Mixture Models for Clustering and Dimension Reduction
Verbeek, J.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CONTENTS

1. Introduction .. 1

2. A review of clustering and dimension reduction techniques 7
 2.1 Clustering .. 7
 2.1.1 Hierarchical clustering 8
 2.1.2 Partitional clustering .. 11
 2.1.3 Spectral clustering .. 13
 2.1.4 Comparison of clustering methods 16
 2.2 Dimension reduction .. 17
 2.2.1 Principal components and generalizations 20
 2.2.2 Neural network based methods 26
 2.2.3 Similarity based methods 29
 2.2.4 Comparison of dimension reduction methods 37

3. Mixture density estimation ... 41
 3.1 The EM algorithm and Gaussian mixture densities 41
 3.1.1 Mixture densities ... 42
 3.1.2 Parameter estimation with the EM algorithm 43
 3.1.3 Model selection .. 47
 3.1.4 Gaussian mixture models 48
 3.2 Efficient greedy learning of Gaussian mixtures 53
 3.2.1 Greedy learning of Gaussian mixtures 53
 3.2.2 Efficient search for new components 56
 3.2.3 Related work .. 59
 3.2.4 Experimental results 61
 3.2.5 Conclusions ... 65
 3.3 A greedy approach to k-means clustering 66
 3.3.1 The global k-means algorithm 67
 3.3.2 Speeding up execution of global k-means 68
 3.3.3 Experimental results 69
 3.3.4 Conclusions ... 75
 3.4 Accelerating the EM algorithm for large data sets 75
 3.4.1 An accelerated EM algorithm for Gaussian mixtures 76
Contents

3.4.2 Related work .. 78
3.4.3 Experimental results 79
3.4.4 Conclusions .. 83

4. Self-organizing mixture models 85
 4.1 Self-organizing maps 85
 4.2 Self-organizing mixture models 88
 4.2.1 A constrained EM algorithm for self-organizing maps 88
 4.2.2 Modelling data with missing values 92
 4.2.3 The adaptive-subspace self-organizing map 93
 4.3 Comparison with related work 94
 4.4 Experimental results 98
 4.5 Conclusions .. 105

5. Combining local linear models to form global non-linear models 107
 5.1 Introduction ... 107
 5.2 Combining local linear models 109
 5.2.1 Mixtures of linear models 110
 5.2.2 Aligning local linear models 111
 5.2.3 Closed-form update equations 115
 5.2.4 Parameter initialization 117
 5.2.5 Experimental results 122
 5.3 Learning mappings between manifolds 127
 5.3.1 The probabilistic model 129
 5.3.2 Parameter initialization 131
 5.3.3 Experimental results 134
 5.4 Conclusions .. 140

6. Conclusion and discussion 145
 6.1 Summary of conclusions 145
 6.2 Discussion of directions for further research 147

Bibliography .. 149

Summary ... 161

Curriculum vitae ... 163