Fatal attraction: chemokines and rheumatoid arthritis
Haringman, J.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 2

CHEMOKINES IN INFLAMMATORY JOINT DISEASE: THE KEY TO INFLAMMATION?

Jasper J. Haringman, Jeroen Ludikhuize, Paul P. Tak
Division of Clinical Immunology and Rheumatology, Academic Medical Centre/University of Amsterdam, The Netherlands.

Annals of the Rheumatic Diseases 2004; 63(10): 1186-1194
ABSTRACT

Targeting chemokines and/or chemokine receptors appears to be an intriguing new approach to treat chronic inflammatory disorders like rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis and transplant rejections. The present review addresses the involvement of chemokines and chemokine receptors in inflammatory joint diseases, especially in rheumatoid arthritis. The in vitro and in vivo characteristics of the chemokine family in inflammatory joint disease are discussed as well as initial clinical data on chemokine blockade in rheumatoid arthritis patients. Review of these data suggests that targeting the chemokine and chemokine receptor family might provide a novel, promising antirheumatic strategy.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects synovial tissue (ST) in multiple joints. Although its etiology is still unknown, RA is thought of as an autoimmune disease. Severe morbidity and structural damage of joints caused by chronic inflammation advocates early and effective treatment (1). The inflammatory process is characterized by infiltration of leukocytes in ST and the synovial fluid (SF) in the joints. A wealth of information now exists demonstrating that this process is mediated by the coordinated action of a variety of inflammatory mediators. Leukocytes adhere to the activated endothelium, leading to migration across the endothelial barrier into the ST (2). A complex network of adhesion molecules and chemokines co-ordinate cell migration, by working in concert to induce an inflammatory response (3;4). Investigators have recently extended initial observational studies to explore the role of chemokines and chemokine receptors in the pathogenesis of inflammatory joint disease.

As the clinical management of RA is difficult, there is a need for the development of a broader range of therapies targeting specific checkpoints of the complex pathogenetic network underlying RA. The chemokine and chemokine receptor families could provide intriguing targets for innovative treatment of RA and other chronic inflammatory disorders by use of biologicals or targeted small molecules.

Chemokines

Chemokines are a specialized family of small (8-10 kD) structurally related proteins that function as potent mediators of inflammation by their ability to recruit and activate specific leukocyte sub-populations (5;6). The members of the chemokine family can be distinguished from classical chemoattractant molecules (for instance complement fragment peptides C3a and C5a, and lipid molecules such as leukotriene B4 and platelet activating factor) on the basis of their shared structural similarities. Chemokines have four conserved cysteine residues that form disulfide bonds, which are critical for the tertiary structures of these proteins (7;8). The chemokine family is organized into four subfamilies according to the position of the first two cysteines. The two major subclasses include the CC chemokines where the cysteines are adjacent and the CXC chemokines where the cysteines are separated by one amino acid. The CXC chemokines mainly act on neutrophils and lymphocytes, while the CC chemokines mainly act on monocytes and lymphocytes without affecting neutrophils (6). At least two chemokines do not fit into this classification. Lymphotactin is a chemokine, which lacks cysteines one and three of the typical chemokine structure (C-) and is a potent attractant for T lymphocytes, but not for monocytes (9). Fractalkine is a membrane bound
glycoprotein, in which the first two cysteine residues are separated by three amino acids (CXXXC)\(^{10}\). These two chemokines may represent additional families.

The discovery that certain chemokine receptors (CCR5 and CXCR4) are important coreceptors for HIV entry in lymphocytes gave a strong impulse to both basic research as well as to the development of novel therapeutics targeting chemokine receptors. One of the most frequently suggested characteristics of chemokines is the redundancy of the system. Redundancy occurs at the level of having multiple ligands for each chemokine receptor as well as multiple receptors for each chemokine ligand, leading to the generation of multiple pathways directing similar cellular responses. This is discussed in more detail below.

Nomenclature of chemokines

To date more than 50 different human chemokines have been identified. Initially, chemokines were named according to their distinctive functions, for instance Monocyte Chemoattractant Protein (MCP-1) or Regulated upon Activation Normal T cell Expressed and Secreted (RANTES). The fact that the same chemokine was given multiple names by different groups (for instance HCC-2 = Lkn-1 = MIP-1\(\beta\)) made the already large and complex family even more complex. Moreover, additional research showed that some chemokines have more functions than initially described and, therefore, their original names could suggest limited function. For instance MCP-1, a CC-chemokine initially identified as a monocyte specific chemoattractant, has also been shown to attract activated T cells, NK-cells, and basophils (11). Besides attracting inflammatory cells, MCP-1 also plays a role in T cell differentiation and angiogenesis (12;13). Therefore, a new nomenclature has been proposed. The system is based on the structural homology of different subgroups. Thus, chemokines can be divided into CXC-, CC-, CXXXC-, and XC-chemokines. For the ligands an L and a number are added (e.g. MCP-1 is CCL2) and for the receptors an R and a number (e.g. CCR1, CCR2 etc.) (Table 1.) (14-16).

Homeostatic Chemokines in RA

Chemokines promote the accumulation of leukocytes at the source of chemokine production in multiple ways (Figure 1.). This can be part of a homeostatic process or an inflammatory reaction. Chemokines can be grouped into either homeostatic/constitutive chemokines or inflammatory/inducible chemokines, although some may play a dual role depending on the context in which they are produced (17-19).

Homeostatic chemokines are produced within the lymphoid tissues and they are involved in maintaining homeostatic leukocyte traffic and cell compartmentalization in these tissues under non-inflammatory conditions (20;21). They also assist in controlling the specificity of memory cell subsets in specific tissues (22;23). In RA the expression of certain homing chemokines in the inflamed synovium is associated with the formation of lymphocyte aggregates resembling germinal centers (GC) in lymphoid tissue (24). These structures can be found in about 20-30\% of the RA patients (25;26). Although research describing expression of homeostatic chemokines and their receptors in inflamed ST is still limited, some homing chemokines like CXCL13/BCA-1, the ligand of CXCR5, have been implicated in the formation of these ectopic lymphoid structures in rheumatoid ST. CXCL13/BCA-1 expression was detected predominantly in follicular dendritic cells in GC (27).

Table 1. CXC, C, CX,C and CC Chemokine/Receptor Families

Adapted/modified from R. Thorpe, J Immunol Methods, 262; (2002); 1-3.
CXC Chemokine/Receptor Family

<table>
<thead>
<tr>
<th>Systemic Name Ligand (L.)</th>
<th>Common Name Ligand</th>
<th>Systemic Name Receptor (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXCL1</td>
<td>GROα/MGSA-α</td>
<td>CXCR2>CXCR1</td>
</tr>
<tr>
<td>CXCL2</td>
<td>GROβ/MGSA-β</td>
<td>CXCR2</td>
</tr>
<tr>
<td>CXCL3</td>
<td>GROγ/MGSA-γ</td>
<td>CXCR2</td>
</tr>
<tr>
<td>CXCL4</td>
<td>PF4</td>
<td>Unknown</td>
</tr>
<tr>
<td>CXCL5</td>
<td>ENA-78</td>
<td>CXCR2</td>
</tr>
<tr>
<td>CXCL6</td>
<td>GCP-2</td>
<td>CXCR1, CXCR2</td>
</tr>
<tr>
<td>CXCL7</td>
<td>NAP-2</td>
<td>CXCR2</td>
</tr>
<tr>
<td>CXCL8</td>
<td>IL-8</td>
<td>CXCR1, CXCR2</td>
</tr>
<tr>
<td>CXCL9</td>
<td>Mig</td>
<td>CXCR3</td>
</tr>
<tr>
<td>CXCL10</td>
<td>IP-10</td>
<td>CXCR3</td>
</tr>
<tr>
<td>CXCL11</td>
<td>I-TAC</td>
<td>CXCR3</td>
</tr>
<tr>
<td>CXCL12</td>
<td>SDF-1α/β</td>
<td>CXCR4</td>
</tr>
<tr>
<td>CXCL13</td>
<td>BCL</td>
<td>CXCR5</td>
</tr>
<tr>
<td>CXCL14</td>
<td>BRAK/bolekin (CXCL15)</td>
<td>Unknown</td>
</tr>
<tr>
<td>(CXCL15)</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>CXCL16</td>
<td></td>
<td>CXCR6</td>
</tr>
</tbody>
</table>

C Chemokine/Receptor Family

<table>
<thead>
<tr>
<th>Systemic Name Ligand (L.)</th>
<th>Common Name Ligand</th>
<th>Systemic Name Receptor (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCL1</td>
<td>Lymphotactin/SCM-1α/ATAC</td>
<td>XCR1</td>
</tr>
<tr>
<td>XCL2</td>
<td>SCM-1β</td>
<td>XCR1</td>
</tr>
</tbody>
</table>

CX3C Chemokine/Receptor Family

<table>
<thead>
<tr>
<th>Systemic Name Ligand (L.)</th>
<th>Common Name Ligand</th>
<th>Systemic Name Receptor (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX3CL1</td>
<td>Fractalkine</td>
<td>CX3CR1</td>
</tr>
</tbody>
</table>
CC Chemokine/Receptor Family

<table>
<thead>
<tr>
<th>Systemic Name</th>
<th>Common Name</th>
<th>Systemic Name Receptor (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand (L)</td>
<td>Ligand</td>
<td></td>
</tr>
<tr>
<td>CCL1</td>
<td>1-309</td>
<td>CCR8</td>
</tr>
<tr>
<td>CCL2</td>
<td>MCP-1/MCAF/TDCF</td>
<td>CCR2</td>
</tr>
<tr>
<td>CCL3</td>
<td>MIP-1α/LD78α</td>
<td>CCR1, CCR5</td>
</tr>
<tr>
<td>CCL3L1</td>
<td>LD78β</td>
<td>CCR1, CCR5</td>
</tr>
<tr>
<td>CCL4</td>
<td>MIP-1β</td>
<td>CCR5</td>
</tr>
<tr>
<td>CCL5</td>
<td>RANTES</td>
<td>CCR1, CCR3, CCR5</td>
</tr>
<tr>
<td>(CCL6)</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>CCL7</td>
<td>MCP-3</td>
<td>CCR1, CCR2, CCR3</td>
</tr>
<tr>
<td>CCL8</td>
<td>MCP-2</td>
<td>CCR3, CCR5</td>
</tr>
<tr>
<td>(CCL9/CCL10)</td>
<td>Unknown</td>
<td>CCR1</td>
</tr>
<tr>
<td>CCL11</td>
<td>Eotaxin</td>
<td>CCR3</td>
</tr>
<tr>
<td>(CCL12)</td>
<td>Unknown</td>
<td>CCR2</td>
</tr>
<tr>
<td>CCL13</td>
<td>MCP-4</td>
<td>CCR2, CCR3</td>
</tr>
<tr>
<td>CCL14</td>
<td>HCC-1</td>
<td>CCR1, CCR5</td>
</tr>
<tr>
<td>CCL15</td>
<td>HCC-2/Lkn-1/MIP-1β</td>
<td>CCR1, CCR3</td>
</tr>
<tr>
<td>CCL16</td>
<td>HCC-4/LEC/LCC-1</td>
<td>CCR1, CCR2</td>
</tr>
<tr>
<td>CCL17</td>
<td>TARC</td>
<td>CCR4</td>
</tr>
<tr>
<td>CCL18</td>
<td>DC-CK1/PARC/AMAC-1</td>
<td>Unknown</td>
</tr>
<tr>
<td>CCL19</td>
<td>MIP-3β/ELC/exodus-3</td>
<td>CCR7</td>
</tr>
<tr>
<td>CCL20</td>
<td>MIP-3α/LARC/exodus-1</td>
<td>CCR6</td>
</tr>
<tr>
<td>CCL21</td>
<td>6Ckine/SLC/exodus-2</td>
<td>CCR7</td>
</tr>
<tr>
<td>CCL22</td>
<td>MDC/STCP-1</td>
<td>CCR4</td>
</tr>
<tr>
<td>CCL23</td>
<td>MPIF-1/CKβ8/CKβ8-1</td>
<td>CCR1</td>
</tr>
<tr>
<td>CCL24</td>
<td>Eotaxin-2/MPIF-2</td>
<td>CCR3</td>
</tr>
<tr>
<td>CCL25</td>
<td>TECK</td>
<td>CCR9</td>
</tr>
<tr>
<td>CCL26</td>
<td>Eotaxin-3</td>
<td>CCR3</td>
</tr>
<tr>
<td>CCL27</td>
<td>CTACK/ILC</td>
<td>CCR10</td>
</tr>
<tr>
<td>CCL28</td>
<td>MEC</td>
<td>CCR3/CCR10</td>
</tr>
</tbody>
</table>

For homing of immature dendritic cells into RA synovium, the ligand-receptor-pair CCL20/MIP-3α-CCR6 appears to be critical. These cells are especially found in the intimal lining layer and perivascular infiltrates (28). CCL20/MIP-3α can be detected at higher concentrations in SF of RA patients than in controls. It is also a chemoattractant for T cells, B cells, and monocytes (29,30). A recent report showed that immunodepleting CCL20/MIP-3α resulted in an overall inhibition of monocyte chemotaxis of 40% (30).
The homing of mature dendritic cells to the lymphocyte infiltrates is influenced by CCL19/MIP-3β and CCL21/6-chemokine, the ligands for CCR7. They are expressed in the perivascular lymphocyte infiltrates and the vascular endothelium and are thought to be involved in the migration of CCR7+ mature dendritic cells into the synovium(28).

Another homeostatic receptor, CXCR4, may play a role in the active retention of T cells within the synovial compartment; its only ligand known so far, CXCL12/SDF-1, is expressed by synovial endothelial cells and synovial fibroblasts(31;32). Moreover, CXCL12/SDF-1 co-localizes with the neoangiogenesis marker α,β, integrin and is able to modulate angiogenesis in vivo assays in mouse models (33).

The ligand/receptor pair CXCL16/CXCR6 seems to be especially involved in plasma cell recruitment to bone marrow and target tissues(34). Expression of CXCR6 has been described in RA and could also attract effector T cells, mediating Th1 responses(35).

As homeostatic chemokines and their receptors may play an important role in the continuation of inflammation by the formation of GC and the sustained retention of cells in the synovial compartment, targeting these proteins might be an interesting novel approach for the treatment of RA. Additional studies are needed to determine the therapeutic potential and safety of this approach. A concern might be that one does not want to interfere with the role of these molecules under non-inflammatory, physiological conditions. It is clear that the most suitable potential targets still need to be defined.

Inflammatory Chemokines in RA

In contrast to the homeostatic chemokines, which are mainly involved in physiologic processes, although some of them seem to play a dual role in inflammation, the inflammatory/inducible chemokines are preferentially produced in peripheral tissue at the sites of inflammation. At these sites they function to recruit neutrophils, monocytes, immature dendritic cells, B cells, and activated T cells(5;6). Several cell types including endothelial, epithelial, and stromal cells as well as leukocytes are able to produce inflammatory chemokines. Although many different cell types have the ability to produce inflammatory
Chemokines in Joint Disorders

Chemokines in the synovium, macrophages and fibroblast-like synoviocytes seem to be the most potent producers based upon in vitro experiments (36-39). Chemokine production is induced at high levels in response to inflammatory stimuli, such as LPS, IL-1, and TNF-α. The inflammatory chemokines promote inflammation by an array of biological mechanisms (13) (Figure 1).

Leukocyte extravasation involves the sequential steps of selectin-dependent initial attachment and rolling, G protein-regulated activation, firm arrest via integrin binding to endothelial ligands and transendothelial diapedesis (3:4:40). Chemokines are involved in this process by providing a chemokine gradient as well as by activation of integrins (13).

CXCL8/IL-8 was among the first chemokines shown to be involved in leukocyte chemotaxis (41). In RA patients, CXCL8/IL-8 is present in high quantities in both ST and SF (42:43). Of interest, CXCL8/IL-8 protein as well as mRNA levels are specifically increased in clinically involved joints compared to clinically uninvolved joints, suggesting a role in the development of clinical signs and symptoms (44). The notion that CXCL8/IL-8 may be involved in the pathogenesis of RA is supported by the observation that a single intra-articular injection of CXCL8/IL-8 can initiate arthritis in a time and dose dependent manner in rabbits. This is associated with an early increase in neutrophil numbers followed by an increase in mononuclear cells in the joints of these animals (43). In another study CXCL8/IL-8 was also shown to play a major role in the trafficking of monocytes towards the ST (45).

CCL2/MCP-1, a ligand of CCR2, has also been shown to have important chemotactic characteristics. CCL2/MCP-1 promotes transmigration of monocytes when present in a (soluble) gradient across an endothelial monolayer (46). CCL2/MCP-1 can also attract T cells, NK cells, and basophils (47:48). ST macrophages are the dominant source of CCL2/MCP-1 production in RA and levels of CCL2/MCP-1 are significantly increased in RA ST, SF, and peripheral blood (49). The possible role of CCL2/MCP-1 in monocyte migration towards the joint is supported by the observation that injection with CCL2/MCP-1 into rabbit joints may lead to a clear increase in especially macrophage numbers (50).

CCL5/RANTES (a ligand for CCR1, CCR3 and CCR5) is another chemokine implicated in leukocyte chemotaxis in RA. In RA, fibroblast-like synoviocytes express CCL5/RANTES and CCL5/RANTES gene expression is increased in SF mononuclear cells and peripheral blood mononuclear cells (51:53). CCL5/RANTES proved to be a potent inducer of migration of both monocytes and T-lymphocytes in in vitro models (6). By blocking CCL5/RANTES using neutralizing antibodies it was shown that in vitro migration towards SF and ST from RA patients could be inhibited (54:55).

CCR5, one of the receptors for CCL5/RANTES, is together with CXCR3 predominantly (but not exclusively) expressed by Th1 cells. Thus, this receptor could play a crucial role in a Th1 type disease like RA (56-59). Examining the expression of the ligands of CCR5 and CXCR3 in RA ST, SF, and peripheral blood showed that there is a chemotactic gradient between the serum and synovium for CCL3/MIP-1α, CCL4/MIP-1β, CXCL9/Mig and CXCL10/IP-10, favoring migration into tissue (60:61). Other studies showed the importance of CCL3/MIP-1α in neutrophil and macrophage chemotaxis into the synovial compartment (62). Besides a ligand for CCR5, this is also a ligand for CCR1. In addition to attracting neutrophils and macrophages CCL3/MIP-1α is also involved in attracting lymphocytes to SF, although lymphocyte migration seems to be dependent on multiple chemokines (63).

The ability to provide chemokine gradients and the ability to bind to synovial structures may vary between different chemokines. Only a subset of the chemokines appears to bind efficiently to structures in the extravascular space, which may be dependent of their glycosaminoglycan binding capacity, indicating that the formation of chemotactic gradients in
tissues may be very complex (64). Although blockage of single chemokines may result in inhibition of migration, the combination of several antibodies targeting different chemokines appears to be more effective in reducing the migratory activity towards the synovial compartment (63).

Besides providing a functional gradient, chemokines can also promote chemotaxis by inducing a rapid but transient increase in adhesion of leukocytes to immobilized integrin ligands (65:66). This can occur via two different mechanisms: upregulation of integrin affinity through conformational changes and changes in integrin avidity that occurs through integrin clustering (65:67). Using in vitro flow chamber assays it was shown for some of these chemokines that they could upregulate integrin function and then induce arrest and firm adhesion of rolling cells. For example, CXCL8/IL-8 can induce adhesion of CXCR1 and CXCR2 expressing neutrophils; CCL2/MCP-1 may trigger adhesion through its receptor CCR2 and different memory lymphocyte subsets are able to adhere in response to ligands for CXCR3 (CXCL9/Mig and CXCL10/IP-10) (68-70). Figure 2. shows the expression of CCR1, CCR2, CCR5, CCL2/MCP-1 and CCL5/RANTES in the ST of a RA patient.

Figure 2. Expression of chemokine and chemokine receptor staining in RA synovial tissue. CCR1 positive cells are scattered throughout the synovium, and are expressed predominantly by macrophages. There is marked CCR1 expression in the intimal lining layer. CCR2b is expressed by macrophages, especially in the synovial sublining. CCR5 is expressed by both T-lymphocytes and macrophages. CCR4 is mainly expressed by T-lymphocytes in the synovial sublining. CCL2/MCP-1, a ligand for CCR2b is almost exclusively expressed in the intimal lining layer. CCL5/RANTES, a ligand for CCR1, CCR3 and CCR5 is expressed in both the intimal lining layer and the synovial sublining. (Single-stain peroxidase technique, positive staining in red/brown, Mayer's hematoxylin counterstained, original magnifications x400). A full colour image of this figure is provided in the Appendix (Chapter 2, figure 2).

Cytokine-Chemokine Interactions

There is a complex relationship between inflammatory cytokines and chemokines. Multiple studies have shown that a vast number of pro-inflammatory cytokines, like IL-1, IL-2, IFN-γ and TNF-α can stimulate chemokine production by different cell types present in rheumatoid ST (36;71-73). Macrophages may produce a broad variety of chemokines.
Chemokines in Joint Disorders

including CC- and CXC- chemokines like CXCL8/IL-8, CCL2/MCP-1, and CCL3/Mip-1α (42,49,62). In addition, lymphocytes and fibroblast-like-synoviocytes can produce various chemokines upon appropriate stimulation (36,37,74). Conversely, chemokines may also stimulate cells to release inflammatory mediators including cytokines. Stimulation of fibroblast-like-synoviocytes from RA patients with CCL2/MCP-1, CCL5/RANTES and CXCL12/SDF-1 results for instance in enhanced production of IL-6 and IL-8 (75). Similarly, CCL3/MIP-1α has been shown to stimulate the synthesis of IL-1, TNF, and IL-6 by murine peritoneal macrophages (76).

A relationship between chemokines and matrix metalloproteinases (MMPs) has also been described. The interaction between CXCL12/SDF-1 and its receptor CXCR4 on chondrocytes may result in increased secretion of MMP-3, a cartilage matrix degrading enzyme (77). CCL2/MCP-1, CCL5/RANTES, and CXCL1/GROα were also shown to stimulate MMP-3 release by chondrocytes isolated from osteoarthritis articular cartilage samples (78).

Although there is clear evidence that chemokines can stimulate various cell types in the joint to produce cytokines and MMPs, promoting synovial inflammation and joint degradation, the data are still limited.

Angiogenesis

Angiogenesis, the process by which new capillaries are formed from existing vessels, is fundamental to a variety of physiological activities, such as wound healing and the female reproductive system. In addition, angiogenesis plays a role in pathological processes, including tumor growth and chronic inflammation (79). In RA, neovascularization is one of the early changes in the ST and in this complex, but coordinated, process chemokines are intimately involved. Chemokines may have either angiogenic or angiostatic properties. Initially, for CXC- chemokines it was shown that this was dependent on the so called ELR motif, which is the sequence of three amino acids (Glu-Leu-Arg) near the NH₂-terminus before the first cysteine. Chemokines containing this motif were thought to be angiogenic, whereas chemokines without this motif appeared to be angiostatic (80).

CXCL8/IL-8 was the first chemokine with an ELR motif shown to have angiogenic properties. Other ELR-containing CXC chemokines with angiogenic features include CXCL5/ENA-78 and CXCL1/Groα, while non-ELR chemokines like CXCL4/PF4 and the CXCR3 ligands CXCL9/MIG, CXCL10/IP-10 and CXCL11/I-TAC are angiostatic (80-83).

Although studies have shown that the CXCR3 ligands function as angiostatic mediators, in high concentrations they could in vitro also induce endothelial cell chemotaxis (84). There are more exceptions to the "ELR" rule, like the ELR negative chemokines CXCL12/SDF-1 and CXCL2/Groβ, which do have angiogenic features (85,86). Other chemokines with angiogenic properties lacking the ELR motif include the CC and CX₃C chemokines CCL2/MCP-1 and CX₃CL1/Fractalkine (87-89).

It is also possible that the angiogenic or angiostatic involvement does not depend on the chemokine ligand, but on its receptor. Endothelial cells may express functional chemokine receptors, which can induce angiogenic signals, like CXCR2 and CXCR4. Alternatively, they may express receptors like CXCR3, which induce angiostatic signals (83,90). Although the role of chemokines and their receptors in angiogenesis is as yet not completely understood, it has become clear that they are not only involved in stimulating inflammation, but may also have inhibiting features.
Chemokines in Joint Diseases other than RA

Although the vast majority of the research on chemokines in inflammatory joint disease is focused on RA, it seems clear that chemokines and their receptors also play a role in other inflammatory arthropathies like osteoarthritis (OA) and psoriatic arthritis (PsA).

In OA, traditionally considered a noninflammatory arthropathy, synovial inflammation has been well documented (91-93). There is accumulating evidence suggesting the involvement of chemokines and their receptors in the disease process. Among others, CCL2/MCP-1 and CCL5/RANTES are expressed in both SF and ST of OA patients (94-96). Fibroblast-like synoviocytes from OA patients have the capacity to produce CXCL8/IL-8, CCL2/MCP-1, CCL3/MIP1-α, and CCL5/RANTES (37:54:97). Although most of the described chemokines and receptors appear to be expressed at higher levels in ST and SF in RA than in other inflammatory arthropathies, there might be at least one exception, namely CCL4/MIP-1β. It is found at significantly greater levels in the SF of patients with OA than other forms of inflammatory arthritis like RA (98). CCL4/MIP-1β, which is a ligand for CCR5, may be responsible for a substantial fraction of OA SF chemotactic activity for monocytes, particularly for activated monocytes.

In addition, chemokines and chemokine receptors are expressed by chondrocytes and, as mentioned earlier, interaction between chemokine receptors and their ligands may cause MMP-3 induction in chondrocytes (78:99:100). Compared to RA and PsA, OA cartilage appears to exhibit higher expression of the chemokine receptors CCR1, CCR3, CCR5, CXCR1, CXCR2, and CXCR3, but still lower than cartilage of normal donors (101).

In PsA CCL2/MCP-1, CCL5/RANTES, CXCL1/GROα, CXCL8/IL-8, CXCL9/MIG, as well as CCR2 and CCR5 have been described in both ST and SF (95:102-104). CCR2 and CCR5 were also detected in SF of patients with ankylosing spondylitis, reactive arthritis, Lyme arthritis, and gout (103).

It is evident that chemokines and their receptors are present in the peripheral blood, synovial compartment, and cartilage in patients with arthritides other than RA. Although the level of expression may vary between the different forms of arthritis, none of the inflammatory chemokines or receptors appears specific for any of the conditions; presumably their presence reflects the effector mechanisms involved in the inflammatory process. This suggests that inhibition of the chemokine repertoire might not only be a useful strategy in the treatment of RA, but also in other forms of inflammatory joint disease.

Animal models

In addition to in vitro studies, suggesting the potential of reducing cell migration by inhibition of chemokines and chemokine receptors, animal models have been used to assess the value of the chemokine inhibitors in vivo. As animal models can be used to assess the role of several pathogenic factors at various stages of the disease, they provide a sophisticated tool to study the relevance of chemokines and chemokine receptors.

Various chemokines have been described in arthritis models. MIP-2, the murine equivalent of CXCL8/IL-8 has been detected in the joints of mice with collagen induced arthritis (CIA) in the early stage of disease, whereas other chemokines like CCL5/RANTES and CCL3/MIP-1α were present in early as well as late disease stages (105). In the rat adjuvant arthritis model (AA) it was shown that among different cytokines, the chemokines CCL3/MIP-1α and CXCL5/ENA-78-like protein are involved in the onset of arthritis, and JE (CCL2/MCP-1) is involved in late phases of the disease (106).

Chemokines and their receptors can be targeted in different ways, using neutralizing antibodies, modified chemokines or small molecule receptor antagonists. Examples of targeted chemokines and receptors in animal models of arthritis include CCL2/MCP-1, CCL5/RANTES, CXCL-5/ENA-78, CXCL10/IP-10, CXCR2, CXCR4, CCR2, and CCR5.
Targeting CCL2/MCP-1 in rats or its receptor CCR2 in mice showed that both approaches resulted in a reduction of arthritis activity. In both models there was a reduction in macrophage infiltration and protection against joint destruction (107;108). Treatment of rat AA with a polyclonal antibody directed against human CCL5/RANTES resulted in clinical improvement and reduced cell infiltration and joint damage, while antibody treatment directed at CCL3/MIP-1α in the same model did not influence the disease (109). It has also been shown that targeting the CXC-chemokine CXCL10/IP-10 may inhibit leukocyte migration and induce an alteration in the Th1/Th2 balance in rats (111). Another successful example of chemokine blockade using antibodies is anti-human ENA-78 antibody treatment in rat AA, which targets the CXC ligand CXCL5/ENA-like protein. This approach was effective when given before disease onset, but it could not modify the disease when administered after the development of clinical signs of arthritis (112).

Of interest, several synthetic, non-peptide, highly specific chemokine receptor antagonists have been reported to be effective in animal models. AMD3100, a specific antagonist of the CXCR4 receptor, was able to delay the onset of arthritis and to reduce the severity of the symptoms in mice. Treatment with AMD3100 also led to a decrease in infiltration by mononuclear cells and neutrophils and a reduction in synovial tissue hyperplasia and pannus formation (113). Similarly, treatment with a selective non-peptide antagonist of CXCR2 (the receptor of CXCL8/IL-8) in a rabbit arthritis model resulted in reduced neutrophil, monocyte, and lymphocyte counts in SF (114). Finally, a non-peptide CCR5 antagonist resulted in reduction of both incidence and severity of CIA by modulating T cell migration (115).

Many of these studies clearly suggest that targeting migration of leukocytes by chemokine blockade might be feasible and that this approach could be used to ameliorate clinical signs of arthritis and inhibit joint destruction. Although in most reported studies chemokine blockade was able to prevent arthritis, it appears to be more difficult to reduce established disease (112). Taken together the available evidence suggests that specific inhibition of one chemokine or one chemokine receptor may have relevant clinical and biological effects in animal models, despite the redundancy of the system. It is obvious, however, that promising results in animal models need to be confirmed in human disease.

Human studies

Chemokine receptors are G protein-coupled seven transmembrane (7TM) spanning receptors. Several small molecule antagonists targeting these receptors have recently been developed. (116:117). To date there are only few publications describing the effects of chemokine or chemokine receptor antagonism in patients with chronic inflammatory disease. It has been suggested in a review article (118) that there was lack of efficacy of treatment in a phase II study using a monoclonal antibody against CXCL8/IL-8 in RA patients, but the full data set has as yet not been published.

Recent work suggested the potential of treatment with a CCR1 antagonist in RA patients (116:119). In a relatively small phase Ib study, patients were treated with a potent and selective antagonist for CCR1 for two weeks. which was well tolerated (119). Analysis of ST samples showed a clear reduction in synovial inflammation in the active treated group compared to the placebo group. Cells capable of expressing the CCR1 receptor were affected, while cells not capable of expressing this receptor were not influenced by the treatment, confirming the specificity of the compound.

Although this study was not designed to determine clinical efficacy one third of the patients in the active group fulfilled the ACR20% criteria for improvement (including one patient with an ACR50% response) already after two weeks of treatment, while there were no responders in the (small) placebo group. This study is the first in humans showing that chemokine antagonism might be feasible and suggesting that it is indeed possible to influence migration
of inflammatory cells in a chronic inflammatory disease using a specific orally available chemokine receptor antagonist. Obviously, the clinical relevance needs to be confirmed in larger, well controlled clinical trials. The study with the CCR1 antagonist adds to the rationale for such trials.

Redundancy of the chemokine system

Based upon in vitro data one could conclude that most of the chemokines have redundant or similar functions compared with other chemokines, although particular receptors are expressed by specific cells (for instance CXCRs mainly by neutrophils and CCRs mainly by monocytes and lymphocytes). Examination of the in vivo data in animal models showed, as discussed above, that the production of chemokines is organized in a coordinated manner and that different chemokines function at distinct stages of disease evolution. Data from knock out models showed the effects of depletion of one particular chemokine or chemokine receptor. For instance CCR1 knock out mice were partially protected against experimental allergic encephalomyelitis compared to CCR1 +/- mice (120).

The differences in the dynamic interactions between a ligand and receptor also imply distinct functions for different receptors. For instance CXCR1 and CXCR2, both expressed on neutrophils and both serving as receptor for CXCL8/IL-8, respond differently to CXCL8/IL-8 binding. CXCR1 is slowly internalized and rapidly recycled after binding, whereas CXCR2 is rapidly internalized, targeted for degradation, and reappears only slowly at the membrane after ligand activation (121).

Many chemokines and chemokine receptors are expressed within the synovial compartment of RA patients, which could suggest redundancy in chronic synovial inflammation. It should be noted, however, that differences in expression may also suggest distinct pathogenetic functions for various ligands and receptors. CCR1 for example appears to be involved in the initial recruitment of monocytes from the circulation to the sites of inflammation, whereas CCR5 might be more important in the retention of cells within the synovial compartment (122).

Increasing evidence suggests that the chemokine system functions in a delicately controlled manner with distinct as well as overlapping functions for individual chemokines and receptors, depending on the stage of the disease. The data from blocking studies in animal models provide evidence that redundancy of the system does not exclude beneficial clinical and biological effects of specific chemokine antagonism. On the other hand it might even provide a save background for therapeutic application of highly specific antagonists. The first report of the effects of treatment with a specific CCR1 antagonist in RA confirms that inflammation might be decreased in a safe way by specifically targeting one chemokine receptor (119).

Conclusion

It is clear that a very sophisticated system exists controlling the movement of leukocytes under physiologic and pathologic conditions. Chemokines and their receptors play an important role in this system not only by directing the migration of cells, but also by controlling other important mechanisms like release of mediators of inflammation and angiogenesis. Despite the redundancy of the system, animal studies have shown the potential effect of specific antagonism of ligands and receptors in disease models, with apparently very little side effects. The first in human study with a small molecule serving as a chemokine receptor antagonist was recently performed in RA patients and showed clear biological efficacy. Although biological therapies using neutralizing antibodies or modified chemokines as receptor antagonists could provide effective treatments, the ideal therapeutic could be a small molecule antagonist, which can be administered orally.
There are several caveats, however, that need to be recognized. It is conceivable that it is necessary to use poly-chemokine antagonists (117) or combine different chemokine antagonists (63) to block specific chemokine pathways. Additionally, it is possible that some ligands may act as agonists at one receptor and as antagonists at others (123).

In conclusion, although several questions remain to be answered, chemokine blockade could be a promising, innovative approach to treat chronic inflammation.

Reference List

Chemokines in Joint Disorders

(40) Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991; 67(4):1033-1036.

Chapter 2

Chemokines in Joint Disorders

Chemokines in Joint Disorders

Chapter 2

