HERG channel (dys)function revealed by dynamic action potential clamp technique

Published in:
Biophysical Journal

DOI:
10.1529/biophysj.104.047290

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 18 Dec 2018
HERG Channel (Dys)function Revealed by Dynamic Action Potential Clamp Technique

Geza Berecki,† Jan G. Zegers,† Arie O. Verkerk,*† Zahurul A. Bhuiyan,‡ Berend de Jonge,* Marieke W. Veldkamp,* Ronald Wilders,† and Antoni C. G. van Ginneken*

*Experimental and Molecular Cardiology Group and the Departments of †Physiology and ‡Clinical Genetics, Academic Medical Center, University of Amsterdam, The Netherlands

ABSTRACT The human ether-a-go-go-related gene (HERG) encodes the rapid component of the cardiac delayed rectifier potassium current (I\textsubscript{Kr}). Per-Arnt-Sim domain mutations of the HERG channel are linked to type 2 long-QT syndrome. We studied wild-type and/or type 2 long-QT syndrome-associated mutant (R56Q) HERG current (I\textsubscript{HERG}) in HEK-293 cells, at both 23 and 36°C. Conventional voltage-clamp analysis revealed mutation-induced changes in channel kinetics. To assess functional implication(s) of the mutation, we introduce the dynamic action potential clamp technique. In this study, we effectively replace the native I\textsubscript{Kr} of a ventricular cell (either a human model cell or an isolated rabbit myocyte) with I\textsubscript{HERG} generated in a HEK-293 cell that is voltage-clamped by the free-running action potential of the ventricular cell. Action potential characteristics of the ventricular cells were effectively reproduced with wild-type I\textsubscript{HERG}, whereas the R56Q mutation caused a frequency-dependent increase of the action potential duration in accordance with the clinical phenotype. The dynamic action potential clamp approach also revealed a frequency-dependent transient wild-type I\textsubscript{HERG} component, which is absent with R56Q channels. This novel electrophysiological technique allows rapid and unambiguous determination of the effects of an ion channel mutation on the ventricular action potential and can serve as a new tool for investigating cardiac channelopathies.

INTRODUCTION

Discrete mutations in genes encoding ion channel proteins that disrupt channel function are at present the most commonly identified cause of heritable cardiac channelopathies (Marbán, 2002). Type 2 of the congenital long-QT (LQT2) syndrome is linked to mutations in the human ether-a-go-go-related gene (HERG), which encodes the pore-forming \textalpha{}-subunit of the rapid delayed rectifier potassium channel (Curran et al., 1995; Sanguinetti et al., 1995; Trudeau et al., 1995). Properties of current through HERG channels (I\textsubscript{HERG}) are similar to those of the rapidly activating component of delayed rectifier K+ current (I\textsubscript{K\textalpha{}}) that contributes to the final repolarization of the ventricular action potential (AP) (Sanguinetti and Jurkiewicz, 1990). Investigations of various (wild-type and mutant) HERG channels in heterologous expression systems such as Xenopus laevis oocytes or mammalian tissue cells in culture have provided remarkable results in understanding the congenital forms of the LQT2 syndrome. It is apparent that the mechanisms by which HERG mutations cause the clinically observed electrical disease are various. For some HERG mutants, the observed differences in HERG channel kinetics and/or I\textsubscript{HERG} density are evident and translation into effects that these mutated channels would have on the ventricular AP are obvious. Conversely, in several cases, results of voltage-clamp experiments do not provide satisfactory explanation to how structural changes of the channel protein would affect cardiac AP repolarization and ultimately lead to the observed clinical phenotype in affected patients. In such cases, where the observed differences between the wild-type and mutant channels are less clear, one can in existing computer models of the human ventricular AP (Priebe and Beuckelmann, 1998) modify I\textsubscript{Kr} according to what was found for the mutant and determine the resulting change(s) in AP characteristics. It is then, often implicitly, assumed that the mathematical description of the I\textsubscript{Kr} fully covers the properties of this current. Besides, this approach is restrained by the lack of quantitative data on the complex kinetics of the I\textsubscript{Kr} and I\textsubscript{HERG} at physiological temperature. The mathematical description is therefore merely an approximation, despite recent advances in modeling (Clancy and Rudy, 2001), and results from simulations in which HERG channel properties have been changed should be interpreted circumspectly.

In this study, we introduce a novel electrophysiological technique to assess the functional implications of ion channel mutations. We hypothesize that rapid and unambiguous interpretation of the altered channel function is possible with an experimental setting in which mutant channels are allowed to follow a natural time course of membrane potential (V\textsubscript{m}) change, upon being simultaneously allowed to contribute current to the AP as they would have when incorporated into a real ventricular cell. With our dynamic action potential clamp (dAPC) technique, the native I\textsubscript{Kr} of a ventricular myocyte or cell model is effectively replaced with I\textsubscript{HERG} recorded from a transfected HEK-293 cell that is voltage-clamped by the free-running AP of the ventricular cell. To this end, the native
HERG Channel and Dynamic Action Potential Clamp

567

Electrophysiological experiments

Action potential duration (APD).

strate that the net effect of the mutation is an increase in

dAPC experiments directly and unambiguously demon-

activation, which by itself would shorten the AP. However,

temperature, the mutant channels showed both faster

liquid junction potential. Membrane currents and potentials were low-pass

of solutions was corrected for temperature; potentials were corrected for

E of 5.4 mmol/L KCl (see below). Membrane currents were recorded with an

filtered (cutoff frequency 2 kHz) and digitized at 5 kHz. The current-voltage

potential (resulting in an EK of −92.5 mV). All figures showing APs in the model-cell

solutions was corrected for temperature; potentials were corrected for

 membrane current of this ventricular cell, the

HEK-293 cells also by conventional whole-cell voltage-

temperature, the mutant channels showed both faster

IIK, is pharmacologically blocked (or set to zero in case of

applied to the ventricular cell as an

external current input. When wild-type (WT) IIHERG is added
to the net membrane current of this ventricular cell, the

resulting AP should be considered as normal, whereas

a mutant IIHERG should cause distortion of the AP.

We applied our dAPC technique to the R56Q (arginine to

HOM), a mutation known to increase the rate of

deactivation most profoundly (Chen et al., 1999). Pre-

viously, R56Q HERG channels had only been expressed in

 Xenopus oocytes, and characterized at room temperature

(Chen et al., 1999). We studied WT and mutant channels in

HEK-293 cells also by conventional whole-cell voltage-

clamp technique, at both 23°C and 36°C. At physiological

MATERIALS AND METHODS

Electrophysiological experiments

For details on plasmid construction, HEK-293 cell culture, and transfection

procedures, see the expanded Materials and Methods, available as Sup-

plementary Material online.

HEK-293 cells were either superfused with Tyrode’s solution containing

(mmol/L): 140 NaCl, 5.4 KCl, 1.8 CaCl2, 1 MgCl2, 5.3 glucose, 5 HEPES

(pH 7.4 with NaOH), or with a modified Tyrode’s solution with 4.5 instead

of 5.4 mmol/L KCl (see below). Membrane currents were recorded with an

Axopatch 200B amplifier (Axon Instruments, Union City, CA) in the whole-

cell configuration of the patch-clamp technique at 23 ± 0.5°C and 36 ±

0.5°C. Voltage control, data acquisition, and analysis were accomplished

using custom software. Patch pipettes (1.5–3 MΩ) were filled with solution

containing (mmol/L): 125 K-glucionate, 20 KCl, 1 MgCl2, 5 EGTA, 5

MgATP, 10 HEPES (pH 7.2 with KOH), resulting in a K+ equilibrium

potential (EK) of −87.7 mV at 36°C. To obtain a better match between the

EK of the experimental solutions and the model cell’s maximum diastolic

potential of −90.7 mV, we also used 4.5 mmol/L KCl in the Tyrode solution

(resulting in an EK of −92.5 mV). All figures showing APs in the model-cell

mode (see below) were obtained with this modified Tyrode solution. The pH

of solutions was corrected for temperature; potentials were corrected for

liquid junction potential. Membrane currents and potentials were low-pass

filtered (cutoff frequency 2 kHz) and digitized at 5 kHz. The current-voltage

(I-V) relationships, and IIHERG kinetics were determined by voltage-clamp

protocols, as diagrammed in Figs. 2 and 3, and as described previously

(Sanguinetti et al., 1995; Smith et al., 1996; Snyders and Chaudhary, 1996)

and in the Supplementary Material. APs from freshly isolated rabbit left-

ventricular myocytes were measured at 36°C with the solutions described

above (5.4 mmol/L KCl in the Tyrode solution; EGTA was omitted in the

pipette solution), as described previously (Verkerk et al., 1996) and detailed

in the Supplementary Material.

Dynamic action potential clamp

Our approach is based on the coupling clamp (Tan and Joyner, 1990), model

couple clamp (Wilders et al., 1996), and dynamic clamp (Sharp et al., 1993)
techniques. The development of these techniques is built on the concept that

an isolated (cardiac) cell can be electrically coupled to either another isolated

cardiac cell or to a model analog that mimics the electrical properties of the

cardiac myocyte. As diagrammed in Fig. 1, a single cardiac ventricular cell

and a transfected HEK-293 cell can be electrically coupled by means of an

electrical circuit. The ventricular cell (with IIKr blocked) is in current clamp

mode on one patch-clamp setup, whereas the HEK-293 cell is in voltage-

clamp mode on another setup. The command potential for the HEK-293 cell

is the Vm of the ventricular cell (action potential clamp), and the current input

applied to the ventricular cell is the IIHERG recorded from the transfected

HEK-293 cell, a connection resulting in dAPC condition (Fig. 1 A). We

performed two kinds of dAPC experiments, defined as the model-cell mode

and the real-cell mode.

Model-cell mode

In model-cell mode (Fig. 1 B), the ventricular cell is the Priebe-Beuckelmann

(PB) model (Priebe and Beuckelmann, 1998) of a single human ventricular

myocyte that is computed in real-time. We extended the model clamp

(Wilders et al., 1996) and dynamic clamp (Sharp et al., 1993) techniques,
implementing dAPC with a real-time Linux operating system (Barabanov and Yodaiken, 1997) as a software platform according to Christini et al. (1999).

To attain simultaneous control and recording of V_m and I_{HERG} and to resolve the time-critical tasks of analog-to-digital conversion of I_{HERG}, calculation of the model, and digital-to-analog conversion of V_m, we developed a user program (DynaClamp). This was used with a real-time module that operated on a 1.8-GHz Pentium-4 PC with a 16-bit National Instruments PCI-6052E data acquisition board (National Instruments, Austin, TX) under real-time Linux, and communicated through shared memory and/or first-in, first-out queues. This allows a guaranteed-timing real-time process (i.e., 40-msec periodic time steps with the PB cell model). In all dAPC experiments, I_{Kr} of the model cell is set to zero. We first determine maximal I_{HERG} amplitude in the HEK-293 cell in voltage-clamp configuration, with 4-s depolarizing voltage steps to -10, 0, and 10 mV, from a holding potential of -80 mV, at $36 \pm 0.5^\circ$C. Considering the unusual kinetics of HERG channels (Lu et al., 2001a), we measure I_{HERG} amplitudes at the end of 4-s pulses rather than from tail current amplitudes. The largest outward current decline is due to deactivation. (B) Voltage dependence of activation (protocol from A) and inactivation (protocol from inset). See Table 1, for half-maximal (in)activation voltage and slope factor values. (C) I-V relationships (peak of I_{HERG} tails during P2 plotted against voltage) of R56Q and WT channels.

FIGURE 2 Characteristics of WT and R56Q I_{HERG} at 23 and 36°C. (A) Representative examples of WT (top), WT/R56Q (middle), and R56Q (bottom) currents elicited by a two-step voltage-clamp protocol. P1-activated I_{HERG}: steady-state current amplitude progressively increased and then decreased with depolarizing voltages, according to voltage-dependent inactivation. P2 elicited I_{HERG} tails; their peak is due to fast recovery from inactivation secondary to repolarization. The subsequent current decline is due to deactivation. (B) Voltage dependence of activation (protocol from A) and inactivation (protocol from inset). See Table 1, for half-maximal (in)activation voltage and slope factor values. (C) I-V relationships (peak of I_{HERG} tails during P2 plotted against voltage) of R56Q and WT channels.
of the DynaClamp program are stored on disk for off-line analysis. The time-dependent changes in V_m of the ventricular model cell are derived from WT and/or mutant I_{HERG} input and the model equations. The combination of the cell model and WT I_{HERG} will then result in a normal AP. Using the same method for HEK-293 cells with mutant channels will reveal an AP, which resembles the ventricular AP of the patient from which the mutant was derived.

Real-cell mode

In real-cell mode, the model cell is replaced with a rabbit left-ventricular myocyte (Fig. 1C). The procedure to define F_s is as follows: we measure I_{HERG} amplitude in the HEK-cell (as described above) and, simultaneously, estimate I_{Kr} density in the rabbit cell (as E-4031 sensitive current). We elicit APs in the myocyte at 1 Hz in the presence of E-4031, and then establish coupling between the myocyte and the HEK-293 cell, implementing scaled WT I_{HERG}. A proper F_s value would result in I_{HERG} density comparable to that of the I_{Kr} density in the myocyte and in a typical AP duration at 90% repolarization (APD$_{90}$) value of 230.8 ± 4.5 ms at 1 Hz (see Table 2 in Supplementary Material), characteristic for these cells. Ca$^{2+}$ loading of the myocytes exhibiting long action potentials in the presence of E-4031 (as in Fig. 8B) is likely. However, this process loses its grip when the scaled I_{HERG} is implemented and APD is shortened to its initial value (to same APD as before the addition of E-4031) where Ca$^{2+}$ loading will be ruled out.

In both real-cell and model-cell modes, we can apply various stimulation rates; V_m of the ventricular cell and I_{HERG} of HEK-293 cell are displayed on-

TABLE 1 Parameters of WT, R56Q, and WT/R56Q I_{HERG} activation and inactivation at 23 and 36°C

<table>
<thead>
<tr>
<th></th>
<th>23°C</th>
<th></th>
<th>36°C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>WT/R56Q</td>
<td>R56Q</td>
<td>WT</td>
</tr>
<tr>
<td>Activation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{1/2}$ (mV)</td>
<td>-1.1 ± 1.1</td>
<td>-2.8 ± 1.1</td>
<td>-3.9 ± 1.0</td>
<td>-26.6 ± 1.4</td>
</tr>
<tr>
<td>k (mV)</td>
<td>7.9 ± 0.2</td>
<td>7.9 ± 0.3</td>
<td>7.8 ± 0.2</td>
<td>6.5 ± 0.3</td>
</tr>
<tr>
<td>Inactivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{1/2}$ (mV)</td>
<td>-56.6 ± 2.1</td>
<td>-40.4 ± 2.3</td>
<td>-34.5 ± 1.7*</td>
<td>-49.6 ± 2.6</td>
</tr>
<tr>
<td>k (mV)</td>
<td>-24.5 ± 1.5</td>
<td>-22.1 ± 1.5</td>
<td>-22.5 ± 1.5</td>
<td>-23.5 ± 0.5</td>
</tr>
</tbody>
</table>

*P < 0.05 for R56Q versus WT. Values are mean ± SE; for n, the number of experiments, see Fig. 2B.

FIGURE 3 Time constants of WT and R56Q I_{HERG} kinetics at 23 and 36°C.

(A) Time constant of activation (τ_{act}, triangles) and fast and slow time constant of deactivation (τ_{fast} and τ_{slow}, circles). Voltage-clamp protocols are shown in Fig. 2, A and C, respectively, and described in the Supplementary Material. Faster activation of R56Q HERG channels was apparent only at 36°C (see current traces inset), whereas deactivation was faster for R56Q than for WT at both 23 and 36°C (*, significant difference for R56Q versus WT, $P < 0.05$). WT/R56Q showed a mixed phenotype. (B) Time constants of inactivation (triangles) and recovery from inactivation (circles). Voltage-clamp protocols are shown as insets and described in the Supplementary Material.
line, thus providing instant information on the dAPC. DynaClamp allows scaling of the input current to any desired magnitude and subtraction of artifacts (e.g., endogenous HEK-293 cell currents), before I\textsubscript{HERG} is applied to the ventricular cell. Leak subtraction, however, was not necessary as I\textsubscript{HERG}-downscaling already reduced endogenous currents to negligible levels.

Statistics

Data are expressed as mean ± SE (n, number of cells) and considered significantly different if P < 0.05 in ANOVA and Student’s t-test.

RESULTS

Electrophysiological characterization of WT, R56Q, and WT/R56Q HERG channels

To investigate the influence of recording temperature and expression system on the WT and R56Q HERG channel kinetics, we performed a series of voltage-clamp experiments at both 23°C and 36°C. We also coexpressed WT and R56Q cDNAs, in analogy to what is presumed to be present in a patient with a single WT and mutant allele. Fig. 2 shows typical WT and/or R56Q I\textsubscript{HERG} expressed in HEK-293 cells. Increasing the recording temperature resulted in several changes, including faster I\textsubscript{HERG} time course and larger amplitudes (Fig. 2 A), and a negative shift in the voltage dependence of activation (Fig. 2 B, Table 1). The R56Q mutation caused a positive shift in the voltage dependence of steady-state channel availability at both 23°C and 36°C (Fig. 2 B, Table 1). The normalized current-voltage (I-V) relationships remained unchanged (Fig. 2 C). At 36°C, the mean densities of I\textsubscript{HERG}, measured at the end of a 4-s pulse to -20 mV, were 269 ± 42 and 243 ± 49 pA/pF with WT (n = 17) and R56Q channels (n = 15), respectively (not significantly different).

FIGURE 4 The dAPC experiment with WT and R56Q I\textsubscript{HERG} replacing I\textsubscript{Kr} in the PB model cell. (A) WT I\textsubscript{HERG} is an effective substitute for I\textsubscript{Kr}. Superimposed APs (at 1 Hz) in the absence of I\textsubscript{Kr} (long dashed line), with I\textsubscript{Kr} (short dashed line), or with WT I\textsubscript{HERG} (solid line, I\textsubscript{Kr} = 0). (B) Time course of the AP waveform-elicited WT I\textsubscript{HERG} is similar to that of I\textsubscript{Kr} in the PB cell model except for the early activation (asterisk) phase. F, for I\textsubscript{HERG} was 0.008; see text for details. (C) APD\textsubscript{50} and APD\textsubscript{90} values at 1 and 2 Hz (*, significant difference for R56Q versus WT). (D) Representative APs with WT I\textsubscript{HERG} (solid line) or R56Q I\textsubscript{HERG} (shaded line), at 1 Hz (I\textsubscript{Kr} = 0). (E and F) Boxed APs from D (E) and associated I\textsubscript{HERG} (F) on an expanded timescale. The HERG currents were scaled to identical maximal amplitude values (F, values indicated) and applied to the PB model cell as an external current input, and are thus responsible for repolarization of the model cell.
Time constants of I_{HERG} kinetics showed marked temperature dependence (Fig. 3). At 36°C, the time course of R56Q channel activation was approximately threefold faster at all voltages than that of WT channels (Fig. 3A; and see Table 1 in the Supplementary Material). For the heteromultimer WT/R56Q, the activation time constants were identical to those of R56Q alone. Remarkably, in Xenopus oocytes, the time course of R56Q channel activation was shown to be slower than for those of WT channels (Chen et al., 1999). The deactivation time course of R56Q channels was markedly faster than for those of WT at both temperatures, as shown by the diminution of both (fast and slow) time constants (Fig. 3A; and see Table 1 in the Supplementary Material). The finding that the mutation causes faster deactivation is in agreement with the results of Chen et al. (1999). Time constants of inactivation and recovery from inactivation (Fig. 3B) did not differ significantly between WT and R56Q (see Table 2 in the Supplementary Material). Our results demonstrate that acceleration of the R56Q HERG activation remains obscured at 23°C and highlight the importance of investigating HERG kinetics at physiological temperature.

Replacing I_{Kr} of the model cell with WT and R56Q I_{HERG}

In the comprehensive human subepicardial ventricular cell model by Priebe and Beuckelmann (1998), description of I_{Kr} is based on data from human ventricular cells (Li et al., 1996). With model-cell I_{Kr} set to zero, the AP prolongs (Fig. 4A). When WT I_{HERG} from a HEK-293 cell replaces I_{Kr}, AP characteristics are restored and the AP can be considered as normal (Fig. 4A and C). Similar results were obtained when the KCl content of the Tyrode solution was modified to 5.4 mmol/L (see, in Supplementary Material, Fig. 1 and Table 3). The time course of the scaled I_{HERG} compares well to that of I_{Kr} of the model cell (Fig. 4B) except that the initial time course of I_{HERG} differs from that of the mathematically described I_{Kr}, which is due to the model assumption that I_{Kr} inactivation is instantaneous. Many HERG channels are still in the open state at -90 mV as a result of slow deactivation (Lu et al., 2001a), and this results in an initial transient peak (asterisk), reflecting the sudden increase of the electrochemical driving force for K$^+$ during the AP upstroke. After a fast decay of the transient peak amplitude, caused by inactivation during the overshoot of the AP and by the decreasing driving force for K$^+$ at less depolarized V_m, current increases progressively as channels rapidly recover from inactivation, a process faster than the deactivation (Sanguinetti et al., 1995; Trudeau et al., 1995; Smith et al., 1996; Zhou et al., 1998). With repolarization progressing, HERG channels dwell in a highly stable open state before closing (Wang et al., 1998), resulting in a resurgent current. Altered HERG channel properties in long-QT syndrome generally reduce the magnitude of this resurgent current (Chen et al., 1999; Sanguinetti et al., 1996). Both I_{Kr} and I_{HERG} reach maximum value ~ -40 mV, then rapidly deactivate in a time- and voltage-dependent manner.

To study the functional consequences of the R56Q mutation, we performed dAPC experiments with the PB cell model and WT and/or mutant I_{HERG} from the HEK-293 cell, in model-cell mode (Fig. 4D). Results of these experiments, remarkably consistent with the role of HERG channels in cardiac repolarization, clearly show that the AP is prolonged by the altered I_{HERG} kinetics of the mutant (Fig. 4, C–E; see also Table 3 in the Supplementary Material). The WT or R56Q I_{HERG}, scaled to identical maximal amplitude values (Fig. 4F, F_s values indicated), was added to the PB model cell as an external current input, and thus contributed to repolarization of the model cell. Consistent with the results of voltage-clamp experiments at 36°C, the input WT and R56Q I_{HERG} have different initial and late phases. Apparently, mutant I_{HERG} is initially larger than the WT. The faster

<table>
<thead>
<tr>
<th>Current</th>
<th>Subendocardial</th>
<th>Midmyocardial</th>
<th>Subepicardial</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{Kn}</td>
<td>25%; Näbauer et al. (1996)</td>
<td>87%; Liu et al. (1993)</td>
<td>100%</td>
</tr>
<tr>
<td>I_{Kr}</td>
<td>92%; Liu and Antzelevitch (1995)</td>
<td>46%; Liu and Antzelevitch (1995)</td>
<td>100%</td>
</tr>
<tr>
<td>I_{K1}</td>
<td>89%; Liu et al. (1993)</td>
<td>74%; Liu et al. (1993)</td>
<td>100%</td>
</tr>
</tbody>
</table>

All densities are percentage relative to the standard densities in the PB model that essentially describes a human subepicardial ventricular myocyte (Conrath et al., 2004).

![FIGURE 5 Regional AP heterogeneity is reproduced in a dAPC experiment. Subependymal, M, and subendocardial APs were simulated at 1 Hz; note the different plateau levels and repolarization phases in these model cells (see the modified current densities in Table 2).](image)
onset of the R56Q \(I_{\text{HERG}}\) decay indicates faster deactivation for R56Q HERG channels.

Action potential heterogeneity in the PB model cell with WT and R56Q \(I_{\text{HERG}}\)

The heterogeneity of the electrical properties of the myocytes in the different layers of the human left ventricle is now well established. As in our previous model studies (Bernus et al., 2002; Conrath et al., 2004), we generated subendocardial, midmyocardial (M), and subepicardial model cells by adjusting selected membrane ionic currents in the PB model cell (Table 2). When, in a dAPC experiment, WT \(I_{\text{HERG}}\) replaced model-cell \(I_{\text{Kr}}\), APs of different shape and duration could still be reproduced (Fig. 5). The major consequence of the R56Q mutation on the AP characteristics of these cell types was AP prolongation (Fig. 6). We analyzed in detail AP characteristics of the epicardial model cell (Fig. 7), comparing the frequency dependence of APD\textsubscript{90} values generated with model-cell \(I_{\text{Kr}}\) to values obtained with WT or R56Q \(I_{\text{HERG}}\). These values are comparable when WT \(I_{\text{HERG}}\) replaces \(I_{\text{Kr}}\), whereas R56Q \(I_{\text{HERG}}\) causes frequency-dependent APD\textsubscript{90} prolongation (Fig. 7 A). APD\textsubscript{90} with the cotransfected WT/R56Q channels showed intermediate values (not shown). The role of WT or R56Q \(I_{\text{HERG}}\) in shaping the AP was evaluated by phase plane analysis (Sperelakis and Shumaker, 1968), plotting membrane currents against membrane potential (Fig. 7 B). With input \(I_{\text{HERG}}\) scaled for identical amplitudes for both WT and R56Q, the consequence of the mutation is apparent. The

![Graphs showing AP prolongation caused by the R56Q mutation](image-url)

FIGURE 6 AP prolongation caused by the R56Q mutation in the three different cell types of Fig. 5. (A) Representative APs and (B) the corresponding \(I_{\text{HERG}}\); note the increased inactivation of R56Q \(I_{\text{HERG}}\) (arrow) at the positive plateau-voltages of the subendocardial cell; (C) averaged APD\textsubscript{90} values at 1 and 2 Hz (*, significant difference for R56Q versus WT \(I_{\text{HERG}}\)).
most notable changes are detected during phase-3 repolarization, with a reduction of the net membrane current \(I_{\text{total}} \).

\section*{Replacing \(I_{\text{Kr}} \) of a rabbit ventricular cell with WT and R56Q \(I_{\text{HERG}} \)}

Results with \(I_{\text{HERG}} \) replacing \(I_{\text{Kr}} \) in the model cell show that the overall properties of the AP are well reproduced in a dAPC experiment (Figs. 4 A and 5). Next, we used the real-cell variant of the technique (Fig. 8). Ionic currents underlying APs of a rabbit ventricular cell are comparable with those in a human ventricular cell. Fig. 8 A shows typical whole-cell currents during 4-s depolarizing prepulses to 0 mV and tail currents after returning to \(-60 \) mV. \(I_{\text{Kr}} \) may be differentially expressed in rabbit ventricles (Cheng et al., 1999), thus we first demonstrate \(I_{\text{Kr}} \) presence as the E-4031 sensitive current (Clay et al., 1995). Currents during depolarization as well as tails were markedly diminished in the presence of E-4031, resulting in prolonged repolarization and early after-depolarizations in all cells tested \((n = 9)\). (Fig. 8 B). dAPC experiments \((n = 5)\) were performed with a single myocyte coupled first to a HEK-293 cell with WT \(I_{\text{HERG}} \) (Fig. 8 C), and then to a HEK-293 cell with R56Q \(I_{\text{HERG}} \) (Fig. 8 D). In both cases, AP parameters were determined at different stimulation frequencies (Fig. 9; see also Table 4 in the Supplementary Material). The measured resting \(V_m \) of the myocytes was \(-82.9 \pm 2.7 \) mV. APs were effectively reconstituted in a dAPC experiment with WT \(I_{\text{HERG}} \). APs with R56Q \(I_{\text{HERG}} \) exhibited significant APD prolongation at 0.2 and 1 Hz (Fig. 9 B). These experiments also revealed that WT \(I_{\text{HERG}} \) consists of an early fast transient outward current followed by a sustained outward current (Figs. 8 C and 9). Transient \(I_{\text{HERG}} \) may contribute importantly to AP dynamics during tachycardia (Lu et al., 2001a). Amplitude of the transient component showed positive frequency dependence (Fig. 9 C), whereas that of the sustained component peaked during the terminal AP repolarization, in a reverse frequency-dependent manner between 1 and 5 Hz (Fig. 9 D). Although frequency dependence of the sustained R56Q \(I_{\text{HERG}} \) was similar to that of WT \(I_{\text{HERG}} \), frequency dependence of the R56Q \(I_{\text{HERG}} \) transient component was absent, consistent with the impaired deactivation kinetics of these channels.

\section*{DISCUSSION}

A broad agreement prevails on the role of HERG channels in AP repolarization. For a better understanding of the link between LQT2 mutations and the inherent clinical phenotype, insight into the nature of HERG channel (dys)function is indispensable. As a longstanding approach, the time- and voltage-dependence of the HERG channel has most frequently been characterized using stepwise voltage-clamp protocols, and description of the HERG current was often based on the extrapolation of results obtained in various heterologous expression systems. However, it is becoming clear that complex features of HERG channel kinetics during the cardiac AP can best be studied during physiological voltage waveforms (Hancox et al., 1998; Lu et al., 2001a; Zhou et al., 1998) and, as shown in the present study, even better during dAPC condition (i.e., by letting them shape the ventricular action potential), in line with their normal function.

The NH\(_2\) terminus of the \(\alpha \)-subunit of the channel regulates deactivation gating and represents a mechanism by which functional diversity is generated in HERG and related channels (Wang et al., 1998). Our electrophysiological experiments demonstrate that the R56Q mutation impairs not only deactivation (Chen et al., 1999) but activation kinetics as well, the latter becoming apparent only at 36°C (Fig. 3 A). Intriguingly, a faster activation and a positive shift in the voltage dependence of channel availability (Fig. 2 B), would actually act to shorten AP duration. Characteristics of the heteromultimeric (WT/R56Q) channels suggest that some of the functional effects
are not simply combined, but that a dominant negative interaction can also occur between the WT and R56Q HERG channels (see activation time constants at 36°C in Fig. 3 A). Along the same lines with the impaired biophysical properties, certain mutations in the Per-Arnt-Sim domain might actually cause an HERG protein trafficking defect (Paulussen et al., 2002). However, we did not find significant differences in \(I_{HERG} \) densities of WT and/or R56Q channels, suggesting that the primary defect in mutant channel properties is attributable to altered gating.

MinK-related peptide (MiRP1)/HERG complexes have received considerable support as molecular correlates for native \(I_{Kr} \) (Abbott et al., 1999, 2001). We did not coexpress MiRP1 for reconstitution of native \(I_{Kr} \) by HERG, as
properties of I_{HERG} in mammalian systems are similar in many ways to those of native I_{Kr}, and discrepancies that remain cannot be fully abolished by coexpression with MiRP1 (Weerapura et al., 2002).

Most experimental data on cardiac ion channel (dys)function have been obtained in expression systems, away from the cellular environment where these channels function to generate the cardiac action potential. Table 3 shows a comparison of I_{Kr} in the various systems: 1), PB model; 2), human ventricle; 3), rabbit ventricle; and 4), HEK-293 cells. The relatively few studies of human ventricular I_{Kr} make it difficult to fully validate such comparison. Nevertheless, the study of Iost et al. (1998) provides data on I_{Kr} in human ventricular tissue obtained from healthy patients not receiving medication. Despite the apparent differences between some properties of I_{HERG} and I_{Kr} in the present study and previous results in the literature, mammalian cell lines generally provide an adequate environment for HERG channels. Here, experiments should be performed at physiological temperatures, as HERG channel gating at 36°C more closely resembles endogenous I_{Kr} (Zhou et al., 1998; this study). Necessarily, the Xenopus system can be an alternative when channels do not express well in a mammalian cell line, although 36°C for oocytes is not physiological, and observed differences in the behavior of the expressed cardiac potassium channel proteins suggest that endogenous factors in oocytes dictate channel properties to some extent (Seebohm et al., 2001).

We have introduced the dAPC technique to investigate AP characteristics in ventricular myocytes, by replacing I_{Kr} in these cells by WT or mutant I_{HERG} generated in HEK-293 cells. In both model-cell and real-cell modes, frequency dependence of the APDs was comparable when WT I_{HERG} replaced I_{Kr}. AP characteristics of the ventricular cells were effectively reproduced by WT I_{HERG}, whereas the R56Q I_{HERG} caused a frequency-dependent increase in APD. Superimposed phase plane plots of the repolarization phases of model-cell APs indicate that the net membrane current is severely affected by the mutation during the late repolarization phase. APD$_{90}$ values with R56Q I_{HERG} were
TABLE 3 Biophysical properties of \(I_{Kr} \) (in the PB ventricular model cell or in freshly isolated myocytes) and \(I_{HERG} \) (transiently expressed in HEK-293 cells)

<table>
<thead>
<tr>
<th></th>
<th>Activation</th>
<th>Inactivation</th>
<th>Deactivation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (I_{Kr})</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{1/2}) (mV)</td>
<td>–21.0</td>
<td>–26.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k) (mV)</td>
<td>5.4</td>
<td>–23.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau) (ms)</td>
<td>194.5 (+50 mV)</td>
<td>494.2 (+40 mV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human (I_{Kr})</td>
<td>–0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{1/2}) (mV)</td>
<td>–14.0 ± 4, –5.7*†</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k) (mV)</td>
<td>7.7 ± 2.7, 5.6†</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau) (ms)</td>
<td>192.0 ± 53 (+50 mV)</td>
<td>600.0 ± 54 (+40 mV)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit (I_{Kr})</td>
<td>0.3, 0.6†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{1/2}) (mV)</td>
<td>–21.9</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k) (mV)</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_1) (ms)</td>
<td>78.0 ± 4 (+50 mV)</td>
<td>119.0 ± 25 (+50 mV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_2) (ms)</td>
<td>624.0 ± 42 (+50 mV)</td>
<td>569.0 ± 123 (+50 mV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT (I_{HERG})</td>
<td>269 ± 42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{1/2}) (mV)</td>
<td>–25.9 ± 2.0‡, –26.6 ± 1.4</td>
<td>–49.6 ± 2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k) (mV)</td>
<td>6.0 ± 0.3‡, 6.5 ± 0.3</td>
<td>–23.5 ± 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_1) (ms)</td>
<td>18.0 ± 3.0 (+40 mV)‡</td>
<td>180.0 ± 20‡ (+40 mV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_2) (ms)</td>
<td>1299 ± 118‡ (+40 mV)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are mean ± SE; ND, not determined. All experiments were done under comparable conditions: 34–37°C, extracellular K⁺ concentration = 4–6 mmol/L, extracellular divalent cation concentration = 2–3 mmol/L. Current density \((I_{density}) \) was defined as current level at the end of a –20 mV depolarizing pulse normalized to cell capacitance.

*Lost et al. (1998).
†Note that Lost et al. (1998) did not mention any correction for liquid junction potential \((LJP) \). Taking into account an LJP of –10 mV under the given ionic conditions (Barry and Lynch, 1991), the actual \(V_{1/2} \) would be –16 mV.
‡This study.
§Zhou et al. (1998).

Increased at lower stimulation rates and unchanged at higher frequencies. Consistent with the role of HERG in the suppression of arrhythmias initiated by premature beats (Lu et al., 2001a), the technique revealed the presence of an early fast, frequency-dependent transient WT \(I_{HERG} \). The frequency-dependent increase of this current component was absent with R56Q channels. APs with R56Q \(I_{HERG} \) were generally longer (Fig. 9 B), which can be explained by the faster deactivation. However, the reason why the faster activating, thus initially larger R56Q \(I_{HERG} \) does not have significant effect on the AP plateau is less obvious. It is likely that the faster activation of the R56Q \(I_{HERG} \) in the myocyte causes a slightly modified membrane potential in the early plateau phase of the AP, influencing activation of other currents. Computer simulations using either the PB model or the recently published human ventricular cell model by Ten Tusscher et al. (2004) also predict little or no effect of a moderate increase in \(I_{Kr} \) during the plateau phase of the action potential (data not shown). On the other hand, even small changes of the myocyte’s membrane potential can cause significant changes in activation of voltage-dependent currents, such as the transient outward current, \(I_{to} \) (Greenstein et al., 2000) and calcium current, \(I_{Ca} \) (Fülöp et al., 2003).

In summary, both the computed model of the human ventricular cell as well as a freshly isolated myocyte can effectively be used in dAPC experiments. Kinetic features that are difficult to investigate with standard voltage-clamp protocols become apparent with the dAPC technique. The model-cell mode offers an outstanding reproducibility of the results during experimentation, as the input WT or mutant \(I_{HERG} \) is the only variable. However, the technically more difficult real-cell mode can reveal AP waveforms and \(I_{HERG} \) kinetics that can be considered truly physiological. Additionally, the real-cell mode offers the advantage that stimulation rates above 2.5 Hz (maximal value in the model cell) can easily be achieved. Theoretically, any individual conductance in the model cell or in a real ventricular cell (if a specific blocker for the investigated conductance is available) can be replaced by a surrogate input current from an expression system.

In the model-cell variant of the technique, it is a straightforward operation to test the effect of interventions directed at counteracting the effects of the mutations in HERG, e.g., increasing the slow repolarizing component \((I_{Kr}) \) of the delayed rectifier K⁺ current.

Data presented here on the behavior of WT and R56Q HERG channels may have implications for further studies, where differences between WT and mutant channels are subtle. With our approach, the contribution of (mutated) channels to the AP is determined without making assumptions with regard to the kinetic properties of the channels, and the altered shape of AP directly reflects the effect of the.
mutation. The dAPC technique allows other cardiac ion channels than HERG (e.g., SCN5A, KvLQT1) to be studied as well.

General considerations

The inherent limitations of the PB model and of simulations when creating transmural AP heterogeneity on the basis of experimental findings have been discussed before (Bermus et al., 2002; Priebe and Beuckelmann, 1998). During dAPC experiments, in both model-cell and real-cell modes, we assumed that the defect in the R56Q channel is attributed to altered gating. Accordingly, we scaled WT and mutant input \(I_{HERG} \) to similar magnitudes.

We are aware that it is potentially conceivable that a mutation in an ion channel gene could result in compensatory changes in other ion channel genes in vivo, representing a general limitation of any heterologous expression system. Short-term alteration of mRNA levels of ion channels, caused by rapid pacing, is well documented (Yamashita et al., 2000). Libbus et al. (2004) provide direct evidence for \(I_{Kr} \) remodeling in the ventricle caused by reduced AP upstroke amplitude, on a surprisingly short timescale.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting BJ Online at http://www.biophysj.org.

This work was supported by Nethelands Heart Foundation grant No. 2001B155.

REFERENCES

Lu, Z., K. Kamiya, T. Ophof, K. Yasui, and I. Kodama. 2001b. Density and kinetics of \(I_{Kr} \) and \(I_{Ks} \) in guinea pig and rabbit ventricular myocytes explain different efficacy of \(I_{Kr} \) blockade at high heart rate in guinea pig and rabbit: implications for arrhythmogenesis in humans. *Circulation.* 104:951–956.

