Scientific Information Management in Collaborative Experimentation Environments

Kaletas, E.C.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

List of Abbreviations

1 Introduction
 1.1 E-Science Paradigm 2
 1.1.1 Definition and Characterization of E-Science Domains and Applications 3
 1.1.2 Target Problem Domains and Applications – Motivation .. 5
 1.2 Virtual Laboratory Solution 9
 1.2.1 Support Environments for Scientific Experimentations .. 10
 1.2.2 Virtual Laboratory 11
 1.3 Research Objectives 14
 1.4 Research Approach 16
 1.5 Base Projects .. 19
 1.5.1 The VLAM-G Project 19
 1.5.2 Other Related Projects 22
 1.6 Structure of the Thesis 23

2 Analysis of Requirements for Virtual Laboratories 25
 2.1 Approach for Requirements Analysis 26
 2.2 Virtual Laboratory Characterization 26
 2.3 Use Case Analysis 33
 2.3.1 Scientists Use Cases 34
 2.3.2 Domain Experts Use Cases 38
 2.3.3 Tool Developers Use Cases 39
 2.3.4 Administrators Use Cases 40
 2.3.5 ICT Developers Use Cases 41
 2.4 Classification of Requirements 42
 2.5 Analysis of User Requirements 44
 2.5.1 Scientists Requirements 44
 2.5.2 Domain Experts Requirements 47
 2.5.3 Tool Developers Requirements 48
 2.5.4 Administrators Requirements 48
 2.6 Analysis of Base ICT Infrastructure Requirements 49
3 A Framework for Study and Evaluation of Related Work

3.1 Related Enabling Technologies, Standards and Paradigms
 3.1.1 Information Models and Standards
 3.1.2 Distributed/Federated Information Management
 3.1.3 Resource Management Technologies
 3.1.4 Other Related Technologies, Paradigms and Tools

3.2 Evaluation Criteria
 3.2.1 Identified Requirements Related Criteria
 3.2.2 Provided Functionality Related Criteria
 3.2.3 Applied Enabling Technologies, Standards and Paradigms Related Criteria
 3.2.4 Employed Implementation Technologies Related Criteria

3.3 Classification of Related Work

3.4 Overview of the Studied Systems
 3.4.1 Context-Oriented Systems
 3.4.2 Computation-Oriented Systems
 3.4.3 Instrumentation-Oriented Systems
 3.4.4 Metadata-Oriented Systems
 3.4.5 Other Systems

3.5 Evaluation of the Studied Systems

3.6 Evaluation of the Proposed VLAM-G/VIMCO Approach

3.7 Conclusions

4 Information Management Framework for CEE

4.1 Modelling Scientific Experiments
 4.1.1 Approach Used for Modelling Scientific Experiments
 4.1.2 The Proposed Experiment Model

4.2 User Environment of CEE
 4.2.1 Facilities Provided by the User Environment
 4.2.2 Graphical Presentation of Experiments in the User Environment

4.3 Data Modelling for Information Related to Scientific Experiments
 4.3.1 Approach Used for Modelling Experiment-Related Information
 4.3.2 Data Modelling for Information about Scientific Experiments
 4.3.3 Data Modelling for Information about Users
 4.3.4 Data Modelling for CEE-Related Information

4.4 Functionality Modelling for Managing Information Related to Scientific Experiments
 4.4.1 Functionality for Managing Information about Scientific Experiments
 4.4.2 Policies for Managing Experiment Contexts
 4.4.3 Functionality for Managing Scientific Data/Information
4.5 Functionality Modelling for Collaboration, Administration and Security 154
 4.5.1 Collaboration Functionality 155
 4.5.2 Administration Functionality 156
 4.5.3 Security Functionality .. 157
4.6 Methodology for Integrating New Domains and Applications in CEE 160
 4.6.1 Integration of a New Domain in CEE 160
 4.6.2 Integration of a New Application in CEE 161
4.7 Conclusions ... 162

5 Management of Information in the VLAM-G Experimentation Environment 163
 5.1 VLAM-G Experimentation Environment – Revisited 164
 5.1.1 Experiment Model of the VLAM-G 164
 5.1.2 VLAM-G User Environment: Front-End 164
 5.1.3 Experimentation in the VLAM-G 167
 5.2 VIMCO: Virtual Laboratory Information Management for Cooperation 169
 5.3 The VIMCO Architecture .. 170
 5.3.1 VIMCO Communication Servers 171
 5.3.2 VIMCO Core Functionality Server 172
 5.3.3 VIMCO DB Servers ... 177
 5.3.4 Implementation of VIMCO 177
 5.4 VIMCO Databases .. 178
 5.5 Functionality/Services Provided by VIMCO 183
 5.5.1 Overview of the VIMCO API 184
 5.5.2 Services for Accessing VIMCO 185
 5.5.3 Services for Session, User and Access Rights Management 188
 5.5.4 Services for Managing Experiment-Related Information ... 192
 5.6 Conclusions ... 196

6 The DNA Microarray Application Case 197
 6.1 DNA Microarray Technology and Microarray Experiments 198
 6.2 A Motivating Microarray Experiment Scenario 199
 6.3 The DNA Microarray Application 201
 6.3.1 The Expressive System 201
 6.3.2 Developing and Integrating the Expressive System 201
 6.3.3 Data Loading ... 214
 6.3.4 Representing Different Types of Experiments 214
 6.4 Using the Expressive System 215
 6.5 Conclusions .. 216

7 Conclusions ... 217
 7.1 Overview of the Proposed Approach 217
 7.2 Summary of Thesis Achievements 219
 7.3 Evaluation and Comparison of the Proposed VLAM-G/VIMCO Ap- 221