomly selected to match the 325 patients with steatotic livers by age, comorbidity and the extent of resection. Furthermore, the severity of steatosis was assessed. 223 patients had mild (less than 30%) hepatic steatosis, 64 had moderate (30-60%) steatosis, 38 severe (>60%) steatosis while patients with fibrosis were excluded. Patients with moderate and severe steatosis were combined in one group described as marked steatosis (>30%, n=102). Total complications (62%, 48%, and 35%; in marked and mild steatosis and normal parenchyma, respectively) and infectious complications (43%, 24% and 14%) correlated with the degree of steatosis. However, no differences were observed in complications requiring major medical intervention, hospitalization time or admission to the intensive care unit. In multivariate analysis, steatosis was an independent predictor of complications and there was a non-significant trend towards higher 60-day mortality in patients with resection of one lobe or more and in patients with marked steatosis (9.4% mortality associated with marked steatosis vs. 5.0% in mild steatosis and 5.0% in control patients, respectively).

The impact of steatosis in living-donor liver transplantation (LDLT)

LDLT is an option to increase organ availability in a time when the waiting lists for cadaveric liver transplantation are growing. LDLT was initially applied in the setting of pediatric liver transplantation in which donation of left lateral segments took place. In recent years however, LDLT has been successfully applied in adults as right lobe LDLT. Even though LDLT has several advantages, i.e. optimal donor screening and planning of transplantation procedure, ethical concerns remain. For LDLT donors several screening criteria exist, mainly consisting of clinical, biochemical, radiological, histological and repeated psychological evaluations. Currently, LDTD donors, as well cadaveric donors presenting with steatosis above 20-30% are generally excluded obscuring the complete impact of steatosis in LDLT. Soejima et al reported in a series of 52 LDLT patients consisting of patients with no steatosis (n=23), mild steatosis (n=23) or moderate steatosis (n=6), a comparable 1-year donor and graft survival in all groups. No primary non-function was observed in any patient group. Hayashi et al reported in a cohort of 338 LDLT patients, 41 patients that had received donor livers with varying degrees of steatosis (25 mild, 13 moderate and 3 severe). Regarding the donor operation there was no long-term morbidity or mortality and the hospital stay was similar to those with normal liver. Furthermore, there was no difference on outcome between patients receiving steatotic or normal grafts. Also Ito et al reported no impact of steatosis on cumulative donor survival at any of the United Network for Organ Sharing categories. Further, complications were not analyzed in regard with degree of steatosis. Yoong et al showed in their study of 116 LDLT patients requiring retransplantation that severe steatosis had a serious negative effect on graft survival. 10 patients with a donor
Liver presenting with severe microvesicular steatosis (<66% of hepatocytes were affected) had a dramatically poorer 1-year graft survival of 20% compared to 57% in the non-severe steatosis group. The graft failure rate was 100% in the severe group after a median survival of 1.5 months (vs. 59% in the non-severe steatosis group). From these studies, even though limited in number, can be concluded that mild steatosis does not seem to affect the prognosis of donors and recipients but livers with severe steatosis should not be transplanted.

Conditions associated with hepatic steatosis

Insulin resistance

Patients with NAFLD have an increased prevalence of non-insulin dependent diabetes but the actual role of diabetes in postoperative recovery is unclear as studies report contradictory results. Non-insulin dependent diabetes was identified as independent and significant variable predicting major postoperative complications in a cohort of 209 patients. However, contrary to this study, a study including 525 diabetic and non-diabetic HCC patients, reported no difference in perioperative morbidity or mortality after resection and no effect was observed in long-term prognosis. Although the impact of diabetes on postoperative complications remains unclear, an increased rate of wound infections in patients with disturbed glucose homeostasis is reported in an impressive cohort of over 20,000 patients.

Obesity

Obesity is crucially linked with steatosis as the prevalence among obese is up to 75% and among morbidly obese up to 100%. In the past, obesity has been linked to increased perioperative technical complications leading to prolonged postoperative recovery. However, Dindo et al prospectively investigated a cohort of 6336 patients undergoing elective surgery and found no increase in postoperative morbidity and mortality between obese and non-obese, not even in morbidly obese patients with BMI above 40. In contrast to general obesity, body fat accumulation (subcutaneous or intra-abdominal) has been reported to be independently associated with postoperative morbidity after gastric or colorectal surgery in a prospective study of 139 patients who underwent gastric or colorectal cancer surgery.

Mechanisms of fat accumulation /steatosis

Non-esterified fatty acids accumulate when the hepatic uptake exceeds the output, usually due to altered lipid ingestion and/or lipoprotein metabolism. This can be a consequence of an excessive supply of free fatty acids in the liver (FFA), diminished hepatic export of FFA and/or impaired mitochondrial beta-oxidation of FFA. Non-esterified fatty acids inhibit beta-oxidation, subsequently decreasing the production of acetyl-coenzyme A, an important precursor of Krebs cycle and gluconeogenesis leading to depletion of two important energy sources, i.e. beta-oxidation and gluconeogenesis in steatotic livers.
The two hit theory

The exact pathogenesis of steatohepatitis is unclear but a two “hit” theory proposed by Day et al is most widely supported. Fat accumulation is the essence and constitutes the first “hit”. Additionally, there are an increasing number of contributors recognized as the second “hits” that initiate and sustain the progression to steatohepatitis and subsequently cirrhosis in some patients. Increased oxidative stress, lipid peroxidation, mitochondrial p-450 cytochrome induction and distorted energy homeostasis, bacterial endotoxins, Kupffer cell dysfunction and induction of Fas ligand promoting fibrinogenesis all play an important role.

Oxidative stress

Increased oxidative stress and lipid peroxidation are identified in the literature as the most prominent pathogenic features of injury in steatosis. Intracellular fatty acids induce oxidative stress by direct toxicity, or by activation of several microsomal cytochrome p-450 lipoxygenases or increase of peroximal beta-oxidation. Induction of hepatic cytochrome p-450 2E1 (CYP2E1) in a murine NASH model is reported to be linked with a dramatic increase of total lipid peroxidation. As a consequence, lipid peroxidation and ROS deplete antioxidant enzymes, such as glutathione, rendering the liver susceptible to oxidative injury.

Energy homeostasis

Altered mitochondrial homeostasis contributes also to the pathogenesis of steatohepatitis by increasing oxidative stress. Mitochondria in steatotic hepatocytes produce excessive amounts of ROS leading to upregulation of uncoupling protein -2, a mitochondrial inner membrane protein which decreases the mitochondrial adenosine triphosphate (ATP) production in fatty hepatocytes. Therefore, the efficacy of ATP synthesis in steatotic livers is compromised and ATP homeostasis insufficiently recovers after insults such as liver resection or I/R injury additionally consuming hepatic ATP reserves. Peroxisomes take over beta-oxidation of fatty acids, especially in fatty livers were the mitochondrial oxidative capacity is outdone. The peroxosomal enzymes are regulated by the nuclear hormone receptor proliferation activation receptor (PAPR) - alpha and transcriptional upregulation is observed in obese and diabetic rodents. The upregulation of PARP-α induces oxidative stress by increasing hydrogen peroxidase, a byproduct of increased beta-oxidation.

Insulin resistance

Other identified factors contribute to the development of steatohepatitis either by affecting hepatic lipid metabolism and/or inducing inflammatory response. There is increasing evidence of the crucial role of insulin resistance in the pathogenesis of hepatic steatosis as it is frequently observed in obese and type 2 diabetics but also in lean patients with steatosis. Insulin resistance alters lipid metabolism by enhancing peripheral lipolysis and increasing triglyceride synthesis. Furthermore, increased insulin concentrations block mitochondrial fatty acid oxidation and together with all these features contribute to net retention of lipids within the liver.
Mechanisms of injury during hepatic surgery in steatotic livers

Liver resection

Liver resection is associated with a risk of mortality and morbidity closely related to volume and function of the remnant liver. Tolerance to warm ischemia-reperfusion injury (I/R) in case of hepatic pedicle clamping and sufficient postoperative regenerative capacity is crucial for an uncomplicated postoperative recovery of hepatic volume and function.\(^{83}\) I/R injury is considered as the main contributor to hepatocellular damage during liver resection as posthepatectomy liver failure is often caused by aggravated I/R injury.\(^{84}\) There are several mechanisms involved in I/R injury co-contributing to the increased susceptibility of the liver to I/R injury, thus delaying functional and morphological recovery of steatotic livers after liver resection.

A variety of animal models of liver steatosis are applied in the studies investigating the impact of steatosis in liver surgery. The most widely used models are summarized in table 3. Hepatic steatosis can be induced by genetic leptin mutation (Zucker rats, ob/ob mice) or by modulation of nutritional factors. The genetically modified rodents overeat due to lack of the controlling effect of leptin and consequently develop combined micro- and macrovesicular steatosis without inflammatory changes.\(^{72}\) The nutritional models are based either on diets of high fat percentage or of amino acid deficiency, i.e. choline and methionine, essential for hepatic lipid excretion.\(^{75}\)

<p>| TABLE 3. The most common experimental steatosis models |</p>
<table>
<thead>
<tr>
<th>Species and Strain</th>
<th>Induction of steatosis</th>
<th>Steatosis form</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mice 76/ Rat Wistar 82</td>
<td>MCDD*</td>
<td>Macro- and microvesicular</td>
<td>Develop NASH</td>
<td>Nutritional derangements</td>
</tr>
<tr>
<td>Mice 128/ Rat Wistar 94</td>
<td>CDD**</td>
<td>Microvesicular</td>
<td>No nutritional deprivation</td>
<td>No NASH</td>
</tr>
<tr>
<td>Rat Lewis 129</td>
<td>Alcohol+high fat</td>
<td>Macro- and microvesicular</td>
<td>For alcohol induced steatosis</td>
<td>Alcohol induced, no NAFLD</td>
</tr>
<tr>
<td>Rabbit 91</td>
<td>High cholesterol (2%)</td>
<td>Moderate macrovesicular</td>
<td>Large animal model</td>
<td>No induction of NASH</td>
</tr>
<tr>
<td>Canine 130</td>
<td>Choline/protein deficient+high fat</td>
<td>Macrovesicular</td>
<td>Large animal model</td>
<td>Protein deprivation</td>
</tr>
<tr>
<td>Porcine 131</td>
<td>Protein deficient</td>
<td>Micro- and macrovesicular</td>
<td>Large animal model</td>
<td>Protein deprivation</td>
</tr>
<tr>
<td>Porcine 132</td>
<td>High-fat+ high-sucrose</td>
<td>Micro- and macrovesicular</td>
<td>Large animal model</td>
<td>3 months induction time</td>
</tr>
<tr>
<td>Genetic models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat Zucker 90</td>
<td>Leptin receptor</td>
<td>Mainly macrovesicular</td>
<td>Obese, diabetic</td>
<td>No NASH</td>
</tr>
<tr>
<td>Mice ob/ob 111</td>
<td>Spontaneous leptin receptor mutation</td>
<td>Mainly macrovesicular</td>
<td>Obese, diabetic</td>
<td>No NASH</td>
</tr>
</tbody>
</table>

* methionine and choline deficient diet, ** choline deficient diet
Mechanism of Ischemia-reperfusion injury

Inflow occlusion by clamping of the hepatic pedicle (Pringle’s maneuver) in combination with maintaining low central venous pressure is often applied in extensive hepatic surgery to reduce blood loss during parenchymal transection. The process of occlusion and reperfusion induces hepatic I/R injury as manifested during the reperfusion period when the blood flow recirculates the previously ischemic liver remnant. I/R injury is related to increased hepatic ROS production and cellular pH changes, increased inflammatory responses and reduced hepatic microcirculation by sinusoidal vasoconstriction. The increased vulnerability of the steatotic liver to I/R injury is suggested to be due to a combination of both microcirculatory blood flow and cellular changes.

Microcirculation

Experimental studies indicate that the degree of steatosis shows an inverse correlation with hepatic blood flow and microcirculation. Even mild steatosis (<30% hepatocytes affected) reduces both total hepatic blood flow and microcirculatory flow. The degree of steatosis has more impact on the microcirculation than on total blood flow as demonstrated by decreased sinusoidal flow. This is attributable to narrowed sinusoidal lumens caused by swollen fatty hepatocytes. In addition, less visible vascular beds and distorted sinusoidal beds contribute to increased intrahepatic vascular resistance decreasing flow in fatty livers.

As a result of decreased total perfusion, a continuous state of chronic cellular hypoxia persists in fatty hepatocytes predisposing the steatotic liver to I/R injury. In addition, sinusoidal lumens are narrowed by fibrin microthrombi and cellular debris during reperfusion and further decrease sinusoidal perfusion. Although Selzner et al did not find any differences in portal pressure in steatotic liver, it seems that microcirculatory failure plays an important role in the mainly necrotic cell death after I/R in fatty livers.

Energy homeostasis

The impaired energy homeostasis is considered to sensitize steatotic livers to further surgical stress. The total ATP synthesis is decreased in fatty hepatocytes because of decreased mitochondrial ATP synthase. Additionally, the depletion of beta-oxidation and gluconeogenesis compromises cellular integrity since glycogen is essential for the integrity maintenance by supplying glucose to ATP synthesis. In the absence of glycogen, for example due to increased consumption by surgical stress, ATP depletion triggers irreversible hepatocellular necrosis. Furthermore, the ability to recover the depleted hepatic ATP storage is severely impaired in patients with obesity-related steatohepatitis. The mitochondrial dysfunction is speculated to be due to structural changes seen in mitochondrial matrix in electron microscopy studies.

Cellular consequences

Sinusoidal endothelial cells (SEC) in steatotic livers show more leukocyte adherence contributing to sinusoidal congestion during reperfusion. Although SEC’s in steatotic livers are more vulnerable to structural damage, it is unclear if this is due to changes in the SEC or in the surrounding hepatocytes. Non-fatty hepatocytes are considered relatively...
resistant to oxidative stress during reperfusion with apoptosis as the main form of cell death after I/R. Apoptosis induced only minimal local response as no local proinflammatory response is activated. Steatotic hepatocytes, however, are not able to induce energy-consuming apoptosis but go through necrotic cell death probably as a result of impaired ATP homeostasis. 94,102

The resident macrophages of the liver, i.e. the Kupffer cells are activated in the early and late phases of reperfusion and further generate mediators such as cytokines as tumor necrosis factor alpha, interleukin (IL)-1β and chemokines initiating local and systemic inflammatory responses ultimately resulting in hepatocellular damage.105 Kupffer cells are activated by ROS leaking from damaged hepatocytes and endotoxin produced by bacterial translocation.106 Kupffer cells from obese steatotic mice demonstrated decreased phagocytosis capability and increased release of ROS and interleukins IL-6 and IL-1 β.72 This Kupffer cell dysfunction amplifies the inflammatory response and further escalates the hepatocellular injury induced by I/R injury. In addition, increased chemokine-induced neutrophil chemoattractant contributes to hepatic injury by attracting neutrophils producing additional ROS and multiple proteases. 72 I/R injury by itself causes cell swelling and leukocyte adhesion and the neutrophil accumulation further contributes to impaired regional and sinusoidal blood flow.107,108,109

Mechanisms of impaired liver regeneration

Impaired liver regeneration is an important clinical complication of steatosis, manifesting as increased morbidity and mortality after partial hepatic resection. 8,9

The mechanism(s) of impaired liver regeneration remain unclear but investigations in different experimental models of steatosis have implicated abnormalities in the cell cycle progression.

The ob/ob mice show increased basal rates of hepatocyte proliferation and up-regulated anti-apoptotic pathways, however despite these features, ob/ob mice displayed impaired liver regeneration after endotoxin-mediated hepatocellular injury. 110,111,112 For normal liver regeneration, several cytokine-dependent and cytokine-independent pathways are essential. In steatotic rats, impaired liver regeneration was found to be associated with interruption in the normal IL-6 signaling pathway, a critical pathway that primes the hepatocytes to respond to mitogenic signals. 113,114 Furthermore, failure of signaling at the level of G1/S phase transition in the cell cycle was observed in fatty hepatocytes during hepatocyte proliferation. This arrest has been proposed to be due to a combination of factors such as the inhibition of induction of the cyclin D1 gene and Map kinases in the G1 phase of cell cycle. 110,115 The IL-6 signal is further transduced through the activation of Janus family of kinases, which in turn triggers the signal transducer and activator of transcription (STAT)-3.116,117 Levels of activated STAT-3 have been reported to be higher in ob/ob mice than in lean controls at baseline, however, decreased proliferation shown by BrdU labeling has also been observed. Therefore, even though STAT-3 activation is necessary for proliferation, it is not sufficient to induce cell cycle progression in fatty hepatocytes.110,118
Deranged ATP homeostasis

During liver regeneration, ATP is crucial in several events required for cell cycle transition from G1 to S phase. These events include activation of certain ion channels, thymidine kinase and chromatin remodeling enzymes. Therefore, ATP dysfunction most likely plays a crucial role in impairment of regeneration in fatty livers. Depletion of hepatic ATP synthesis in fatty hepatocytes has been reported to be the result of mitochondrial dysfunction. Mitochondria are among the critical cellular organelles damaged by intracellular fatty acids through oxidants derived from increased lipid peroxidation dissolving the lipid membranes. Interestingly, ATP depletion might, conversely, also protect steatotic livers from apoptotic cell death by directly inhibiting both caspase-3 activation and Jak kinase activation, preventing further caspase-3 activation. This might explain why the main form of death of fatty hepatocytes is necrosis instead of apoptosis as is the case in normal hepatocytes, when progression in cell cycle during proliferation is blocked.

Discussion

Steatosis in hepatic surgery is step by step recognized as a clinically important feature which influences patient morbidity and mortality after hepatic resection. In the coming years, steatosis will become a major concern as the prevalence is closely linked to obesity, an epidemic phenomenon in western countries. Surgeons are increasingly taking steatosis into account when planning the extent and type of hepatic surgery and are likely to consider possible preoperative and perioperative interventions to minimize the additional damage. However, there are certain pitfalls complicating preoperative assessment of steatotic patients. Currently, the single most reliable method to diagnose steatosis is a liver biopsy. However, core biopsies contain a risk of complications and even of mortality and therefore, are not routinely performed in patients with normal or slightly elevated liver enzymes. This places a patient with steatosis at considerable risk as the current noninvasive imaging tests do not reliably exclude the presence of even severe steatosis. When a biopsy is available, after explorative laparotomy or as part of preoperative tumor staging, further assessment is further hampered by the unreliability of staining methods which might over- or underestimates the degree of steatosis. This is especially relevant in patients with a microvesicular component, as this form of steatosis is related to more deranged energy homeostasis and in a worst case scenario exposes the patient to severe postoperative complications and even mortality. The histological evaluation and grading of steatosis should be standardized to avoid this pitfall. Furthermore, it is obvious that there is an urgent need for reliable noninvasive methods to detect steatosis and related pathologic features preoperatively.

Preoperative assessment targeted to identify steatosis is complicated because of lack of specific diagnostic tools. Currently available laboratory work-up and radiological modalities are too unspecific for accurate diagnosis. Presently the most promising marker is the BMI, as there is correlation between the incidence of hepatic steatosis and BMI above 28. This index, together with clinical presentation, might help to select candidates for invasive liver biopsy as the histology remains the gold standard for steatosis diagnosis.
Even though the mechanisms behind the injurious effects of steatosis in hepatic surgery are becoming unraveled, the actual risk remains unclear. Animal models applied in experimental studies have all biases precluding the extrapolation of results to the clinical situation. In the genetically modified rodents with leptin deficiency, it seems that the reported injury mechanisms and impaired regeneration are due to disturbed leptin signaling per se instead of steatosis. In the nutrition-based rodent models, an imbalance of metabolic features is created that is not representative of the clinical situation. On the other hand, these rodents display the crucial pathogenic features for the development of steatohepatitis and therefore, these nutritional models better represent the clinical situation than the genetic ones which lack inflammatory changes. The development of clinically relevant experimental models is also hindered by the spectrum of patients with different etiological factors. Different etiological backgrounds lead to different forms of steatosis combined with a range of pathologic features unique to some etiological factors. Furthermore, the clinical significance of the type and extent of steatosis is not clear as larger cohort studies applying uniform diagnostic criteria are missing. There are a few large cohort studies assessing the role of steatosis in postoperative recovery. However, there are some general problems in the reporting of these studies. The histopathology methods for diagnosis of steatosis are not frequently, if ever, mentioned. So, the reliability of diagnosis of steatosis remains uncertain rendering the comparison of the results difficult. Uniform grading together with a more detailed description of the staining methods used and the number and sort of biopsies taken are important to compare different studies. Various approaches have been proposed to improve the poorer postoperative outcome of patients with steatosis after liver surgery. The currently applied protective strategies are based on the increased susceptibility of steatotic liver to I/R injury and can be classified into pharmacological and surgical strategies and gene therapy. A positive effect by preconditioning with mild hypothermia or hyperthermia has been described in experimental studies but is yet be applied in clinical studies. Although none of these approaches is currently routinely applied, it seems that surgical strategies such as ischemic preconditioning are the most promising. Ischemic preconditioning (IPC) consists of introducing a brief ischemic period before the actual surgical procedure improving microcirculation and subsequently increasing the cellular oxygen supply after I/R. This beneficial effect has also been shown in patients with mild-to-moderate steatosis by Clavien et al. However, the beneficial effect of IPC in older patients and patients undergoing extensive resections is controversial as there are recent studies reporting specific negative side-effects of IPC in these cohorts of patients. It is clear that more research is needed in this field of surgery as the prevalence of steatosis is dramatically increasing together with the more graying population.

Conclusion

Steatosis plays an important role in hepatic surgery as it is a major risk factor in patient outcome after liver resection. This is due to lipid accumulation deranging hepatic energy homeostasis and inducing hepatocellular damage subsequently affecting hepatocellular
recovery. Further research is needed to clarify the clinical relevance of the broad spectrum of all forms and severity grades of steatosis on patient outcome. Standardized grading and diagnostic modalities need to be applied in future clinical trials to be able to compare outcomes of different studies.

References

30. Clark JM, Brancati FL, Diehl AM. Nonalcoholic fatty liver disease: the most common cause of abnormal liver enzymes in the U.S. population. Gastroenterology 2001; 120: Suppl:A.
42. Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002; 123:1705-1725.

