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Introduction

Both Moore’s Law (the number of transistors in a processor will double every two years)
and Dennard Scaling (power density remains constant because of transistor scaling)
have allowed us to make large improvements over the last decades of microprocessor
design. While Dennard Scaling is seen as now coming to an end, the resulting inability to
increase clock frequencies signi cantly has fueled the move to the multi-core processors,
which allows to continue to scale the performance of computing platforms through the
use of multiple (and many) ef cient cores.

The high performance achieved by the modern multi-core processors has been
accomplished by using new architectural mechanisms. An important class of those
mechanisms aims to overcome the performance gap between the processors and memory,
referred to as the memory wall. For example, a hierarchy of cache memory levels, which
rely on the principle of memory access locality, and hardware prefetching, which
predicts future memory accesses and issues requests for the corresponding memory
blocks in advance of the explicit accesses, are deployed in nearly every modern multi-
core processors to hide memory access latency.

Although there are many bene ts to moving from single-core processors to multi-
core processors, architects must address disadvantages and associated risks such as
the contention on the shared hardware resources. Cores on the same processor share
both processor-internal resources like L3 cache, system bus, memory controller, 1/0
controllers and interconnects and processor-external resources like main memory, 1/0
devices and networks. Multiple applications executing concurrently on a multi-core
system can interfere with each other at those shared resources. Such inter-application
interference, if uncontrolled, could lead to unpredictable execution delay for individual
applications and severe performance degradation for the whole system.

In this dissertation, we investigate two issues raised by the increasing complexity of
the underlying hardware and software for multi-core systems: timing predictability for
embedded computing and caching performance for high performance computing.

Challenges to build timing predictable multi-core embedded sys-
tems

In many embedded systems, a high performance is useless if we can not provide
guarantees on the timing performance of the applications when designing the system.
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1. Introduction

One example of such systems is real-time systems, where the computing system must
interact with its environment in a timely manner. Violating timing constraints is fatal to
such a system, which may lead to catastrophic consequences such as loss of human life.
For example, an air-bag controller, which must in ate the air-bag in time before the
driver’s head hits the steering wheel. A ight control system must correct turbulence
before the airplane becomes unstable.

A signi cant trend in embedded computing hardware is the paradigm shift from
uniprocessor to multi-core processors. This brings great bene ts such as higher compu-
tation power at lower cost of energy consumption, while at the same time also poses
new challenges for the timing analysis of embedded software executing on a multi-core
processor.

The scheduling of applications on multi-core processors not only involves the time
dimension, i.e., to decide when to execute a certain application, but also involves the
spatial dimension as it also needs to decide where (i.e., on which core) to execute the
application. Apart from the processing cores, different applications also contend on
many shared hardware resources in multi-core processors, such as caches, buses and
main memory. Interleaving of concurrent accesses to these shared hardware resources
results in execution delays for individual applications and creates a tremendous state
space of the system behavior, making its timing analysis extremely dif cult.

Challenges to manage shared resources for high performance
computing systems

Different from real-time embedded systems, the primary goal of high performance
computing is to achieve the best system performance, i.e., to increase system throughput
or to process the computing jobs as fast as possible. Here, the major challenges are to
mitigate the inter-application interference and to ef ciently manage the shared hardware
resources in multi-core processor for high performance computing.

Applications running simultaneously on different cores utilize a plethora of memory
components including a hierarchy of caches, prefetchers and memory controllers. Inter-
application interference makes it dif cult to the predict the performance degradation for
individual applications, as some applications may be slowed down signi cantly, others
may not

Furthermore, the interaction between these various components can be fairly com-
plicated and it is challenging to study the impact of the interaction on application
performance at run time due to the current limited transparency and monitoring capabil-
ities for hardware behaviors. Since recent commodity CPUs have provided hardware
support for control over hardware resources such as caches and memory bandwidth,
a large amount of research attention is given to the management of shared hardware
resources. However, mitigating the impact of the hardware interaction and resource
contention and allocating the shared resources among the co-running applications to
maximize system performance, remain challenges in high performance computing
systems.

Next, we elaborate more in details on the research questions that we address in the
thesis.




1.1. Research Outline and Questions

1.1 Research Outline and Questions

The work in this thesis focuses on developing tools, analyses and algorithmic methods
for addressing the challenges raised in the two general research themes described above:
time predictability for real time embedded computing and shared resource management
for high performance computing. More speci cally, in the rst research line, we
deal with two subtopics related to simulation and analytical approaches for the timing
analysis: system-level modeling and simulation of real time systems for design space
exploration and schedulability analysis of (global and partitioned) real-time scheduling
for multi-core systems with shared caches. In the second research line, we study the
interaction between the hardware prefetching and shared cache management and we
exploit the opportunity to improve caching performance in the presence of hardware
prefetching.

Modeling and simulation of real time embedded system

In today’s embedded systems, together with the increasing multi-core hardware platform
complexity, the software complexity has also been growing dramatically. Modern em-
bedded systems increasingly execute several applications of different types concurrently
on the underlying computing platform. These applications can have different execution
requirements. For example, control applications typically are hard real-time applications
and thus have stringent timing constraints, while best-effort applications prefer a short
task response time. These systems are usually managed by a Real-Time Operating
System (RTOS).

The complexities of the multi-processor system-on-chip (MPSoC) design space
have made traditional cycle- or instruction-accurate simulators inef cient. Raising
the level of abstraction is generally considered as a solution to address the design
complexity, thus reducing time-to-market. To help in the design space exploration
(DSE) at the early stages of design [68], various system-level design languages (SLDL)
such as SystemC [93] and SpecC [85] have been proposed to provide a simulation
environment. Originally, SLDLs primarily focused on hardware modeling and did not
properly address the modeling of software aspects.

The modeling and simulation of RTOS with SLDL have received widespread at-
tention from many researchers [40, 50, 116, 117]. Those simulators are built by a
quantum-granularity based simulation approach, in which the modeled scheduler is
invoked every simulation quantum, similar to the way a real OS scheduler behaves. This
therefore introduces large overheads, resulting in low simulation speeds. Later efforts
[48, 89] were made to trade-off speed for accuracy. [73] and [78] rely on the prediction
of preemption points to speedup simulation while maintaining accuracy. However,
predictions of preemption points are dif cult if the simulation uses more complex task
models like Directed Acyclic Graphs (DAGSs) and resource sharing models.

Therefore, our research questions in the rst study are the following, which are
referred as RQ1.:

RQ1 How to provide fast simulation of real-time embedded systems for design space
exploration at the early stages of system design? How to accurately capture

3



1. Introduction

the timing behaviour of embedded software? How to ef ciently implement the
simulator to provide support for easy plug-in of new task models, new schedulers
and new resource sharing protocols?

Schedulability analysis of real-time multi-core systems

In single-core systems, timing behaviour is typically veri ed via a two-step process [61].
Inthe rst timing analysis step, the Worst-Case Execution Time (WCET) of each task is
derived. The WCET is an upper bound on the execution time, assuming the task runs in
full isolation on the platform, i.e. without preemption, nor any co-runners. The WCET
is then integrated into the second step, schedulability analysis. Schedulability analysis
involves considering the worst-case pattern of task execution under a scheduling policy.
Schedulability analysis determines the Worst-Case Response Time (WCRT) of each
task, by which the timing constraint of each task can be veri ed.

The clear separation between the two steps can not applied to the timing veri cation
of multi-core systems where the interference on shared hardware resources can depend
heavily on the behaviour of co-runners executing concurrently on other cores. When
a task executes alone on a multi-core processor platform, the timing behaviour of the
system is de ned by that task alone, the same as executing the task on a uniprocessor
platform. However, when multiple tasks run simultaneously on different cores, the
interplay between the tasks on shared hardware resources may results in unpredictable
execution delays. Therefore, using the WCET of tasks executing in isolation on a
multi-core platform without considering the co-runner interference can potentially lead
to incorrect WCRT values.

With a multi-core system, the WCRTSs are strongly dependent on the amount of
inter-core interference on shared hardware resources such as main memory, shared
caches and interconnects. In this dissertation, we shall only focus on the shared cache
interference.

The schedulability analysis of global multiprocessor scheduling has been intensively
studied [8, 14, 22,51, 57, 118], of which comprehensive surveys can be found in [26, 82].
Most multi-core scheduling approaches assume that the WCETS are estimated in an
of ine and isolated manner and that WCET values are xed. A few works address
schedulability analysis for multi-core systems with shared caches [35, 113], but these
works assume that so-called cache space isolation is deployed, which requires explicit
hardware support.

In this thesis, we consider multi-core systems in which cache isolation techniques
are not deployed, i.e. the last level cache is shared by cores. We study the schedulability
analysis of global scheduling (Earliest Deadline First and Fixed Priority) for hard real-
time tasks that exhibit shared cache interferences. Thus, we ask the following research
questions, which are referred as RQ2:

RQ?2 Is it possible to derive an upper bound on shared cache interference between
two tasks running simultaneously on a multi-core system? Given a real-time
taskset globally scheduled by EDF or FP, how to obtain an upper bound on the
shared cache interference exhibited by each task in the taskset? How to derive




1.1. Research Outline and Questions

a schedulable condition for the globally scheduled taskset, accounting for the
shared cache interference?

Besides the global scheduling, the partitioned (semi-partitioned) scheduling is
another paradigm that are widely used for scheduling real-time tasks. In partitioned
scheduling, tasks are statically allocated to processor cores, i.e., each task is assigned to a
core and is always executed on that particular core. Although the partitioned approaches
cannot exploit all unused processing capacity since a bin-packing-like problem needs
to be solved to assign tasks to cores, it offers lower runtime overheads and provides
consistently good empirical performance at high utilizations [11].

Furthermore, taking the shared cache interference into account, partitioned schedul-
ing may achieve better schedulability than global scheduling, which will be shown in
Chapter 5.

Therefore, it is interesting to extend the answer to the previous question, which is
developed for real-time global scheduling, to the partitioned scheduling. We then ask
the following questions, referred as RQ3:

RQ3 How to develop a cache interference aware partitioned scheduling for real-time
multi-core systems? Is the partitioned scheduling better than global scheduling in
terms of schedulability performance?

Prefetch-aware cache partitioning for high performance caching

Hardware cache prefetching is a popular technique that is deployed in modern multi-
core processors to reduce memory latencies, addressing the memory wall problem [105].
However, it tends to increase the Last Level Cache (LLC) contention among applications
executing on multi-core system, leading to a performance degradation for the overall
system.

Shared cache management has attracted a lot of research attention in the past decades.
Heracles [59] and Dirigent [120] control the amount of shared hardware resources,
including the LLC, used by latency sensitive applications to improve Quality of Service
and utilization. Selfa et. al. [79] cluster applications using the k-means algorithm
and distributes cache ways between the groups to improve system fairness. Pons et.
al. [69] assigns more cache space to critical applications to improve system turnaround
time. [106] proposes a framework that dynamically monitors and predicts a workload’s
cache demand and reallocates the LLC given a performance target. KPart [30] leverages
online pro ling to obtain miss ratio curves for clustering applications and assigns each
cluster of applications to a cache partition to improve system throughput.Park et. al. [66]
proposed a coordinated partitioning of the LLC and memory bandwidth to improve the
fairness of workloads on commodity servers. All these works have been implemented
on existing processors, however, those works do not study the impact of hardware
prefetching on cache performance and do not explicitly reveal the interaction between
the hardware prefetching and LLC management.

In a real system, cache references by hardware prefetching also contributes to last
level shared cache (LLC) interference [103]. However, there is little understanding
about the interaction between the hardware prefetching and the shared caches. In this

5



1. Introduction

research line, we focus on the LLC management to improve system performance in the
presence of hardware prefetching.
Our questions in this study, then, are the following , refered as RQ4:

RQ4 How does hardware prefetching affect the caching performance? How to man-
age shared caches to improve system performance in the presence of hardware
prefetching?

1.2 Main Contributions

In this section, we summarize the main contributions presented in this thesis.

Modeling and simulation of RTOS. We developed SysRT, a simulator of RTOS in
SystemC that allows developers and researchers to easily explore and validate embedded
RTOS design alternatives. Compared with quantum-granularity based simulators and
prediction-based simulators, SysRT has two main advantages: (i) it has been developed
to be generic and modular to support for easy plug-in of new schedulers as well as
new resource sharing protocols. Thus, it is more exible to simulate various real-
time scheduling algorithms; (ii) it typically achieves higher simulation speeds via an
event-driven simulation approach while obtaining identical accuracy results.

A Method to derive the upper bound on shared cache interference. We con-
struct an integer programming formulation to calculate the upper bound on the cache
interference exhibited by a task within a given execution window. We then present an
iterative algorithm to obtain the upper bound on inter-core cache interference a task
may exhibit during its job executions.

The above approach is extended to compute the upper bound on the cache interfer-
ence for tasks under partitioned scheduling.

Schedulability analysis for real-time multi-core systems with shared caches. A
schedulability condition is derived by integrating the calculated upper bound on inter-
core cache interference into the schedulability analysis for global scheduling algorithms
(EDF and FP).

We also propose a novel cache interference aware task partition algorithm: CA-
TPAR. We conduct schedulability analysis of CA-TPAR and formally prove the correct-
ness of CA-TPAR.

Evaluation of schedulability performance for global and partitioned schedul-
ing. We perform a range of experiments to investigate how the schedulability of global
(EDF and FP) and partitioned (CA-TPAR) scheduling are degraded by shared cache
interference. We also compare the schedulability performance of EDF, FP scheduling
and CA-TPAR over randomly generated tasksets.

Study of the interaction between hardware prefetching and cache manage-
ment. We study the interaction between hardware prefetching and LLC management
in a real system instead of in a simulator. We evaluate the variation of application

6



1.3. Thesis Overview

performance when varying the effective LLC space in the presence and absence of
hardware prefetching. We observed that hardware prefetching can compensate the
application performance loss due to the reduced effective cache space. Based on this
observation, we classify applications into two categories, prefetching sensitive (PS)
and non prefetching sensitive (NPS) applications, by the performance bene t they
experience from hardware prefetchers.

A prefetch-aware cache partitioning approach. We propose CPp¢, a prefetch-
aware LLC partitioning approach for improving LLC management. CPp¢ consists of a
method using Precise Event-Based Sampling (PEBS) techniques for online classi cation
of PS and NP S applications and a LLC partitioning scheme using Cache Allocation
technology (CAT) for PS and NP S applications. We have implemented the prototype
of CPpt as a user-level runtime system on Linux.

1.3 Thesis Overview

This thesis is organized in 7 chapters. After a background chapter, we present four
research chapters containing our core contributions plus a concluding chapter:

Chapter 3 answers the research question RQ1. We present SysRT, a generic,
modular and high-level RTOS simulator that is highly suited for early design space
exploration. The simulator contains different types of application models and a modular
RTOS kernel model, all developed in SystemC. Ef cient and precise modeling of
preemptive scheduling is achieved via an event-driven simulation approach, allowing
simulations to be performed much faster than cycle-accurate simulations. We compare
SysRT with state-of-art simulators to show the advantage of SysRT in both simulation
speeds and accuracy. We also demonstrate the exibility of SysRT and its bene ts
for early DSE using experiments with a mixed workload executing on multiprocessor
platforms with different numbers of cores.

Chapter 4 addresses the research question RQ2. We develop a new schedulability
analysis for real-time multicore systems with shared caches, globally scheduled by EDF
and FP algorithms. We construct an integer programming formulation, which can be
transformed to an integer linear programming formulation, to calculate an upper bound
on cache interference exhibited by a task within a given execution window. Using the
integer programming formulation, an iterative algorithm is then presented to obtain the
upper bound on cache interference a task may exhibit during one job execution. The
upper bound on cache interference is subsequently integrated into the schedulability
analysis to derive a new schedulability condition. A range of experiments is performed
to investigate how the schedulability is degraded by shared cache interference. We also
evaluate the schedulability performance of EDF against FP scheduling over randomly
generated tasksets.

Chapter 5 answers the research question RQ3. We propose a novel cache interfer-
ence aware task partitioning algorithm, called CA-TPAR. We extended the approach to
calculating the upper bound on cache interference for tasks that are globally scheduled,
presented in the previous chapter, to bound the shared cache interference for tasks
under partitioned scheduling. We conduct schedulability analysis of CA-TPAR and
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formally prove its correctness. A set of experiments is performed to show CA-TPAR
outperforms global EDF scheduling in terms of schedulability performance over the
randomly generated tasksets.

Chapter 6 answers the research question RQ4. We propose CPp¢, a prefetch aware
LLC partitioning approach for high performance caching. We rst study the interaction
between hardware prefetching and LLC cache management by analyzing the variation
of application performance when varying the effective LLC space in the presence and
absence of hardware prefetching. We observe that hardware prefetching can compensate
the application performance loss due to the reduced effective cache space. Motivated by
this observation, we then classify applications into two categories, prefetching sensitive
(PS) and non prefetching sensitive (NPS) applications, by the performance bene t they
experience from hardware prefetchers. After that, we propose CPps. CPps  rstclassi es
PS and NPS applications at run time and then partitions the LLC among P S and
NP S applications. Finally, we show the system performance improvement achieved
by CPpr, compared with the baseline con guration, in which the LLC is unpartitioned
and is fully shared among all applications.

Chapter 7 draws the Conclusions. We summarize our main ndings and discuss
directions for future research.

1.4 Origins

For each research chapter, we list on which publication(s) it is based, and we brie y
discuss the role of the co-authors.

Chapter 3 is based on J. Xiao, A. D. Pimentel and G. Lipari [109], SysRT:
A modular multiprocessor RTOS simulator for early design space exploration,
proceedings of the 17th International Conference on Embedded Computer Systems:
Architectures,Modeling, and Simulation (SAMOS),2017. | am the principal author of
this paper. | proposed the ideas, built the simulator, and was the lead writer of the paper.
All the co-authors contributed to the discussions and paper writing.

Chapter 4 is based on J. Xiao, S. Altmeyer and A. D. Pimentel [108], Schedu-
lability analysis of non-preemptive real-time scheduling for multicore processors
with shared caches, proceedings of IEEE Real-Time Systems Symposium (RTSS), 2017,
and its extension as a journal version: J. Xiao, S. Altmeyer and A. D. Pimentel [110],
Schedulability analysis of global scheduling for multicore systems with shared
caches, submited to IEEE Transactions on Computers. | am the principal author of the
two papers. | proposed the ideas, proved the results, conducted the experiments, and
was the lead writer of the two papers. All the co-authors contributed to the discussions
and paper writing.

Chapter 5is based on J. Xiao and A. D. Pimentel [46], Partitioned non-preemptive
scheduling for real-time multi-core systems with shared caches, submitted to De-
sign, Automation and Test in Europe Conference 2020 (DATE2020). | am the principal
author of this paper. | proposed the ideas, proved the results, conducted the experiments,
and was the lead writer of the paper. All the co-authors contributed to the discussions
and paper writing.

Chapter 6 is based on J. Xiao, A. D. Pimentel and X. Liu [111], CPy¢: a prefetch
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aware LLC partitioning approach, proceedings of the International Conference on
Parallel Processing, 2019 (ICPP’19) . | am the principal author of this paper. | proposed
the ideas, conducted the experiments and analyses, and was the lead writer of the paper.
All the co-authors contributed to the discussions and paper writing.

Work on other publications also contributed to the thesis, albeit indirectly. We
mention the following paper:

J. Xiao and G. Buttazzo [107], Adaptive embedded control for a ball and plate
system, proceedings of the 8th International Conference on Adaptive and Self-Adaptive
Systems and Applications, 2016. Buttazzo proposed the project, I did the implementa-
tion, conducted the experiments and analyses, and was the lead writer of the paper. All
the co-authors contributed to the discussions and paper writing.

Paper not related to the thesis but published during the PhD:

J. Xiao, S. Chiaradonna, F. Di Giandomenico, and A. Pimentel [47], Improv-
ing voltage control in mv smart grids, 2016 IEEE International Conference on
Smart Grid Communications (SmartGridComm).

S. Chiaradonna, F. Di Giandomenico, and J. Xiao [20], Quanti cation of the
effectiveness of medium voltage control policies in smart grids, proceedings
of the 17th International Symposium on High Assurance Systems Engineering
(HASE), 2016.







Background

In this chapter, we provide the concepts and background needed in later chapters in this
thesis. We start with a brief introduction to computer architecture in Section 2.1, then
we brie y describe the real-time scheduling theory in Section 2.2.

2.1 Computer architecture

We begin with a discussion of relevant computer architecture fundamentals. Given the
breadth of the topic, a comprehensive review of computer architecture is beyond the
scope of this dissertation. Instead, we focus on the parts of a computing platform: multi-
core processors, caches, hardware prefetching and hardware performance monitoring
unit.

2.1.1 Multi-core processors

During the last decades, the performance of uniprocessor systems has been increasing
by several magnitudes. The high performance has been achieved by using a high
processor clock frequency. While Dennard Scaling is seen as now coming to an end, the
resulting inability to increase clock frequencies has fueled the move from uniprocessor
systems to the multi-core processors, which allows to continue to boost the performance
of processors through scaling up the number of cores in a processor. By doing so,
the software architect is able to process in parallel, thereby signi cantly improving
performance.

In this dissertation, a multi-core processor is considered to be a computer system
with multiple (two or more) central processing units (CPUs) that share full access to a
main memory and peripherals. We do not distinguish between multi-core processors
and multiprocessors, thus multi-core processor is used as a synonym for multiprocessor.

Depending on the memory organization and interconnect, multiprocessors can
be divided into two shared-memory model categories: symmetric shared-memory
multiprocessors (SMPs) and distributed shared memory multiprocessors (DSMs) [41].
In SMPs, the processors share a single centralized memory and a bus is typically used
to interconnect the processors and memory. As all processors have a uniform access
latency to the memory, this type of architectures are also called uniform memory access
(UMA) multiprocessors. By contrast, in DSMs, memory is distributed among the
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processors but forms a single shared address space. A processor can access its local
memory faster than accessing remote memories. Therefore, a DSM multiprocessor
is also referred to as a nonuniform memory access (NUMA) multiprocessor. In this
dissertation, we restrict our focus to SMP architectures.

2.1.2 Processor caches

To hide high off-chip memory latencies, a hierarchy of fast cache memories that contain
recently accessed instructions and data is employed, taking the bene ts of the principal
of locality and cost-performance of memory technologies.

The principal of locality is the tendency of programs to access the same set of
instructions or data repetitively over a short period of time. There are two types of
locality: temporal and spatial locality [41].

Temporal locality: if an item is referenced, it tends to be referenced again in the
near future.

Spatial locality: if an item is referenced, items whose addresses are close by tend
to be referenced in the near future.

Temporal and spatial locality in programs arise from natural program structures.
For example, most programs contain loops, instructions and data tend to be accessed
repeatedly, experiencing high degrees of temporal locality. It is also common that
instructions and elements of an array or a record are accessed sequentially, showing a
high amounts of spatial locality.

Cache access. Each access to the cache results in either a cache hit or a cache miss.
Cache hits occur when an application accesses data (or instructions) and nds that data
(or instructions) in the cache. A cache miss happens when accessed data is not present
in the cache.

Cache organization. Data is transferred between memory and cache in blocks
of xed size, referred to as cache lines. A cache line usually contains multiple data
elements. An access to one data element causes the whole cache line to be loaded into
the cache. As a result, a following access to another element in the same cache line also
results in a cache hit.

Caches are typically organized as a hierarchy of several cache levels. The fastest
and smallest caches are denoted level-1 (L1) caches, with deeper caches (L2, L3, etc.)
being successively larger but slower. A cache contains either instructions or data, and
can also contain both if it is uni ed. In multiprocessors, caches can be either private or
shared. Private caches serve only one core. By contrast, shared caches can be accessed
by multiple cores. Usually lower level caches are private while the last level caches are
shared. A typical design of cache hierarchy is shown in Figure 2.1, where each core has
a private L1 and L2 cache and four cores share an L3 cache.

The size of an L1 cache is about several tens of KB and has an access latency of
less than 5 cycles. If a memory access misses in the L1 cache, the L2 cache is queried.
The capacity of L2 caches may range from hundreds of KB to several MB, with an
access latency of around 10 cycles. In some high performance multi-core processors,
an L3 cache with the size of several tens of MB is deployed to further expand cache
capacity. The access latency of an L3 cache ranges from 40 to 80 cycles. Misses in
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Figure 2.1: A typical design of cache hierarchy in a multi-core processor.

the last level cache trigger accesses to the main memory via the off-chip memory bus,
causing a delay in the order of hundreds of cycles.

Cache mapping. Another issue in cache design is to decide where lines should be
stored, i.e. if a cache line is fetched from main memory, where should it be placed? The
answer depends on the cache mapping. At one extreme is a fully associative cache, in
which a newly fetched memory block can be placed at any location in the cache. At the
other extreme is a direct mapped cache, in which each memory block is mapped directly
to exactly one location in the cache. Intermediate schemes are n-way set associative
caches. In these schemes, every cache set hasa xed number of ways, each of which is
a single cache line. The total number of ways within a cache set is called associativity.
To load a memory block, the processor rst determines which cache set the block maps
to and then selects one of the n different ways in the cache set for the data placement.

Cache replacement. When a cache miss occurs in a direct-mapped cache, as the
requested memory block can only be loaded to exactly one position, and the block
occupying that position must be replaced. When a memory block can be mapped to
several different locations in a cache like in a fully associative and n-way set associative
cache, it is necessary to decide which cache line should be replaced. In a fully associative
cache, all cache lines are candidates for replacement. In an n-way set associative cache,
a way within the selected cache set has to be chosen for placing the requested block. A
cache replacement policy is responsible for deciding which cache line is replaced when
a cache miss occurs. The most commonly used scheme is least recently used (LRU). In
an LRU scheme, the cache line that has been unused for the longest time will be chosen
for the replacement. First In First Out (FIFO), and Pseudo-LRU (PLRU) are alternative
cache replacement algorithms currently used by multi-core processors.

Three C’s model. Cache misses are classi ed into one of three categories in the
three C’s model, by the source of misses in a cache [43]:

Compulsory misses: these are cache misses caused by the rst access to a memory
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block that has never been brought into the cache.

Capacity misses: these are cache misses caused when the cache cannot contain
all the memory blocks accessed by a program. Capacity misses occur because of
blocks being replaced in the cache and later on requested again by the CPU.

Con ict misses: these are cache misses that occur when multiple memory blocks
map to and compete for the same cache set. These cache misses are also called
collision misses.

A special Cache: TLB. Processors with virtual memory using memory manage-
ment units (MMU) usually have a translation look-aside buffer (TLB) [64]. A MMU
translates virtual memory addresses into physical memory addresses. Since performing
such a translation is relatively slow, the TLB, a special address translation cache, is
deployed to store previously resolved virtual-to-physical address mappings. Thanks
to the principle of locality (if the accesses have locality, the address translations for
the accesses will also have locality), the TLB ensures that the MMU does not have to
perform a translation on every memory reference.

2.1.3 Shared cache interference

When multiple applications run concurrently on a multi-core processor, they compete
among each other for cache space. The execution time of a task in a multi-core processor
can be affected by two types of cache interference: intra-core cache interference and
inter-core cache interference.

Intra-core cache interference intra-core interference occurs within a core, speci -
cally, when a task is preempted and its data is evicted from the cache by the preempting
tasks. As a result, the preempted task may experience an extra execution delay due to the
increased data access time as soon as it is rescheduled. The severity of the experienced
delay depends on the particular cache replacement policy, the length of the preemption
and the data access pattern of the preempting task [49, 74].

Inter-core cache interference inter-core interference may happen when tasks ex-
ecuting on different cores access the shared cache simultaneously [49]. If data in the
different addressing spaces of the running tasks are loaded to the same cache line,
memory (i.e. cache) accesses from different tasks can evict each other in cache, leading
to complex timing interactions. Since this type of interference is suffered from tasks
that run in parallel, an exact analysis requires analyzing all the possible interleavings of
task executions, which is intractable. Therefore, it is extremely dif cult to integrate the
inter-core interference into a static timing analysis framework.

2.1.4 Cache Partitioning

Cache partitioning, i.e., dividing cache space between applications (or cores), is a
promising approach to mitigate the negative impact of cache sharing. Cache partitioning
has been widely used to improve system performance, fairness and QoS (quality-of-
service) guarantees. We now present three common techniques (hardware, software and
hybrid techniques) for partitioning shared caches in multi-core processors.

14



2.1. Computer architecture

Hardware Techniques. Hardware techniques modify the cache to support parti-
tioning. Way-partitioning [3, 21, 76], the most common technique, restricts insertions
from each partition to its assigned subset of ways. However, simple, way-partitioning
has signi cant limitations: it supports only coarsely-sized partitions, which is multiples
of the way size, and the number of partitions is proportional to the number of ways.
Prior work has proposed alternative hardware cache partition techniques. For example,
in [12, 72, 96], the cache is partitioned by sets instead of ways by con guring the
indexing function. [63, 77, 97, 102, 112] modify the cache insertion and replacement
policies.

Software Techniques. The most common software-based cache partitioning tech-
nique is page coloring[94]. Page coloring exploits the virtual to physical page address
translations present in virtual memory systems at OS-level. Each partition is allowed to
use its own assigned physical pages that are mapped to speci ¢ cache sets. By restricting
the physical pages used by each partition, the overlap of cache spaces can be avoided.
Page coloring has the advantage of no need for hardware support and does not sacri ce
associativity. However, it has several drawbacks. First, page coloring requires heavy
modi cations to the OS’s virtual memory subsystem and precludes the use of other
bene cial features, such as superpages. Second, partitions are coarsely sized, which is
in multiples of page size cache ways, resulting in a limited number of partitions. Third,
repartitioning incurs large overheads due to the costly process of recoloring memory
pages.

Hybrid Techniques. As a hybrid cache partition technique, SWAP [98] combines
both set- and way-partitioning to achieve ner-granularity partitions. By cooperatively
managing cache ways and sets, SWAP can successfully provide hundreds of ne-grained
cache partitions for the manycore era. SWAP requires no additional hardware beyond
way partitioning. In fact, SWAP is readily implemented in existing commercial servers
whose processors provide support for hardware way-partitioning. However, SWAP
leverages page coloring, thus inherits the limitations of page coloring.

2.1.5 Cache Allocation technology

Recent Intel processors have proposed the so-called cache allocation technology (CAT),
as hardware support for Way-partitioning [42]. CAT provides software-programmable
control over the amount of cache space that can be used by a given application.

Processors that support CAT have a prede ned number of classes of service (CLOS),
for example, 11 in the Intel Xeon Gold 6148 processor and 20 in the Intel Xeon E5
2658 processor. Each CLOS is associated with a capacity bit mask (CBM) that controls
the accessibility of cache lines at cache-way granularity. Each bit CBM grants write
access to the corresponding way in the cache set. Cores (or threads) can be con gured
to belong to a CLOS. CBMs can overlap at some cache ways, which means that parts
of cache ways can be shared by different CLOSs. One requirement of con guring a
CBM is that all the bits set in a CBM must be consecutive, i.e. a CLOS uses consecutive
cache ways in the cache. Each application is assigned a CLOS and an application can
only access the cache ways de ned by the CBM for that CLOS.

One can use Intel-cat-cmt, which is a library [24] developed by Intel, to
con gure CAT. By default, all cores (and applications) are grouped into to CLOS #0.
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Figure 2.2 shows an example of a possible cache partitioning scheme. Each of the
four possible classes of service (CLOS #0 to CLOS #3) has assigned a subset of the 20
ways of the LLC, and each core is mapped to a CLOS. Each CLOS is identi ed by a
color which marks both the applications that belong to the CLOS and the cache ways
they can access. For instance, core 0 is assigned to CLOS #0 and core 1 to CLOS #1.
Note that all the CBMs are contiguous and core 1 and core 2 share cache ways 10 and
11.

Figure 2.2: An cache partitioning scheme using cache allocation technology.

2.1.6 Hardware prefetching

Hardware prefetching is another optimization technique that is commonly employed to
reduce the observed memory access time and the performance gap between processors
and memory. Prefetching predicts the memory addresses a program will access in
the near future and issues memory requests to those addresses in advance of explicit
accesses. By doing so, prefetching can hide the latency of a memory access since the
processor either does not experience a cache miss for that data access or incurs a cache
miss that is satis ed before the processor needs that data. There have been a myriad
of proposed prefetching techniques, and nearly every modern processor includes some
hardware prefetching mechanisms targeting simple and regular memory access patterns.

For example, there are ve distinct hardware prefetchers on Intel Xeon platforms.
Two prefetchers are associated with the L1-data caches: a Data Cache Unit (DCU) IP
prefetcher and a DCU streamer prefetcher per core. The DCU IP prefetcher keeps track
of individual load instructions. It uses sequential load history to determine whether to
prefetch additional lines. The DCU streamer prefetcher is triggered accesses to very
recently loaded data. It fetches the next cache line into L1-D cache.

Two prefetchers are associated with the L2 caches: a Mid-Level Cache (MLC)
spatial prefetcher and a MLC streaming prefetcher. The spatial prefetcher strives to
complete every cache line fetched to the L2 cache with the pair line that comprises a
128-byte aligned chunk. The streamer prefetcher monitors read requests from the L1
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cache for ascending (and descending) sequences of addresses. Monitored read requests
include L1 data cache requests initiated by load and store operations, and L1 instruction
cache requests for fetching code. When a forward or backward stream of requests is
detected, the anticipated cache lines are prefetched into the L2 cache. Prefetched cache
lines must be in the same 4K virtual memory page.

Xeon processors support a special L2 streaming prefetcher, which prefetches data
only into the L3. It is also known as LLC prefetch (or L3 prefetch) though it is still
initiated by L2.

We can activate or deactivate these hardware prefetchers by setting the corresponding
machine state register (MSR) bits [25].

2.1.7 Hardware PMU

To provide realtime micro-architectural information about the processes currently ex-
ecuting on the chip, a rich set of Hardware Performance Monitoring Units (PMUs)
is implemented in today’s processor micro-architectures. PMUs are a set of special-
purpose registers to store the counts of hardware-related activities within computer
systems such as cpu cycles, instructions executed, cache statistics, etc. PMUSs also sup-
port advanced event sampling, a mechanism that collects event samples at a prede ned
sampling period. The event based sampling is realized by Intel’s Precise Event-Based
Sampling (PEBS) [36] and AMD’s Instruction Based Sampling (IBS) [28].

To use the PEBS mechanism, a counter is con gured to over ow after it has counted
a preset number of events. After the counter over ows, the processor copies the current
state of the general-purpose registers and instruction pointer in the records buffer. The
processor then resets the performance counters and restarts the event counter.

As illustrated in Figure 2.3, the event MEM_LOAD_UOPS_RETIRED:L3_MISS is
con gured to drive PMU sampling. It precisely monitors cache misses at the LLC. If
the sampling period is set to n, the PMU samples one data address that causes an LLC
miss every n LLC misses.

alolio] | atjio) | ... [afatiol [ Araio) [ azio) | ... [ alsiio]
\

A[0][0] [ .. | A[1][0] [ ... W ABsI0]

Figure 2.3: PMU data address sampling.

Linux’ perf_event is a standard programming interface to set up performance
monitoring through PMUs. More speci cally, perf_event_open [27] can set the
PMUs in sampling mode, and the over ow event can be enabled via ioctl () calls.
The Linux kernel can deliver a signal to the threads whose PMU event counter over ows.
The user code can mmap a circular buffer into which the kernel keeps appending the
PMU data on each sample. The user can also read those circular buffers.
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2.2 Real-time systems

Some embedded systems, which are referred to as real time systems, must react to
events in the environment with precise time constraints. A real-time system is a
computer system whose behavior depends not only on the functional correctness of the
computation, but also on the time at which results are produced [18]. Violating timing
constraints of a real time system such as chemical and nuclear plant control, railway
switching systems, ight control systems, may lead to catastrophic consequences.
Rather than being computationally fast, a real-time computing system must be
predictable. To achieve predictability, it is necessary to apply methodologies at every
stage of the development of the system, from design to testing. Over the last decades, a
number of methodologies and analysis techniques have been proposed in the literature
to improve the predictability of real-time systems. In the following, we brie y review
the real-time task models, real-time scheduling algorithms and schedulability analysis.

2.2.1 Real-time task models

A task is a computational activity that is executed by the processor in a sequential
fashion. Particularly well-studied real-time task models are the periodic task model
and the sporadic task model. In both models, a task is a in nite sequence of jobs. In
the periodic task model, the jobs of a task are released periodically, separated by a

xed time interval. In the sporadic task model, two consecutive jobs are separated
by a minimum inter-arrival time. Each task x = (Cg; Dx;Tk) is characterized by
a worst-case computation time Cy, a period or minimum inter-arrival time Ty, and a
relative deadline Dy.

Three levels of constraint on task deadlines are studied in the literature: (1) Implicit
deadlines, in which task deadlines are equal to their periods (Dx = Tk), (2) Constrained
deadlines, in which task deadlines are less than or equal to their periods (Dx  Tk), (3)
Avrbitrary deadlines, in which task deadlines can be less than, equal to, or greater than
their periods. In this dissertation, we restrict our focus to constrained deadlines.

As illustrated in Figure 2.4, atask  is a sequence of jobs. Let Ji denote the jth
instance of task . The arrival time of J}, i.e. the time instant when a job becomes
available for execution, is denoted by r{.. Once a task is ready for execution, it may not
get executed immediately. The time instant at which JJ starts to execute is denoted by
sl and J} completes its execution at f}. The absolute deadline of J} is d! = rl + Dy.

JJ ’s response time, denoted by RJ, is the time interval from the arrival time to
the time when the job is terminated, i.e. Rl = f!  rl. The goal of a real-time
scheduling algorithm is to guarantee that each job WiII complete before its absolute
deadline: f} d.

2.2.2 Scheduling algorithms

From the perspective of real-time scheduling, shared-memory multiprocessors can be
further classi ed into three categories based on the capabilities of their constituent
processors: identical multiprocessors, uniform multiprocessors and heterogeneous
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Figure 2.4: Periodic (sporadic) task model and task parameters.

multiprocessors. In identical multiprocessors, each processor has the same computation
power, hence the amount of work completed by executing a task for a xed duration
of time on a processor is the same, regardless of which task is being executed, and on
which processor. In uniform multiprocessors, each processor is characterized by its
own computing capacity hence the execution rate of a task depends on which processor
it executes on. Finally, in heterogeneous multiprocessors, each processor may have
special capabilities such as application-speci ¢ co-processors hence the amount of work
completed by executing a job for a xed duration of time upon a processor depends
on the identities of both the job and the processor. We restrict our focus to identical
multiprocessors in this dissertation.

In multitasking systems, the processor(s) are assigned to the various tasks according
to a prede ned criterion, referred as a scheduling policy. The set of rules that determines
the order in which tasks are executed is called a scheduling algorithm. Real-time
scheduling problems can be divided into two categories by the number of processors
in the computation platform: uniprocessor real-time scheduling and multiprocessor
real-time scheduling.

Uniprocessor real-time scheduling

Research on uniprocessor real-time scheduling started in the late 1960s and signi cant
research efforts were made in the 1980s and 1990s. [5] and [82] provide historical
accounts of the most important achievements in the eld of uniprocessor scheduling
during those decades. The uniprocessor real-time scheduling theory is reasonably
mature, as a large amount of research results are documented in the textbooks such
as [17, 18], and some of those results are successfully applied to industrial practice. The
two well-known uniprocessor scheduling policies are xed-priority (FP) and earliest-
deadline rst (EDF) scheduling.

Under FP scheduling, each task is statically assigned a unique priority prior to
execution. At runtime, competing jobs are then scheduled in order of decreasing task
priority. One example of FP scheduling is rate monotonic (RM) scheduling. RM
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scheduling assigns priorities to tasks according to their request rates. Speci cally, tasks
with higher request rates, i.e. shorter periods, get higher priorities. Since task periods
are constant, the priority assigned to the task does not change over time.

EDF is a dynamic priority scheduling algorithm that selects tasks according to their
absolute deadlines. Speci cally, tasks with earlier deadlines are assigned with higher
priorities. Since each job’s absolute deadline changes over time, the priority of a task
changes dynamically. In a classic result, EDF is optimal for uniprocessor real-time
scheduling with HRT constraints [56].

Multiprocessor real-time scheduling

Multiprocessor real-time scheduling theory also traces its origins back to the late
1960s. As noted in [55], multiprocessor real-time scheduling is intrinsically a much
more dif cult problem than uniprocessor scheduling. Few of the results obtained for
a uniprocessor generalize directly to the multiprocessor case. Unlike uniprocessor
scheduling, in which the scheduling of tasks only involves the dimension of time, i.e.,
to decide when to execute a certain task, multiprocessor scheduling also involves the
dimension of space as it also needs to decide where (i.e., on which core) to execute a
task.

There are two fundamental classes of multiprocessor schedulers: global and par-
titioned. Under global scheduling, all processors serve a single queue of tasks ready
to execute and jobs may migrate among processors. In contrast, under partitioned
scheduling, tasks are statically assigned to processors during an of ine phase and no
task migration is permitted. Each processor then is scheduled individually using a
uniprocessor policy such as EDF or FP.

In some systems, the running task can be interrupted at any time. If a task with
higher priority becomes ready to execute and all processors are occupied by some other
tasks, the running task with lowest priority is suspended, leaving the processor for the
execution of the ready task with higher priority. The operation of suspending a running
task is called preemption.

Scheduling algorithms can be further classi ed into three categories with respect to
whether preemption is allowed or not. (1) Preemptive scheduling. The running task can
be preempted at any time, giving the core to another ready task. (2) Non-preemptive
scheduling. Once a task starts executing, it will not be preempted and will therefore
occupy the core until the completion of its execution. (3) Cooperative. Tasks can only
be preempted at de ned scheduling points within their execution. We restrict our focus
to preemptive and non-preemptive scheduling in this dissertation.

We now show some examples of preemptive and non-preemptive real-time schedul-
ing by considering a taskset consisting of 4 real-time tasks: Ty = (2;4;4), T, =
(2;5;5), T3 = (4;9; 10), T4 = (5; 20; 20) to be scheduled on a processor with 2 cores.
Note that the 3-tuple task model is explained in Section 2.2.1.

Preemptive scheduling

The scheduling of under preemptive RM scheduling is depicted in Figure 2.5. RM
scheduling assigns a xed priority P;j to each task ; (i = 1;2;3;4), such that P; >
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Py, > P3 > Py.

At t = 0, although all tasks are ready to execute, only 1 and » execute as only two
core are available. Att = 2, both ; and , nish execution, so 3 and 4 start their
execution. Att = 4, ; becomes ready again. Since ; has the highest priority, the
executing task with the lowest priority, which is 4, is preempted, leaving one core for
the execution of 1. Similarly, att =5, 3 is preempted for the execution of ».
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Figure 2.5: The scheduling of taskset under preemptive RM.

Figure 2.6 shows the scheduling of the same taskset under preemptive EDF.
Different from preemptive RM scheduling, att = 5, 5 can not preempt 3 since the
absolute deadline of the job from 3 (i.e. t = 9) is earlier than the absolute deadline of

2’s ready job (i.e. t = 10). Thus,  starts its execution when 3 nishes.
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Figure 2.6: The scheduling of taskset under preemptive EDF.

Non-preemptive scheduling

The scheduling of  under non-preemptive RM is illustrated in Figure 2.7. Att =2, ;3
and 4 start their job execution. Once a job gets executed, it is assigned with the highest

21



2. Background

priority. Even though 1 and » have a higher task priority than 3 and 4, they can not

preempt 3’sand 4’s executing jobs. 1’s job starts its execution when the job of 3
nishes. Similarly, the processing of »’s job begins when the job of 4 completes.

The scheduling of taskset under non-preemptive EDF is same as shown in Fig-
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Figure 2.7: The scheduling of taskset under non-preemptive RM.

Preemptive scheduling typically allows higher ef ciency, in the sense that it allows
to schedule a real-time task set with higher processor utilization. However, preemption
destroys program locality and consequently may introduce cache preemption related
delay that in ates the execution time of tasks.

2.2.3 Schedulability analysis

A task is schedulable according to a given scheduling algorithm if all of its released
jobs can be guaranteed to complete their executions before their deadlines. A taskset is
schedulable according to a given scheduling algorithm if all of its tasks are schedulable.

The fundamental problem in embedded real-time system design is to analyze and
verify the schedulability of the taskset under the scheduling algorithm, which is referred
to as schedulability analysis.

The schedulability analysis of global multiprocessor scheduling has been intensively
studied, of which comprehensive surveys can be found in [26, 82]. Details on the
analytical schedulability analysis can be found in textbooks like [58] and [18]. As
one of the fundamental methodologies for schedulability analysis, the Response Time
Analysis (RTA) [18], which employs an iterative procedure to compute a task’s worst-
case response time, has been wildly applied to the timing veri cation of real-time
systems.

Most multi-core scheduling approaches assume that the WCETS are estimated in an
of ine and isolated manner and that WCET values are xed. when two or more tasks
are executed in parallel on different cores. However, the interplay between the tasks on
shared caches may lead to unpredictable delays [95].For example, useful cache blocks
that were loaded by one task can be evicted by another task executing simultaneously
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on a different core. Therefore, using the WCET of tasks executing in isolation on a
multi-core platform without considering co-runner interference can potentially lead
to incorrect WCRT values in the context of the complete multi-core system, which
invalidates the traditional analysis framework with independent program-level and
system-level timing analysis. This problem is a major obstacle to use multi-core
processors for real-time systems [61].

Now we have provided the necessary background for the reminder of this disserta-
tion, we move to the rst research chapter: SysRT: A Modular Multiprocessor RTOS
Simulator for Early Design Space Exploration.
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SysRT: A Modular Multiprocessor RTOS
Simulator for Early Design Space
Exploration

In the previous chapter we have described the background knowledge for this thesis.
Starting from this chapter, we begin to present our research and answer the research
questions we listed in Chapter 1. This chapter addresses RQ1, which is concerned with
modeling and simulation of real time embedded systems.

In the past years, the design of systems-on-chip (SoCs) has become increasingly
complex. Hardware architectures are migrating from simple single-core based systems
to more complex multi-core architectures. In the embedded systems domain, together
with the increasing hardware complexity, the software complexity has also been growing
dramatically. Modern embedded systems increasingly execute several applications of
different types concurrently on the underlying computing platform. These applications
can have different execution requirements. For example, control applications typically
are hard real-time applications and thus have stringent timing constraints, while best-
effort applications prefer a short task response time. These systems are usually managed
by a Real-Time Operating System (RTOS).

Raising the level of abstraction is generally considered as a solution to address the
design complexity, thus reducing time-to-market. To provide a simulation environment
and to help in the design space exploration (DSE) at the early stages of design, various
system-level design languages (SLDL) and methodologies have been proposed, such
as SystemC [93] and SpecC [85]. Originally, SLDLs primarily focused on hardware
modeling and did not properly address the modeling of software aspects. Later ef-
forts introduced methods to model timing behavior of software in SLDLs. But most
solutions still lack direct support for simulating the real-time behavior of concurrent
applications, such as preemption or scheduling within the RTOS. To verify that the
timing requirements posed by applications are met during the early stages of design, a
fast system-level simulator, capturing both the modeling of software and hardware, is
needed.

The modeling and simulation of RTOS with SLDL have received widespread atten-
tion from many researchers, [50, 116, 117]. In [40], the modeling capability of SystemC

This chapter was published as [109].
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has been extended by RTOS services to provide more realistic software modeling fea-
tures. However, to realize features such as preemption and scheduling, a scheduler
model is invoked every simulation quantum, similar to the way a real OS scheduler
behaves. This quantum-granularity based simulation approach therefore introduces
large overheads, resulting in low simulation speeds. Later efforts such as [48, 89]
focused on improving the accuracy of high-level simulation while maintaining high
performance. However, these works still trade-off speed for accuracy.

In [73], a host-compiled multi-core system simulator is presented for early real-time
performance evaluation. They present an integrated approach for automatic timing
granularity adjustment to optimally navigate simulation speed versus accuracy. This
approach switches between prediction mode and fallback mode. In prediction mode, a
prediction of the next scheduling points is performed based on the simulation parameters
and states of periodic tasks. Schirner et al. [78] introduce preemptive scheduling in
abstract RTOS models using Result Oriented Modeling (ROM). To speed up simulation,
ROM optimistically predicts the nish time of a process already at the start time by a

runto nish assumption. ROM records any possible preemption that may alter the
predicted outcome. While time passes, it validates the prediction and takes corrective
measures to ensure accuracy. However, predictions of preemption points are dif cult if
the simulation uses more complex task models like Directed Acyclic Graphs (DAGS)
and resource sharing models.

Therefore, we address the following research questions:

RQ1 How to provide fast simulation of real-time embedded systems for design space
exploration at the early stages of system design? How to accurately capture
the timing behaviour of embedded software? How to ef ciently implement the
simulator to provide support for easy plug-in of new task models, new schedulers
and new resource sharing protocols?

To answer this question, we develop SysRT, a generic and high-level RTOS simulator
that is highly suited for early design space exploration (DSE). SysRT contains different
types of application models and a modular RTOS kernel model, all developed in
SystemC. Ef cient and precise modeling of preemptive scheduling is achieved via an
event-driven simulation approach, which utilizes scheduling events associated with
task states and interrupts, allowing simulations to be performed much faster than
cycle-accurate simulations. At the same time, the kernel model is developed to be
generic and modular to support for easy plug-in of new schedulers as well as new
resource sharing protocols. Comparing SysRT to state-of-art simulators, it achieves
faster simulation speeds with an identically small simulation error. We demonstrate
the exibility of SysRT and its bene ts for early DSE using experiments with a mixed
workload executing on multiprocessor platforms with different numbers of cores.

The rest of the chapter is organized as follows. The overall RTOS simulation
framework is described in Section 3.1. Section 3.2 describes the application mod-
els. In Section 3.3, the kernel model is detailed, and Section 3.4 presents a range of
experimental results. Section 3.5 concludes this chapter.
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3.1 Modeling Framework

SysRT consists of three layers, as shown in Figure 3.1: the application layer, the kernel
layer, and the architecture layer. In the application layer, the user can model a set of
processes. A process can be a single job instance (named ST in Figure 3.1), a Periodic
Task (PT) of which job instances are invoked periodically, or a process with execution
precedences modeled by a DAG, as will be explained in Section 3.2.

Figure 3.1: Simulation framework of SysRT.

The application layer interacts with the RTOS kernel layer. The application informs
the kernel of its execution states, while the kernel model returns task scheduling deci-
sions. We model four functionalities of the OS kernel, namely process management,
resource management, interrupt handling and real-time scheduling. A queue in the
OS kernel is used to order the tasks that become ready for execution. The OS kernel
further has a resource manager sub-module that controls access to resources shared
between tasks. The resource block queues store tasks waiting to get access to a particular
resource due to mutual exclusion. Moreover, interrupt service routines are de ned in
the OS kernel model. When an interrupt is generated, either from software or hardware,
the OS kernel schedules the corresponding interrupt handler depending on the handler
priority. Different real-time (preemptive) schedulers are implemented in the scheduling
module of the OS kernel model. The architecture layer models the hardware computing
platform. It speci es the number of cores in the SoC platform, the interconnection
between the cores, and the hardware interrupt interfaces. The current architecture model
mainly accounts for the scheduling overhead including migration and context switching
overhead after a scheduling decision is made by the OS kernel. The implementation
details of the architecture model are beyond the scope of this chapter.

29



3. SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration

Application layer, OS kernel layer and architecture layer are implemented on top of
the basic classes and primitives provided by SystemC. We use event-driven simulation,
where events are modeled by the sc_event class. This class allows explicit triggering of
events by means of a noti cation method. The Event.notify(sc_time t) method noti es
or posts an event after time t. If a simulation process is set to be sensitive to an event,
then this process acts as the corresponding event handler. When an event occurs, the
corresponding event handler is invoked and scheduled by the SystemC simulation kernel.
Scheduled events may be canceled with the event.cancel() method.

Modelling preemption is always a challenging topic for a RTOS simulator. Most
RTOS simulators that are built on top of SystemC use wait(sc_time time) to model task
execution latency. If a task is preempted for some time, then the preemption time is
counted as extra task execution latency, resulting in another execution of wait(sc_time
time) for that task. However, this approach comes with a speed penalty due to the fre-
guent computations of the preemption time and the frequent executions of wait(sc_time
time). Unlike this approach, SysRT adopts an event-driven approach that uses only
sc_event to model preemption. Events are extracted from the task execution states,
which will be discussed soon. Once a task is preempted, the only work to do is to cancel
the task nishing event. When this task is scheduled again, a new task nishing event
is posted after the remaining execution time. compared with the wait(sc_time time)
method, this event-driven approach introduces less simulation overhead.

3.2 Application model

The Application is a program that contains a set of coordinated tasks modeled by the
user through the Task module. In this work, the actual task functionality is abstracted
away, and only the timing of task execution is simulated. Here, we assume that timing
information of task execution latencies are estimated or known a-priori.

3.2.1 Task Model

In the task model, three kinds of constraints speci ed on real-time tasks are considered:
timing constraints, precedence relations, and access control on shared resources. Timing
constraints, such as execution times and job deadlines, are speci ed at the creation of a
real-time task object. Precedence constraints are realized by a DAG task model [75].
Contention on shared resources is simulated by adding wait/signal instructions in the
task execution routine, as will be explained below.

A task module contains a list of high-level instructions that are executed in sequence.
Instruction sub-modules are added to a task module by the InsertCode method. For
example, consider a task T; that computes for 500 milliseconds, then tries to get
access to a shared variable R; after which it occupies the resource for 50 milliseconds
once the access is granted, and after releasing the shared resource the task nishes
its current job by computing for another 300 milliseconds. This can be modeled
by: T1.InsertCode( execute(500); wait(R;); execute(50); signal(R;); execute(300) ).
Details about the instruction module will be described in Section 3.2.2.

The simulation is driven by events generated by the rst job of each task. The typical
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events generated for a task are illustrated in Figure 3.2. A job_arrival event is posted
at the activation offset (start time) ; by the start_of_simulation() method in the Task
module which is called at the beginning of the simulation. A job_arrival event is noti ed
every time when the task becomes ready to execute. Between the job arrival time and

nish time, a job may miss its relative deadline. For such cases, a deadline_miss event
is posted at time j+Dj, where D;j is the relative deadline of task i. The action of the
deadline_miss event handler is speci ed by the user. Possible actions are to kill the
job instance, to ignore the deadline miss or even to stop the simulation. Once a job
starts its execution, a job_end event is posted at time ;+C;, where C; is the execution
latency of task i. The responsibility of the job_end event handler is to cancel the pending
deadline_miss event and to call the kernel interface to inform it to schedule another task.
A schedule event is posted by the OS kernel to a speci c task if it was selected to be
scheduled. The schedule event handler schedule() then schedules the instructions of
the task. A deschedule event is generated if a task is preempted by another task with a
higher priority. The deschedule event handler deschedule() cancels the pending job_end
event, records the current time stamp and computes the executed job length. When the
task is re-scheduled, a new job_end event is posted for the job’s remaining execution
time.

Figure 3.2: Task events.

The UML class diagram of task modules is shown in Figure 3.3(a). AbsTask de nes
the interface that must be implemented by a general task. It includes an activate()
method, which activates the task, as well as schedule()/deschedule() methods, which
modify the task state and related variables when a task is scheduled/descheduled.
AbsRTTask de nes the interface that should be provided by a real-time task and contains
methods for getting the absolute and relative deadline of a task.

Periodic Task Model: Periodic tasks consist of a number of instances or jobs that
are regularly activated at each period. Periodic tasks are reactivated by the job_arrival
event handler, which posts a new job_arrival event at the next period.

DAG Task Model: A DAG is a graph of real-time subtasks (also called nodes) that
captures their execution precedences. The subtasks share the same deadline and period
but differ in their WCET. The DagNode module is used to construct a DAG application
model in SysRT.
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Figure 3.3: (a) Task module and (b) Kernel module.

3.2.2 Instruction Model

Instructions inside tasks are modeled using the Instruction class. There are two kinds of
instructions. First, execute(sc_time time) is used to model the execution time required to
execute a real code segment in an application. It can be described by a random variable,
making it possible to model a portion of code with an arbitrarily distributed random
execution time. The other instruction type is wait(Resource res)/signal(Resource res),
which models the request or release of a shared resource. A task executes all the
instructions in sequence. A job instance is completed only after its last instruction was
executed. If a task is activated again (i.e. ring a new job), then the instruction pointer
is reset to the rst instruction.

The schedule/deschedule event propagates from a task to its instructions. If a task is
selected to execute at time t, the task calls its instruction interface and noti es a schedule
event in the Instruction module. Suppose that the execution duration of the instruction
is instr_time, the schedule event handler in the Instruction module will post an end_instr
event at time t+instr_time. The end_instr event handler increments the instruction
pointer to the next instruction in the task and posts a new end_instr event for the next
instruction. If there are no more instructions to execute, the interface of the task module
is invoked and a job_end event is posted. During instruction execution, a task may be
preempted and rescheduled. A similar event propagation mechanism between a task
and its instructions applies to the deschedule event.

Based on the assumption that the actual requesting and releasing of a resource takes
zero time, the end_instr event is noti ed immediately if the current scheduled instruction
is wait or signal. The end_instr event handler for the wait instruction communicates
with operating system kernel by calling the interface request_resource(Kernel, Resource,
resource_quantity). As a result, the task gets the resource if a suf cient quantity of
that resource is available. Otherwise, the task is blocked by the operating system
kernel. For the signal instruction, the end_instr event handler invokes the interface
release_resource(Kernel, Resource, resource_quantity) in the operating system kernel
module. The task releases the resource quantity used.
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3.3 RTOS Kernel Model

Figure 3.3(b) shows the UML class diagram of the OS kernel module. The AbsKer-
nel class is an abstract class that de nes the minimal functionality of a kernel. The
UNPKernel and SMPKernel classes are implemented to model an OS kernel running
on a uniprocessor system (UNP) or a symmetric multiprocessor system (SMP), re-
spectively. Traditional real-time multiprocessor schedulers can be classi ed in two
categories: global and partitioned schedulers. Global Earliest-Deadline-First (G-EDF)
and Partitioned-EDF (P-EDF) are examples of each category. The SMPKernel class
models a general OS kernel with a global scheduler, whereas the PartiKernel class
models an OS kernel with partitioned schedulers.

In this work, we mainly consider services of process management, resource manage-
ment, interrupt handling and real-time scheduling provided by the OS kernel. We have
developed the modules of the OS kernel model with the aim to provide a exible and
extendable framework to facilitate implementation, testing and evaluation of different
real-time schedulers with various resource sharing protocols.

3.3.1 UNPKernel Model

The UNPKernel module is developed to model a real-time OS kernel running on a unipro-
cessor. It contains sub-components such as the Scheduler module and the ResManager
module that is responsible for performing resource access related operations. These
sub-components are set through methods set_sched (Scheduler* s) and set_resmanager
(ResManager* rm).

At initialization, a CPU pointer, which points to the modeled architecture, is created
in the UNPKernel module to get information of the architecture platform. Since at most
one task is allowed to execute at a time in a uniprocessor system, one pointer cur_exe is
enough to track the current executing task.

For the communication with tasks, the UNPKernel module provides several func-
tions. These include the functions Arrival(AbsRTTask* t) and End(AbsRTTask™* t). The
function Arrival(AbsRTTask™ t) is called by the task arrival event handler. This method
inserts the task in the ready queue, followed by a function call to make a schedule
decision. End(AbsRTTask* t) is invoked by a task when the task completes its execution.
This function removes the task from the ready queue and sets the cur_exe pointer to
null. To suspend a task, the UNPKernel class implements a Suspend(AbsRTTask* t)
function. This function removes the task from the ready queue. If the task was exe-
cuting, then it will rst be descheduled. When a task is resumed (from suspension by
the OS or from being blocked on a resource), the kernel reactivates the task by calling
Activate(AbsRTTask* t) which simply inserts the task in the ready queue and changes
the task’s state to ready.

The operation of allocating the CPU for task execution is referred to as dispatching.
The dispatching activity is simulated by the dispatch() function. Any circumstance that
may change the current executing task should invoke dispatch() to make a scheduling
decision:

when a new task becomes ready;
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when a task nishes its current job;
when a task is blocked,;
when an interrupt arrives, activating its corresponding interrupt handler.

On uniprocessor systems, just one execution ow can progress at a time. Therefore,
dispatch() is simple in UNPKernel as compared with its implementation in other kernel
modules. It simply compares the executing task with the rst task in the ready queue.
If they are different, it forces a context switch, which involves the participation of
architecture model to simulate the context switch overhead. When the context switch
has nished, the kernel schedules the newly dispatched task. Important to realize is that
the dispatch() function has been decoupled from the scheduler that actually determines
the order of the tasks in the ready queue, according to the implemented scheduling
algorithm.

3.3.2 SMPKernel Model

The SMPKernel is a module modeling a real-time kernel with a global scheduler for
(SMP) multiprocessor systems. On multiprocessor systems, multiple tasks are allowed
to run concurrently. The SMPKernel module keeps track of the status of each individual
processor, storing information about which task is executing on which processor, which
tasks are about to be dispatched to which processor, and whether or not processors are
in the process of performing a context switch.

The functions provided to the Task module and methods related to process man-
agement in the SMPKernel module are similar to those in the UNPKernel module.
However, the function to make a scheduling decision, dispatch(), is more complicated.
Pseudocode 3.1 shows the procedure of the dispatch() method in SMPKernel.

Pseudocode 3.1: The procedure of dispatch() with a system architecture with m processors

1: while newtasks > 0 do

2:  thew rst non-executing task in ready queue that needs to be scheduled (i.e.,

among the rst m entries)

c nd next free core freturn NULL if no more free coresg

ifc==NULL then
tremove rst executing task in ready queue not part of the rst m entries ;
c get the index of core executing task tremove

end if

dispatch_to_proc(t"¢%, c)

9:  newtasks  newtasks - 1

10: end while

® NSO ®

In this code, the variable newtasks denotes the number of tasks that are not execut-
ing but need to be scheduled. Assuming a simulated architecture with m processors,
newtasks therefore equals to the number of tasks that are among the rst m tasks in the
task ready queue that are not yet executing or being dispatched. Newly scheduled tasks
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are dispatched to free processors if there are any available. If all processors are busy,
then task preemption will take place.

The dispatch() method decides on the index of the selected cores for task dispatch.
By calling dispatch_to_proc(Task * newtask, CPU *c), the OS kernel also deschedules
any task currently executing on processor ¢ and computes the scheduling overhead
including the context switch and task migration costs. The computed scheduling
overhead is passed from the kernel layer to the architecture layer, which subsequently
simulates this overhead. Hereafter, a newly dispatched task is selected to start execution
on processor c. The procedure of dispatch_to_proc(Task * newtask, CPU *c) is shown
in Pseudocode 3.2.

Pseudocode 3.2: The procedure of dispatch_to_proc(Task newtask;CPU ¢)
: AbsRTTask current_task the task currently executing on core ¢

=

2: if current_task & NULL then

3:  deschedule current_task

4: end if

5. if newtask == NULL then

6: RETURN

7: else

8:  prepare newtask to execute on core ¢
9: end if

10: Compute the scheduling overhead

: Send the overhead to architecture model

[N
[N

3.3.3 PartiKernel Model

The structure of a partition-based scheduler is shown Figure 3.4. In a partitioned
scheduler, ready tasks are rst inserted in a global ready queue. Through this global
scheduler, ready tasks are then dispatched to a speci ¢ local task queue according to the
task’s af nity. Each processor has its own local queue in which the order depends on
the local scheduler. Each processor may use a different scheduler.

Figure 3.4: Structure of a partitioned-based scheduler.
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Since the structure of such a partitioned scheduler is different from the global
scheduler, a different kernel module, PartiKernel, has been implemented to facilitate
the development of partitioned schedulers.

The interface provided to the Task module and functions related to process man-
agement in the PartiKernel module are slightly different than those in SMPKernel due
to task af nity. However, the dispatch() method has been completely re-implemented.
If a task is inserted to or is removed from a local queue, instead of calling dispatch(),
PartiKernel invokes a dispatch(CPU *cpu) function that passes the task af nity as a
parameter to make a local rescheduling decision for the processor in question. Changes
on a local queue have no effect on the ordering of other local queues. In this sense, the
dispatch(CPU *cpu) function is similar to dispatch() in UNPKernel.

3.3.4 Scheduler Model

When a task becomes ready to execute, it is inserted to the ready queue managed by the
scheduler, which is a sub-component of a kernel module. The ready queue is ordered by
task priority assigned by the scheduling algorithm. At a scheduling point, the scheduler
(i.e. dispatcher) is responsible for selecting the task(s) at the front of the ready queue to
execute. In SysRT, the following schedulers have currently been implemented:

Global Earliest Deadline First [56] (G-EDF)

First Come First Out (FIFO)

Fixed Priority Scheduler (FPS)

Rate Monotonic Scheduler (RMS)

Round Robin (RR).

Proportional Fairness [10] (P-FAIR)
Partitioned-based Scheduler (PS) including P-EDF
Non-Preemptive EDF (NP-EDF)

3.3.5 Resource Management Model

The Resource module models a resource shared by two or more tasks. It provides
an interface to the OS kernel module to, for example, perform locking operations for
providing access to these shared resources. The resource availability is checked by the
method IsAvailable(int amount). It returns false if the quantity of a certain resource
is not suf cient. Every task uses resources through a critical section surrounded by
wait and signal instructions. If the executing task requests/releases a certain resource
quantity, the resource manager in the OS kernel invokes the interface of the resource,
lock(int amount)/unlock(int amount), to decrease/increase resource availability for that
particular resource.

The ResManager module models a resource manager that implements the resource
accessing protocol. It contains multiple block queues, each associated with a particular
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resource to store tasks blocked on that resource. These block queues are ordered by task
priority. Different resource sharing protocols can be implemented by the ResManager
module.

Taking the Priority Inheritance Protocol [81] as an example, requesting a resource is
implemented by rst checking the availability of the requested resource. If there are not
enough available resources, the resource manager calls the kernel interface to suspend
the task that is requesting the resource. Furthermore, the priority of the resource owner
is changed to the maximum priority of those tasks that are blocked for the resource. If
the requested resources are available, the resource manager invokes the unlock interface
of the resource and grants the resources to the task. Releasing a resource unlocks the
resources and changes the priority of the releasing task back to its original priority, after
which it checks if the resource block queue is empty. If the queue is not empty, the
resource manager removes the rst task from the block queue, and activates the task
through the kernel interface and locks the resource for the new owner.

3.4 Experimental Results

In this section, we evaluate the accuracy and simulation performance of SysRT, and
demonstrate its exibility and bene tin DSE. All experiments were conducted on a
3.4GHZ Intel Core 15. The default time unit of the task parameters in the following
experiments is the simulation resolution set by SystemC.

3.4.1 Simulation performance and accuracy

The rst experiment is to evaluate the accuracy and simulation performance of SysRT
by comparing it with four other simulators: the state-of-art (prediction-based) HC-
Sim simulator [73] and three conventional quantum-granularity based simulators (also
described in [73]) with a simulation quantum of 1ms, 10ms and 100ms, respectively.
All simulators model a Partitioned-Fixed Priority scheduler, where tasks have been
uniformly partitioned over the simulated processors. Task execution costs and periods,
priorities are randomly distributed over the intervals [50ms, 150ms], [100ms,10s] and
[1, 100], respectively. The simulated time is 10 minutes. Note that all these tasks are
not necessarily real-time tasks.

Figures 3.5 (a), (b) and (c) show the simulation times taken by each simulator
simulating a different number of processors, ranging from 1 to 16, where the number
of tasks is 16, 100 and 1000. Figure 3.5 clearly shows that SysRT achieves the fastest
simulation speed in these experiments. Both SysRT and HCSim are scalable with
respect to the number of processors and the number of tasks.

The simulation speed of the conventional simulator with largest simulation quantum
is similar to that of HCSim and SysRT. However, it suffers from a lower accuracy, as
will be discussed later on. Conventional simulators get much slower if the simulation
quantum size decreases.

To derive a reference for the task response times, we have also performed the
experiment with the same task sets on a real Linux-based RTOS, i.e. Litmus [19],
varying the number of active processors from 1 to 4. For each task, we calculate the
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Figure 3.5: Simulation time of ve simulators.

relative errors between the response times obtained from simulators and the actual
response times from Litmus. The accuracy is measured by the average error of all tasks
in the testing task set.

Table 3.1 is the average simulation error of those tests. The number of active
processors and the number of tasks in different testing sets is not reported since it
turns out that these factors have little effect on the relative error of each individual task.
SysRT, HCSim and conventional simulation with the smallest simulation quantum yield
high accuracy, whereas conventional simulators with a larger simulation quantum suffer
from degraded accuracy.

Table 3.1: Average Simulation Error of Five Simulators

HCSim  SysRT  Quantum:1lms Quantum:10ms Quantum:100ms
0.166% 0.166% 0.166% 4.182% >100%

Note that, although SysRT and HCSim are supposed to be theoretically accurate,
several factors in Litmus such as context switches and kernel tasks with high priorities
could lead to small simulation errors. Fortunately, both SysRT and HCSim provide
support to model the scheduling overhead to improve accuracy.

3.4.2 Flexibility of SysRT

As most prediction-based RTOS simulators do not support simulating real-time resource
access protocols due to dif culties in predicting preemption points, we show the exibil-
ity of SysRT by simulating a set of four periodic tasks Ty, ..., T4 that exclusively access
two shared resources Ry and R,. Task parameters are listed in Table 3.2. P; is the task
activation period and C; the execution time. Variable j;; denotes the duration of the
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critical section that T; occupies R;. The value 0 for ;j;; means that T; does not use R;.
Tasks are scheduled on an uniprocessor by a RM scheduler with priority inheritance as
resource sharing protocol.

Table 3.2: Task Parameters and Theoretical WCRT.

Tasks P; Ci 1:i 2:i WCRT
T, 100 5 0 0 5
T, 110 | 16 3 3 71
T3 200 | 70 20 0 142
Ty 350 | 102 0 30 310

The analytically calculated Worst Case Response Time (WCRT) for each task is
given in the last column of Table 3.2. We have run the simulation for 80000 time
units. The simulated response time of the rst 200 jobs of each task are shown in
Figure 3.6. As can be seen from Figure 3.6, the response times obtained from simulation
are consistently lower than the theoretical WCRTSs. Thanks to the modular and exible
implementation of SysRT, the resource sharing protocol is correctly simulated.
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Figure 3.6: Response time of jobs in tasks.

3.4.3 Bene tof SysRT in DSE

The second experiment demonstrates the exibility of SysRT and its bene ts for early
DSE. An embedded system with a mixed application workload is simulated. The task
set is composed of three Hard Real-Time (HRT) tasks, ve Soft Real-Time (SRT) tasks
and three Best-Effort (BE) tasks. Task types, parameters and utilization (P; divided by
Ci) are listed in Table 3.3. If an interval [a, b] is assigned to P; (or C;), then P; (or
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Ci) is a random variable uniformly distributed in that interval. This models workload
variations.

Table 3.3: Task Type and Parameters.

Tasks | Type Pi Ci Ui
T1 HRT 50 20 0.4
T, HRT 90 30 0.333
T3 HRT 140 50 0.357
Ty SRT 190 30 0.157
Ts SRT 350 80 0.228
Ts SRT 500 170 0.34
T, SRT 1000 [200, 700] [0.2,0.7]
Ts SRT 1300 [500, 900] | [0.385, 0.692]
To BE | [1000, 5000] 200 [0.04,0.2]
T10 BE | [3000, 9000] 500 [0.056, 0.167]
T11 BE | [5000, 15000] 1500 [0.1,0.3]

The application requirement for hard real-time tasks is to guarantee that deadlines
are always met. SRT tasks are allowed to miss deadlines, thus their performance is
measured by the deadline miss ratio. For best-effort tasks, the performance is calculated
by their average response time. We have run simulations with three kinds of schedulers
on different architecture models. EDF and FPS schedulers are tested with systems
containing 2 to 8 processors, and a partitioned-based scheduler (PS) has been tested for
systems with 3 to 5 cores. For the latter, Table 3.4 lists the local scheduling policies and
scheduled task(s) on each processor. The simulation is aborted if a HRT task misses a
deadline.

Table 3.4: Patitioned-based Scheduler Con guration.

# Processors | Processor | Local Scheduler Tasks

1 FPS T1,T2,Tg,T11

3 2 EDF T3,T4,Te
3 RR Ts5,T7,Ts,. T10
1 P-FAIR T1,T>,

4 2 FPS T3,T4,Ts
3 EDF Ts,T7,Tg
4 RR T9,T10,T11
1 P-FAIR T1,T2,Ts
2 FPS T3

5 3 NP-EDF T4, T7
4 EDF Te, Ts
5 RR T9,T10,T11

The average deadline miss ratio of the ve SRT tasks is shown in Figure 3.7(a). The
deadline miss ratio decreases as the number of processors increases and becomes 0 for
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ve processors. HRT tasks are not schedulable under EDF if the number of processors
is less than four, thus no results are plotted for EDF for 2 and 3 processors.

@) (b)
Figure 3.7: (a) Average deadline miss ratio (b) Scheduling overhead.
Figure 3.7(b) shows the scheduling overhead including the total number of context
switches and task migrations. It is interesting to observe that partitioned schedulers

have no task migration but suffer from a large number of context switches incurred by
P-FAIR, which serves as a local scheduler.

Figure 3.8: Response time of BE tasks.
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Figure 3.8 illustrates the average response times of the BE tasks. As the number
of processors increases, the average response time becomes smaller. The response
times are very large if the number of processors is less than 4, thus they are not plotted.
Evidently, such system performance estimates as obtained by SysRT are helpful to make
design decisions at the very early system design stages.

3.5 Conclusion

In this chapter, we presented SysRT, a generic and high-level SystemC-based multipro-
cessor RTOS simulator. It provides the unique and novel combination of being highly
accurate, ef cient and easy to extend to facilitate early DSE. To this end, it contains
different types of application models and a modular RTOS kernel model. Ef cient and
precise modeling of preemptive scheduling is achieved via an event-driven simulation
approach. Its modular design allows for easy plug-in of new schedulers as well as new
resource sharing protocols. Comparing SysRT with state-of-art simulators, it achieves
faster simulation speeds with the same small simulation error. We demonstrated the

exibility of SysRT by experiments with a mixed workload executing on multiprocessor
platforms with different numbers of cores.
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Schedulability Analysis of Global
Scheduling for Multicore Systems with
Shared Caches

In the previous chapter, we studied the simulation and modeling of real time embedded
system. In this chapter, we continue our research on the topic of improving timing
predictability for multicore system by an analytic approach. This chapter addresses RQ2
listed in chapter 1, which is concerned with schedulability analysis of global scheduling
for real time multicore systems with shared caches.

Multicore architectures are increasingly used in both the desktop and the embedded
markets. Modern multicore processors incorporate shared resources between cores to
improve performance and ef ciency. Shared caches are among the most critical shared
resources on multicore systems as they can ef ciently bridge the performance gap be-
tween memory and processor speeds by backing up small private caches. However, this
brings major dif culties in providing guarantees on real-time properties of embedded
software due to the interaction and the resulting contention in a shared cache.

In a multicore processor with shared caches, a real-time task may suffer from
two different kinds of cache interferences [49], which severely degrade the timing
predictability of multicore systems. The rst is called intra-core cache interference,
which occurs within a core, when a task is preempted and its data is evicted from the
cache by other real-time tasks. The second is inter-core cache interference, which
happens when tasks executing on different cores access the shared cache simultaneously.
Inter-core cache interference may cause several types of cache misses including capacity
misses, con ict misses and so on [13].

It is challenging to design real-time applications executing on multicore platforms
with shared caches, which cannot afford to miss deadlines and hence demand timing
predictability. Any schedulability analysis requires knowledge about the Worst-Case
Execution Time (WCET) of real-time tasks. With a multicore system, the WCETSs
are strongly dependent on the amount of inter-core interference on shared hardware
resources such as main memory, shared caches and interconnects. In this chapter, we
restrict our focus on the shared cache interferences.

A major obstacle is to predict the cache behavior to accurately obtain the WCET of

This chapter was published as [108] and [110] (submitted)
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a real-time task considering inter-core cache interference since different cache behaviors
(cache hit or miss) will result in different execution times of each instruction. In [91], it
was even pointed out that it will be extremely dif cult, if not impossible, to develop
analysis methods that can accurately capture the contention among multiple cores in a
shared cache . In this chapter, we assume that a task’s WCET itself does not account
for shared cache interference but, instead, we determine this interference explicitly (as
will be explained later on). [38] presents such an approach to derive a task’s WCET
without considering shared cache interference.

In this work, we consider non-preemptive task systems, which implies that intra-core
cache interference is avoided since no preemption is possible during task execution. We
therefore focus on inter-core cache interference and study the schedulability analysis
problem for hard real-time tasks that exhibit shared cache interferences. Therefore, we
address the following research questions listed in Chapter 1:

RQ?2 Is it possible to derive an upper bound on shared cache interference between
two tasks running simultaneously on a multi-core system? Given a real-time
taskset globally scheduled by EDF or FP, how to obtain an upper bound on the
shared cache interference exhibited by each task in the taskset? How to derive
a schedulable condition for the globally scheduled taskset, accounting for the
shared cache interference?

To answer this research question, we proposes a more general framework for the
schedulability analysis of global scheduling, accounting for shared cache interference.
The main contributions in this chapter are as follows:

An integer programming formulation, which can be transformed to an integer
linear programming formulation, is constructed to calculate an upper bound on
cache interference exhibited by a task within a given execution window.

An iterative algorithm is presented to obtain the upper bound on cache interference
a task may exhibit during one job execution.

A new schedulability condition is derived by integrating the upper bound on
inter-core cache interference into the schedulability analysis.

A range of experiments is performed to investigate how the schedulability is
degraded by shared cache interference for a range of different tasksets. We
also evaluated the schedulability performance of EDF and FP scheduling over
randomly generated tasksets.

The rest of the chapter is organized as follows. Section 4.1 gives an overview
of the related work. The system model is described in Section 4.2. Section 4.3 de-
scribes the proposed schedulability analysis, where we also detail the computation of
processor-contention and inter-core cache interferences applied in the analysis. Sec-
tion 4.4 presents an iterative computation to obtain the upper bound of inter-core cache
interferences. Section 4.5 presents the experimental results, after which Section 4.6
concludes the chapter.
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4.1 Related work

WCET estimation. For hard real-time systems, it is essential to obtain each real-time
task’s WCET, which provides the basis for the schedulability analysis. WCET analysis
has been actively investigated in the last two decades, of which an excellent overview
can be found in [100]. There are well-developed techniques to estimate real-time tasks’
WCET for single processor systems. Unfortunately, the existing techniques for single
processor platforms are not applicable to multicores with shared caches. Only a few
methods have been developed to estimate task WCETSs for multicore systems with
shared caches [39, 52, 119]. In almost all those works, due to the assumption that cache
interferences can occur at any program point, WCET analysis will be extremely pes-
simistic, especially when the system contains many cores and tasks. An overestimated
WCET is not useful as it degrades system schedulability.

Shared cache interference. Since shared caches considerably complicate the
task of accurately estimating the WCET, many researchers in the real-time systems
community have recognized and studied the problem of cache interference in order to
use shared caches in a predictable manner. Cache partitioning, which isolates application
workloads that interfere with each other by assigning separate shared cache partitions
to individual tasks, is a successful and widely-used approach to address contention for
shared caches in (real-time) multicore applications. There are two cache partitioning
methods: software-based and hardware-based techniques [33]. The most common
software-based cache partitioning technique is page coloring [53, 62, 99]. By exploiting
the virtual to physical page address translations present in virtual memory systems
at OS-level, page addresses are mapped to pre-de ned cache regions to avoid the
overlap of cache spaces. [114] presented VCAT for dynamic shared cache management
on multicore virtualization platforms based on Intel’s Cache Allocation Technology.
Hardware-based cache partitioning is achieved using a cache locking mechanism [62,
83, 91], which prevents cache lines from being evicted during program execution. The
main drawback of cache locking is that it requires speci ¢ hardware support that is not
available in many commercial processors. With shared cache partitioning techniques,
one can apply existing analyses to derive the upper bounds of a task’s WCET assuming
that no cache interference can occur between tasks simultaneously running on different
cores. In that case, it is safe to use the derived WCETSs in the schedulability analysis.

Real-time Scheduling. The schedulability analysis of global multiprocessor schedul-
ing has been intensively studied [8, 14, 22, 51, 57, 118], of which comprehensive sur-
veys can be found in [26, 82]. Most multi-core scheduling approaches assume that the
WCETSs are estimated in an of ine and isolated manner and that WCET values are xed.

A few works address schedulability analysis for multi-core systems with shared
caches [35, 113], but these works assume that cache space isolation is deployed. These
solutions are not applicable to our problem since we consider systems in which cache
isolation techniques are not deployed. An ongoing work in [37] describes that caches
should be taken into account when performing task partitioning. They formulated a
problem of nding a system partitioning such that the real-time constraints of all tasks
are met while the sum of inter-core cache interference is minimized. [67] proposed a
Predictable Execution Model (PREM), that co-schedules among CPU tasks executions
and memory accesses, to reduce the low-level contention for shared resource such as
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caches, memories, and buses.

Our work also differs from other approaches to the timing veri cation of multicore
systems [4] in that all other sources of interferences are assumed to be included within
the WCET. We analyze the effect of shared cache interference on the schedulability. To
the best of our knowledge, this is among the rst works that integrates inter-core cache
interferences into schedulability analysis.

4.2 System Model

4.2.1 Task Model

We consider a set  of n periodic or sporadic real-time tasks f 1, 2, .. ngto be
scheduled on a multicore processor. Each task x = (Ck; Dk; Tk) 2 is characterized
by a worst-case computation time Cy, a period or minimum inter-arrival time Ty, and a
relative deadline Di. All tasks are considered to be deadline constrained, i.e. the task
relative deadline is less or equal to the task period: Dy~ Tk.

We further assume that all those tasks are independent, i.e. they have no shared
variables, no precedence constraints, and so on. Moreover, jobs of any task cannot be
executed at the same time on more than one core. A task  is a sequence of jobs J},
where j is the job index. We denote the arrival time, starting time, nishing time and
absolute deadline of a job j as r}, st, f} and d}, respectively. Note that the goal of a
real-time scheduling algorithm is to guarantee that each job will complete before its
absolute deadline: f}  d} =r} + Dy.

As explained, it is dif cult to accurately estimate Cy considering cache interference
of other tasks executing concurrently. It should be pointed out that Cy in this chapter
refers to the WCET of task k, assuming task k is the only task executing on the multicore
processor platform, i.e. any cache interference delays are not included in Cy.

Since time measurement cannot be more precise than one tick of the system clock,
all timing parameters and variables in this chapter are assumed to be non-negative
integer values.

4.2.2 Architecture Model

Our system architecture consists of a multicore processor with m identical cores onto
which the individual tasks are scheduled. Most multicore processors have instruction and
data caches. Caches are organized as a hierarchy of multiple cache levels to address the
tradeoff between cache latency and hit rate. The low level caches (L1) in our considered
multicore processor are assumed to be private, while the last level caches (LLC) are
shared between all cores. Furthermore, we assume that the LLC cache is noninclusive
with respect to the private caches (L1), and that LLC caches are direct-mapped caches.

In this work, we only consider instruction caches since we adopt the approach
in [38], which only accounts for instruction caches, to derive WCET.
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4.2.3 Global Schedulers

In this chapter, we focus on non-preemptive global scheduling. Once a task instance
starts execution, any preemption during the execution is not allowed, so it must run
to completion. So we do not have to consider intra-core cache interference. If not
explicitly stated, cache interference will therefore refer to inter-core cache interference
in the following discussion. We consider two well-known global scheduling algorithms:
Non-Preemptive Earliest Deadline First (EDFnp) and Non-Preemptive Fixed Priority
(FPrp).

EDF, assigns a priority to a job according to the absolute deadline of that job. A
job with an earlier absolute deadline has higher priority than others with a later absolute
deadline. Since each job’s absolute deadline changes over time, the priority of a task
changes dynamically.

For F Pnp scheduling, a xed priority Py is assigned to each task  (k = 1;2;:::n).
As each task has a unique priority, we use hp(k) to denote the set of tasks with higher
priorities than , and hep(k) = hp(k) [ T kg the set of tasks whose priorities are
not lower than . Similarly, Ip(K) is the set of tasks with lower priorities than  and
lep(k) = Ip(k) [ T kg the set of tasks whose priorities are not higher than .

The EDFpp and F Ppp scheduling algorithms are work-conserving, according to
the following de nition.

De nition 4.1. A scheduling algorithm is work-conserving if there are no idle cores
when a ready task is waiting for execution.

4.3 Schedulability Analysis

In this section, we give an overview of the new schedulability analysis that accounts for
cache interference. We also present the approaches to derive the upper bound on the
parameters used in the schedulability condition.

4.3.1 Overview

We rst analyze the execution of one job Jﬂ of atask k. Let o{< denote the latest
time-instant no later than r} (o} r}) at which at least one processor is idle and let
Ax = r,j( 0{( As all processors are idle when the system starts, there always exists
sucha 0{< The time interval [of(; d{;] is named a problem window. This problem window
can be divided into two parts [of(; s{'(] and [sj ; d{;].

As shown in Figure 4.1, ajob Jﬂ of task  exhibits two kinds of interferences during
the problem window. The rst interference is called processor-contention interference,
denoted by 12". It is the cumulative length of all intervals over [0} ; s3] in which all the

processing cores are busy executing jobs other than Ji. We de ne the interference Iip;Le

of atask jonatask  overtheinterval [0{(; sf() as the cumulative length of all intervals
in which ; is executing. The second type of interference is the cumulative length of all
extra execution delays caused by shared cache interference from all other tasks running

concurrently on other cores, denoted as 15°. We also de ne the interference I, as the
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Figure 4.1: Overview of the schedulability analysis that accounts for cache interference.

cumulative length of all extra execution delays of  caused by shared cache accesses
between task ; and task .

Furthermore, we de ne the upper bound on processor-contention interference as
17" and similarly the upper bound on shared cache interference as I£°.

Note that the processor-contention interference 1°"® occurs during [0 ; sl ], so 12"
depends on Ak and the length of [rj ;s{(]. While the shared cached interference 1€
occurs only during ’s execution. We will present the derivation of I in the next
section and it can be shown that 13 does not depend on Ay and the length of [rl: sf(].
Let us now assume 13¢ is known.

We can compute the latest start time of job Jﬂ from task : If( = df; Ck Ifie,
if 31 starts its execution before I}, it must be able to nish execution before deadline
. The length of [r}; B]is Sk =Dk Ck  I$°. Obviously, if S 0, 3} will miss
its deadline. We assume Sy > 0 in the following description.

As the processor-contention interference only occurs before the start of the ’s
execution, we restrict 127, 12,° and 15" to the time interval [o}; IL].

By construction, we have the rst schedulability test for

Theorem 4.1. Atask set is schedulable with a EDFnp or FPpp scheduling policy
on a multicore processor composed of m identical cores with shared caches if for each
task k2 andall Ax O:

IR+ C + IF° < Dy + Ax:
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4.3.2 Computation of 12"

The workload Wi of atask ; is the time task ; executes during time interval [of'(; If;)
of length Ax + S, according to a given scheduling policy.

Lemma 4.2. The processor-contention interference that a task ; causes on a task
in [o}; ) is never greater than the workload of ; in [o}; 1),

8i; K;j Ii”;Le Wik

~Lemma 4.2 is obvious, since Wi;. is an upper bound on the execution of ; in
[of: 11).

Note that ; may execute more than C; due to the shared cache interference. That is,
the actual execution time of ;’s job is bounded by C; = C; + I7¢. In the following
discussion, we use C; as the upper bound on the workload contribution from a single
job of ;. I m

As the number olf i’s jobs released in [0} ; I}) is at most @ , Wi.k can be

m 1
roughly bounded by

AkTi“:Sk C; . However, a tighter upper bound on the worst-case
workload can be calculated by categorizing each job of j in [o{(; If(] into one of the
three types [6]: )

carry-in job: a job with its release time earlier than o}, but with its deadline earlier
than I,j(;

body job: a job with both its release time and its deadline in [of(; Ilj(];

carry-out job: a job with its release time in [o{<; If(], but with its deadline later than

i
1y

carry-in job body job carry-out job

k T l

k

Figure 4.2: Three types of contribution jobs and problem window.

As shown in Figure 4.2, the worst-case workload of ; occurs when a carry-in job (if
i has a carry-in job) nishes execution as late as possible and a carry-out job starts its
execution as early as possible. We use W, to denote an upper bound of ;’s workload
in [o}; K] if i has no carry-in job, and use W¢: to denote an upper bound of j’s
workload if ; has a carry-in job.
Following the approach in [34], we derive a tighter upper bound on W;™ and W for
the EDFnp and F Py scheduling policies, separately. We omit the proof due to space
limitations. Interested readers can refer to [34] for a detailed explanation.
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Upper bound on W, for EDFpp.

EDF, assigns a priority to a job by the absolute deadline of that job. We have the
following lemma.

Lemma 4.3. For EDan, if Dj > Dy, the necessary condition for JJ to cause
interference to J} is r} < r}, i.e., 3} must be released earlier than J}; if D; Dy, the

necessary condition for JJ to cause interference to Ji isd; dyg, i.e., Ji’s absolute
deadline must be no later than that of Jy.

Since  has no carry-in jobs in this case, the worst case of W/} occurs when the

rst job of  is released at time of.. The next jobs of ; are then released periodically
every Tj time units. Thus, W\ is computed by three cases: (1) i =k, (2) Di Dk, (3)

D; > Dy. o
(1) i = k. As shown in Figure 4.3, only body jobs in [0} ; r}] Cfintrikute to processor-

contention interference and the number of ;’s body instances is Ak S0 we have

Tk
Wik = %( k (4.1)
! Ax )
s ——
] ol e e ] e |
o i d

Figure 4.3: The densest possible packing of jobs of ; without carry-in job, if i = k.

(2) Dj Dy. Fi%Jre 4.4 &hows the worst case of W for Di  Dy. The number

of body jobs of ; is AkTifsk . We use to denote the distance between o{< and the

' J
deadline of ;’s carry-out job, = AkTi“:Sk Ti + Dj. The deadline of ;’s carry-out
jobisol +
(2.A) If Ay + Dy, as shown in case (a) in Figure 5.1, the contribution of the
carry-out job is bounded by min(C; ; (Ax + Sk) mod T;). In this case, we have:
Ak + Sk
Tj

Wi = C; +min(C;; (Akx +Sk) mod T;) 4.2)

(2.B) If > Ax + Dy, shown as case (b) in Figure 5.1, the contribution of the
carry-out job is 0, we have

Ak + Sk
Ti !
(3) Dj > Dy. quure 4, 5kshows the worst case of Wy for D; > Dy. The number
of body jobs of is 2s*Sk . By Lemma4.3,ajob of ; can interfere with 33 only if

Wi'?lﬁ = (4.3)
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e |-

j J ] 1]
0% e ke dy

Figure 4.4: The densest possible packing of jobs of ; without carry-in joband D;  Dy.
Case (a): Ag + Dy, Case (b): > Ax + Dy.

its release time is earlier than rf_(. We upe to genote the distance between o{< and the

release time of ;’s carry-out job, = AkTi‘:Sk Ti.
1 Ak + Sk '
! (b): ‘ f
i 1 1
1\ Ak po! 1
\ (a): A
: T; b :

Figure 4.5: The densest possible packing of jobs of ; without carry-in job and Dj > Dy.
Case (a): < Ay, Case (b): Ax.

(3.A) If A = 0, then ol =rl. Since D; > Dy, any task instance released no
earlier than o}, has a deadline later than d}, so, W}, = 0.

(3.B) If < Ay, shown as case (a) in Figure 4.5. The contribution of ;’s carry-out
job is bounded by min(C; ; (Ax + Sx) mod T;). W, is computed by Equation (4.2).

3.0) If Ax > 0, as shown in Figure 4.5 case (b), the contribution of ;’s
carry-out job is 0, and W is computed by Equation (4.3).
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By the discussions above, we can compute Wy, for EDFp,, by:

8
%0 Di>Dc"NA=0
Wi 1=k
Wi = _W[2 (i&k~D; Dy~  Ax+Dy) (4.4)

_(Di>Dk"™ <A
“W;¢  otherwise

where Wb, W2, W[ are de ned in Equations (4.1), (4.2) and (4.3) respectively.

Upper bound on W, for EDFpp.

We now compute the upper bound on W, by four cases: (1) i =k, (2) Di Dy and
Si>C, (3 Di>DxandS; C, (4)the remjainirfg cases.

(2) i = k. The number of body jobs of  is f?—: . The contribution of the carry-in

job is bounded by min(C, ; max(0; (Ax mod Tx) Tk + Dx)). So in this case, we
have:

Wik = ?—: Cy + min(Cy; max(0; (Ax mod Ty) Tk + Dy)) (4.5)
| P |
' T
“ ] ol e e | e |
o) il di

Figure 4.6: The densest possible packing of jobs of ; with carry-in job, if i = k.

(2) Di Dk " Si > Cy. Shown as case (a) in Figure 4.7, the worst case of W,
occurs j/vhen i’|§ last released instance has its deadline at d{<. The number of ;’s body
jobsiis Ak%ka . The contribution of the carry-in job is bounded by min(C; ; (Ax+Dx)
mod T;). So, we have:

Ak + Dy

chjf( = Ti

C; +min(C;; (Ak+Dx) mod Tj) (4.6)

(3) Di > Dk ™ S;  Cy. Case (b) in Figure 4.7 shows the worst case of W, . By
Lemma 4.3, ;’s job can interfere with J} only if its release time is earlier than ry. So,
the worst case of W, occurs when one of ;s instances is releaf(ed atri 1.

(3.A) If Ai >0, the number of ;s body instances is “%—= , the carry-out is C; ,

the carry-in is bounded by = min(C; ; max(0;(Ax 1) mod T; (Ti Dj))).
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Figure 4.7: The densest possible packing of jobs of ; with carry-in job. Case (a):
Di Dk”Si=>C,,Case(h):Di>D"™Si C,.

(3.B) If Ak = 0, only the carry-out job contributes at most C; 1. So, we have
C
(ii 1 Ac=0

W3 =
ik ( A;_<ri 1 + 1)C| + Ak >0

(4.7)

(4) For the remaining cases, i.e. (Di Dk~ Si  Cy) _(Di > Dk " Si <Cy),
the worst case of W, occurs when one of ;s instances is released at I}, C;, as
shown in Figure 4.8.

A + S
(@:Ax+Sk Gy
(b):Ax +Sk G

3

i (@

!
i (b) | 4 T; y G ‘
Ax Sk E

j J 1] J
0% e ke di

k

Figure 4.8: The densest possible packing of jobs of ; with carry-in job. Case (a):
Dj Dk N S;j Ck,case (b)ZDi > D NS <Ck'

(4.A)If A +Sk  C;,then Wic;k = Ak + Sk. -
(4.B) If Ax + Sy = C;, the number of ;’s body job is % , the contri-
bution of the carry-out job is C; ; carry-in is bounded by = min(C; ; max(0; (Ax +

Sk Ci) mod T; (Ti Di))).

WC4 — k+Sk %+Sk Ci
ik —

4.8
i ( Ak+_Srli< C; + 1)Ci + Ay + S, > Ci ( )
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By the discussion above, we can compute W, for EDFpp by:

8 .

Wik i=k

W% i6k~AD; Dk"Si>C,
§W:§f( Dj > Dy ™ Sk Ci
"W otherwise

C =

ik (4.9)

where Wk, Wiz, Wi and Wi, are de ned in Equation (4.5), (4.6), (4.7) and (4.8)
respectlvely

Upper bound on W for FPpp.

The following lemma describes the condition of processor-contention interference on
K caused by lower-priority tasks in Ip(k) for FPpp.

Lemma 4.4. For FPpp, a task instance JJ of i 2 Ip(k) can interfere with JJ only if
J} is released before .

We compute the upper bound on W by three cases: (1)i =k, (2) i 2 hp(k),
@) i 2 Ip(k).

(1) i = k. The worst case workload is the same as in the case of EDFnp, thus W'}
can be computed by Equation (4.1).

(2) i 2 hp(k). The worst-case workload of task ; occurs when a job of ; arrives
at o}, as shown in case (a) in Figure 5.1. W7 can be computed using Equation (4.2).

(3) i 2 Ip(k). The worse case of W{;‘ﬁ occurs when one of j’sinstances is released

at o} . The number of body jobs of ; is AitSk | et kbe the distance between o}
and the release time of ;’s last instance. So = AkTiJ“isk .
(b):

Ax
(@):

O i

o

- ; ; -
ok e K o

k

Figure 4.9: The densest possible packing of jobs of ; with carry-in job. Case (a):
< Ay, Case (b): Ax > 0.

(3.A) If Ax = 0, then o}, = r}, according to Lemma 4.4, W, = 0.
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(3.B) If < Ay, i’slastjob is released earlier than r}, as shown in Figure 4.9 case
(a), its contribution is bounded by min(Ax + Sk mod T;i; C; ). In this case, WY is
computed by Equation (4.2).

BOIf Ax > 0, as shown case (b) in Figure 4.9, the contribution of the last
released job of j is 0. In this case, W7, can be computed by Equation (4.3).

By the above discussion, we can compute WY, by:

8
%0 i 2|p(k)AAk:0
Wi, = Wix 1=k
ST EWR O i2hpk)_(i21p) N <A
“Wi¢  otherwise

(4.10)

where W\, W2, W{'2 are de ned in Equations (4.1), (4.2) and (4.3) respectively.

Upper bound on W¢ for FPpp.

We compute the upper bound on W, by three cases: (1)i =K, (2) i 2 Ip(k) ™ Sk
C; , () the remaining cases.

(1) i = k. The worst case of W, occurs as it does for EDFpp, and therefore W,
is computed by Equation (4.5).

2 i 2 Ipk) ™ Sk C;. The worst case of Wic;j occurs when one of ;’s
job is released at rj, 1, as shown case (b) in Figure 4.7. We can compute Wi; by
Equation (4.7).

(3) The remaining cases, i.e. j 2 hp(k) or ; 2 Ip(k) ~C; > Sk. The worst-case
workload of ; is generated when one of ;’s instances is released at time instance
sk C;. Such asituation is depicted in Figure 4.8. In this case, we can compute Wi
by Equation (4.8).

By the above discussion, WEécompute Wi by:

2w i=k
Wiy = >Wi°;f< i2lpk)~Sx C
"W otherwise

(4.11)

i
where W', W7 and Wi, are de ned in Equation (4.5), (4.7) and (4.8) respectively.

Upper bound on 12",

By the de nition of o}, at least one core is idle at o , therefore at most m 1 tasks
have carry-in jobs. The task set can be partitioned into two subsets ©and " that
include tasks with carry-in jobs and tasks without carry-in jobs, respectively. Now we
de ne  as the maximal value of the sum of all tasks” workloads in [0} ; I} ] among all
possible cases:

>
k = Mmax Wi;k
2 > (4.12)
= max ( W + WS
I 2
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where "and Csatisfy "[ = , "\ °=?andj ¢§ m 1

By taking the maximum over the task set, | describes an upper bound on the total
worst-case workload in [0} ; I} ]. The complexity to compute | is O(n), as explained
in [8].

Since both EDFnp and F Ppp, are work-conserving, the processor-contention inter-
ference exhibited by  can be bounded by —<. So, we have the following Lemma.

Lemma 4.5. If tasks are scheduled with a EDFpp or FPpp scheduling policy on a
multicore processor composed of m identical cores with shared cache,

Ipre K.
k

4.3.3 Computation of I

We rst identify the maximum cache interference between two tasks and then we
construct an integer programming formulation to calculate the upper bound on the
shared cache interference exhibited by a task within an execution window.

Cache interference between two tasks

We rst analyze the cache interference during one job execution between  and ;. Let
k be the interfered and ; be the interfering task.

Following the approach in [38], we can obtain the WCET of a task by performing a
Cache Access Classi cation (CAC) and Cache Hit/Miss Classi cation (CHMC) analysis
for each instruction memory access at the private caches and the shared LLC cache
separately. The CAC determines the possibility that an instruction being fetched from
memory will access a certain cache level, and the access to a certain cache level can
be Always (A), Uncertain (U) or Never (N). CHMC assigns a cache lookup result
to each memory reference according to the cache states. As a result, a reference to a
memory block of instructions can be classi ed as Always Hit (AH), Always Miss (AM)
or Uncertain (U).

Since we consider noninclusive caches, accesses to the private caches cannot be
affected by tasks executing on other cores. Accesses classi ed as AM or U at the
shared LLC cache will also not be affected by shared cache interferences, since they
are already counted as misses in the WCET analysis.

We start the cache interference analysis by de ning two concepts for cache blocks.

De nition 4.2. A Hit Block (HB) is a memory block whose access is classi ed as AH
at the shared LLC cache.

De nition 4.3. A Con icting Block (CB) is a memory block whose access is classi ed
as A or U at the shared LLC cache.

HB and CB can be identi ed by the approach proposed in [38].

We use HBy = fmy;1; my;2; 1 Mi;pg to represent the set of HB for task , and
use Ni:.x (X = 1;2;:::; p) to denote the number of my.’s accesses that are classi ed as
a AH at the LLC cache. Similarly, we de ne CB; = fmij.1; mi:2; ::;; Mj;qQ as the set
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of CB for task  and denote n;.x as the number of mj.’s accesses that are classi ed
asaAorU atthe LLC cache. Note that HBy and CB; includes the memory blocks
that meet the requirement in every program path that may be taken by the task.

In our system architecture, cache interference occurs only at the shared LLC cache
when a cache line used by  is evicted by ; and consequently causing reload overhead
for k. A cache line that may cause cache interference for y needs to satisfy at least
two conditions:

(i) access to that cache line will result in a cache hit at the LLC cache in WCET
analysis of ,

(ii) the cache line may be used by ;.

From the above two conditions, we can analyze memory block accessing that may
cause interference. The rst condition implies that only accessing to H By may cause
cache interference for , while the second condition indicates that accessing to CB;
by i may interfere with . Furthermore, cache interference occurs only if  accesses
memory blocks in HBy and ; accesses memory blocks in CB; concurrently, and those
memory blocks have the same cache index.

We use I3 to represent the upper bound on the shared cache interference imposed
on g by only one job execution of ;.

Suppose the indexes of the LLC cache range from0to N 1, we can derive N
subsets of HBy according to the mapping function idx that maps a memory address to
the cache line index at the LLC cache as follows,

Micu = FMigx 2 HByjidX(Mi;x) =ug; (0 u<N;u 2 N):

We de ne the characteristic function of a set A which indicates membership of an
element x in A as: C
1 x2A

X) = :
A() 0 otherwise

Let N, represent the number of hit accesses to the u-th cache line by  without
cache interference. Ni., equals to the total number of access to the HBs mapping to
the k-th cache line,

X

Ni:u = Niix My (Mie:x):
x=1

Similarly, we divide CB; into N subsets by
i:u = fmi:x 2 CB;jidx(mj;x) =ug; (0 u<N;u2N):
The number of accesses to the k-th cache line by ; is bounded by

X
Ni.y = Nisx 6.0 (Mizx);
x=1

Cache interference can only happen among memory blocks that are in the same
subset that maps to the same cache line. For the u-th cache line,  can be interfered at
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most Ny, times and ; can interfere at most N;.,, times. The following formula gives
an upper bound on the number of cache miss by accessing the HBs for task .

<t
S(i; W)= Min(Ni.u; Nk:u)

u=0

Suppose the penalty for an LLC cache miss is a constant, Cniss, then Iis;i satis es:
I|S(l:< = S( is k)Cmiss:

The computation only takes the memory accesses of  and ; as input, so 13§ only
depends on memory accesses of  and ;.

Lemma4.6. 125 =S( i; k)Crmiss-
Proof. The lemma holds as discussed above. O

Given a taskset, 17 can be computed, as shown in the proof of Lemma 4.6. In the
following discussion, we assume 12§ is known.

Lemma 4.6 gives an upper bound on cache interference for  imposed by only one
job of ;. Itis possible that more than one job of ; interfere with . We denote the
number of jobs of ; that interfere with  as Nj..

Lemma 4.7. The total cache interference x exhibited from Nj.x jobs of ; is bounded
by Ni:k 1%

Proof. For Nj.k jobs of j, the total number of accesses to each memory block m;.x

is bounded by Nj.kni-x. Thus, the execution of Nj.x jobs of ; accesses the k-th

cache line also at most Nj.xNj., times. From the proof of Lemma 4.6, the up-
r bound of the total cache interference exhibited by  from Nj.k jobs of ; is
Ezolmin(Ni;kNi;u; Nk;u)Cmiss.

<t
Ni;klis;i = Nijx Min(Ni.u; Nk:u)Criss
u=0

DA
= mMin(Ni:xNi.u; Ni:kNk:u)Cmiss

u=0

MiN(Ni;kNi:u; Nik:u)Cmiss

u=0

IP formulation

We can compute an upper bound of the maximum cache interference a task may exhibit
during an execution window by introducing an Integer Programming (1P ) formulation,
which can be transformed to an integer linear programming formulation.
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It is necessary to check the schedulability of the task-set without considering cache
interference. If the task-set does not pass the initial schedulability test, there is no need
to calculate the cache interference. Only if all tasks (including ;) pass the schedulability
test (without considering cache interference), the 1P is solved to compute the upper
bound on cache interference. Therefore, the 1P formulation is based on the assumption
that ; is schedulable without cache interference.

If Nj.x jobs of ; executing concurrently with , the cache interference that ;
causes on  is bounded by Nk I3 according to Lemma 4.7. As a task may exhibit
cache interference from more than one task during a job execution, the total cache
interference for one job execution of  is bounded by the sum of the contributions
of all other tasks (i & k) in the task set . Thus, the objective function of the IP
formulation is:

>
max Ni;k|is;(|:(i (4.13)
ik

The 1P formulation will have an unbounded solution without further constraints to
the variable Nj.x. To get a bounded solution, we analyze the constraints on Nj.k. First,
we de ne the concept of the execution window of a job.

De nition 4.4. The Execution Window (EW) of the j-th job of (Ji) is time interval
[sk; F] from the staring time to the nishing time of J.

Note that the length of an execution window may be larger than Cy, since the EW
includes the cache interference. We use C}, as the length of the EW because of the
iterative computation which will be described later on.

N;.x reaches its minimal value when a job of ; starts to execute as soon as it is
released and the execution nishes just before the start of the EW, as shown the case
(a) in Figure 4.10. Denoting C™" as the smallest execution time of ;, often called
Best-Case Execution Time (BCET), we have the following constraint:

max(0;CL T;+CMin)

8i & k; T,

+ Ni;k (4.14)

(1 ((CL+CMM) modT;) D;+C™M">0
0 otherwise '

The term ; indicates whether the last job of ; released within the EW that
interferes with  since the last released job should start its execution C™" before its
relative deadline if the task is schedulable.

The maximum value of N;.k is taken when the rst interfering job of ; nishes just
after the start of the EW and the last interfering job of ; starts to execute at the time
when it is released. Such a situation is depicted as case (b) in Figure 4.10. Thus, we
have the second constraint on Nj.k:

where =

max(0;C}  Ti + Dj)
Ti

If Ni;k > 2, the rstand last interfering jobs of j may occupy almost 0 computation

capacity in the EW. Let J{ be such a job among the remaining Ni.x 2 interfering

8i&k: Nix 1+ (4.15)
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A Execution window: CJ
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sk i

Figure 4.10: Situations where  interferes  with the most and least number of jobs.

jobs of j between the rst and the last ones. Both release time rf and deadline d{ of
J? are within the EW of .

Lemma 4.8. If ; is schedulable without considering cache interference, C; computa-
tion capacity of the processing core is reserved for the execution of 3¢ during [r}; d!].
If 3} executes for C2t < C;, the processing core will be accumulatively idle (executing
nothing, simply wasting the processing capacity for ;) for at least C; Ca°t during
[rl: 1.

Proof. If jsatis es the schedulability condition without considering cache interference:
# + C; < Dj, the core on which JiJ is executed spends at most D;  C; in total
for the execution of other interfering tasks during [r}; d!]. 3] is guaranteed to have C;

computation capacity during [r}; di]. 0

The remaining computation capacity of a multicore processor with m cores is
(m 1)CE< since one core is dedicated to the execution of . Due to the limited
computation capacity of the processor, the total execution of the tasks that may interfere
with | within the EW can not exceed (m  1)C{. Hence, we have the third constraint:

>
max(0;Nix  2)C; (m 1)Ck (4.16)
i6k

The objective function (4.13) together with three constraints on Nj.i i.e. inequali-
ties (4.14), (4.15) and (4.16) form our 1P problem. Since C™I" is a relatively small
number, we take the extreme case: Cimi” = 0. As task parameters such as C;, Dj, T is
known, the optimal solution of the I P only depends on the length of EW. Thus, we
use 15¢(C}) to denote the optimal value of the 1P problem if C{ is used as the length
of the EW inthe IP.

Note that Inequalities (4.14) and (4.16) are based on the assumption that ; is
schedulable. Thus, before solving the 1P, we have to check the schedulability of the
taskset assuming no cache interference between tasks, i.e. 17¢ = 0.

Computation complexity of the 1P . The original 1P can be easily transformed to
an Integer Linear Programming (I LP) problem by introducing a new integer variable
yi;j for each N;;; with two additional constraints: y;;j 0 and yi;j Nik 2
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Inequality (4.16) can be replaced by Pi&k yi.kCi (M 1) CL. In the transformed
ILP problem, we have totally 2(n 1) variables and 4(n 1) + 1 constraints. The
complexity of the IP is the same as the complexity of solving the transformed I LP
problem, which is O(n64" In 4n) [23].

4.4 lterative Computation

Due to the presence of cache interference, a job may execute longer than Cy on a
multicore platform with shared caches. However, a larger execution time may introduce
more cache interference, as illustrated in Figure 4.11.

In Figure 4.11 (a), if the job of  executes for C, only one job of ; interferes
with . In Figure 4.11(b), if the job of | executes for a larger execution time, say
CP + 15°(CL), two jobs of ; could possibly interfere with , which potentially may
increase the cache interference exhibited by . This example suggests an iterative
method to nd an upper bound on the cache interference.

Figure 4.11: More cache interference if  executes for a longer time.

Lemma 4.9. 15¢(C}) is non-decreasing with respect to Cl.

Lemma 4.9 is explained by the above example.
We give a suf cient condition for a certain value that can be used as an upper bound
on cache interference.

Lemma 4.10. if9C,  Cy suchthat C, = Cy + I5°(C,), then IZ¢ = I15¢(C,).

Proof. If C, = Cy + I°(C,), then I°¢(C, ) = I°°(Cy + I°°(C,)). According to
Lemma 4.9, given an execution window of  that is no more than Cy + 15¢(C, ), the
cache interference exhibited by  is not larger than 15¢(C,.). Therefore, 15°(C, ) is the
upper bound on cache interference for . By de nition, I5¢ = 15¢(C, ). O

We now derive the iterative algorithm, called Cachel nterference( ) which takes
taskset  as input, to compute an upper bound on cache interference for each task
K2 .
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Since the constraints of 1P assume the taskset is schedulable, we rst check the
schedulability of the taskset assuming no cache interference between each task.
Only if all tasks pass schedulability test, the following steps will be taken.

C} is initialized with Cy and an upper bound value on the cache interference
15¢(CL) is created which is initially set to zero

By solving the IP, we compute a new upper bound of the cache interference
15¢(CL).

If the new upper bound of cache interference is the same as the old upper bound,
the ISC(CP() isthe nal upper bound of . Otherwise, another round of computing
the upper bound on cache interference is performed using the upper bound derived
at the previous iteration. The iteration for  stops either if no update on 15¢(C})
is possible anymore or if the computed 15¢(C}) is large enough to make
unschedulable.

The previous steps are repeated for every task in

A more formal version of the Cachel nterference( ; m) algorithm is given by
Pseudocode 4.1. The algorithm returns I which includes the upper bounds on cache
interference 15¢(C, ) for each task , and C which includes the upper bounds on the
execution length C, for each . If I and C are empty, the taskset is not schedulable.

Since the solution of the 1P is non-decreasing with respect to C,O( according to
Lemma 4.9 and one termination condition is CIO( Dy, the termination of the iterative
algorithm is guaranteed.

Before presenting the nal theorem to check the schedulability of the task set, we
de ne the following notations.

We denote U( i) as task ;’ s utilization taking shared cache interference into
account, U( j) is de ned by:

_Gi.
Ui = T
The utilization of taskset , denoted by U ( ), is de ned by:
> X c.
u()="_ = S
02 02 Ti

We sort all C; in a non-increasing order, and use

rst (m 1) elements in this list, so

1 to denote the sum of the

m 1 >
c Ci

the (m 1) largest

For task k, we also de ne a constant Ly by:
P
1
2 C+ &

W= U

SkI

We propose the following Theorem to check the schedulability of the task set.
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Pseudocode 4.1: Cachelnterference( , m)

1: Input: Task parameters, number of cores: m

2: 1 empty list, used to store 13¢(C, ) for each task
3 C empty list, used to store C, for each task

4: pass true

5: forall 2 do

6: forall Ax 2 [0; K] do

7: k(C) calculation of Equation (4.12) using C
8: if % +Ck Dy + A then

o: pass false

10: break

11: end if

12:  end for

13: end for

14: if pass then

15 forall (2 do

16: update  true, I1g'¢ 0,17V 0

17; Cl Ck

18: while update do

19: Ipdpew

20: I2®W  Solution of 1P with C{ as the EW
21 Cp = Cy + 1w

22: if If®W == 12"90or C! Dy then

23: update false

24: end if

25: end while

26: Add 12%% to |

27: AddCltoC

28:  end for

29: end if

30: return 1 ,C

Theorem 4.11. Atask set is schedulable with the EDFnp or F P scheduling policy
on a multicore platform composed of m identical cores with shared caches if for each
task «2 and0 Ay Ly,

(1)9C, Cksuchthat C, = Ck + 1°¢(C,),

2 Wk +C, <Dy + Ax.

Proof. From (1), 1€ is bounded and 15¢ = 15¢(C,.) according to Lemma 5.3.

From Lemma 4.5, I)"® = %

8Ak 0,if = +C, = 5 +C +1%°(C) < A+ Dicthen IR + C + I5° <
Ax + Dy. Theorem 4.11 follows from Theorem 4.1.

We further prove that if condition (2) is to be violated for any Ay, then it must also
be violated for some Ax L.
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] k
Wy can be bounded by considering the number of body jobs to be AkTi‘:Sk and

the contribution of the carry-out to be C; , so

Ay + Sk Ay + Sk
LA .+ C. LA
Ti Ci +G Ti

= (Ak + SU; + C;

Wik Ci +C

Similarly, W, can be bounded by considering the contribution of both the carry-in and
the carry-out are C; :

Ac+S
W % C, +2C; (A« + S)U; + 2C;
1
From Equation (4.12)
< X
k= max ( ko Wik
(Ak+S) Ui+ G+ g2t
i2 i2
=(A+SU()+ G+ 2°

i2
If condition (2) is to be violated for any Ay, then 9Ay; +< +C, Dk + Ay,

= m(Dk + A C
> 2 (Dk kxk) 1

=D (A +SQU()+ G+ ¢ m(Sk + Ax):
i2

Solve the above inequality for Ak, we have:
F)
C.

C. + m 1
i2 i
. : = Lg:
m U() Sk =Lk

Ay

This tells us the range of Ak that should be tested.
O

Finally, we give the procedure CheckSchedulability( ; m) to perform the schedu-
lability test, as illustrated by Pseudocode 4.2.

Computational complexity: Let n represent the number of tasks in the task-set.
For , let I,Q“i” be the smallest difference between cache interference caused by
one job of jand j, ie 1IN = rri1_£n( ok 17%), the iterative algorithm takes

at most = mex(D,km.Sk) iterations to terminate since C} either stays the same or
k

increases at least with 1™'" in each iteration. Thus, the complexity of the iterative

algorithm to compute the upper bound on cache interference is O( n?64"In4n). The

complexity of computing Ly; k is polynomial. Therefore, the complexity to perform

the schedulability test is O( n?64"In4n).
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Pseudocode 4.2: CheckSchedulability( , m)

1: Input: Task parameters, number of cores: m
221,C Cachel nterference( ;m)

3: if I == null then

4 return Unschedulable

5: else

6: forall (2 do

7: for all Ak 2 [0; K] do

8 k(C ) calculation of Equation (4.12) using C
9 if «©J)4c, Dy + A then
10: return Unschedulable

11: end if

12: end for

13:  end for

14: end if

15: return Schedulable

4.5 Experiments

In this section, we evaluate the performance of the proposed schedulability test for
EDFnp and F Py in terms of acceptance ratio. More speci cally, we will quantify the
effects of cache interference on the schedulability of the generated tasksets. We will
also compare the schedulability performance of EDFn, against F P, over randomly
generated tasksets.

The experiments have been performed varying i) the probability of two tasks having
cache interference on each other: P (P = 0:1; 0:2; 0:3 or 0:4), ii) the cache interference
factor IF (IF = 0; 0:3; 0:6 or 0:9), iii) the number of cores m (m = 2; 4 or 8), iv)
total task utilization Ugot (Uor from 0:1 to m  0:1 with steps of 0.2). Given those
four parameters, we have generated 20000 tasksets in each experiment. As the task
generation policies may signi cantly affect experimental results, we give the policies
used in the experiments as follows.

Task utilization generation policy. We use Rand xedsum [88] to generate vectors
that consist of N elements and whose components sum to the Uo¢. Each element in the
vector is assigned an individual task utilization U in the taskset.

Task period and WCET generation policy. For each task g, Tk is uniformly
distributed over the interval [100; 200]. The WCET of  is derived by Cx = Ty Ux.
We consider an implicit deadline task system, which implies that D; = T;.

Cache interference generation policy. The probability of two task having cache
interference is P. If two tasks x and j interfere with each other, I3 is generated as
I7% = 1F  min(0:5C;; 0:5Cy).

In each experiment, we measure the number of schedulable tasksets that pass the
proposed schedulability test. The acceptance ratio, which is the number of schedulable
tasksets devided by the total number of tasksets (20000), are shown in Figure 4.12 and
Figure 4.13 for EDFyp and F Py, respectively.
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Shared Caches

(a) IF=0.3, m=4,n=10 (b) P=0.4, m=4,n=10

Figure 4.12: Acceptance ratio of EDFn, scheduler when varying IF, P and m.

(¢) IF=0.3, n=10
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4.5. Experiments
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