Scientific Information Management in Collaborative Experimentation Environments
Kaletas, E.C.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

List of Abbreviations v

1 Introduction 1
 1.1 E-Science Paradigm 2
 1.1.1 Definition and Characterization of E-Science Domains and Applications 3
 1.1.2 Target Problem Domains and Applications – Motivation 5
 1.2 Virtual Laboratory Solution 9
 1.2.1 Support Environments for Scientific Experimentations 10
 1.2.2 Virtual Laboratory 11
 1.3 Research Objectives 14
 1.4 Research Approach 16
 1.5 Base Projects 19
 1.5.1 The VLAM-G Project 19
 1.5.2 Other Related Projects 22
 1.6 Structure of the Thesis 23

2 Analysis of Requirements for Virtual Laboratories 25
 2.1 Approach for Requirements Analysis 26
 2.2 Virtual Laboratory Characterization 26
 2.3 Use Case Analysis 33
 2.3.1 Scientists Use Cases 34
 2.3.2 Domain Experts Use Cases 38
 2.3.3 Tool Developers Use Cases 39
 2.3.4 Administrators Use Cases 40
 2.3.5 ICT Developers Use Cases 41
 2.4 Classification of Requirements 42
 2.5 Analysis of User Requirements 44
 2.5.1 Scientists Requirements 44
 2.5.2 Domain Experts Requirements 47
 2.5.3 Tool Developers Requirements 48
 2.5.4 Administrators Requirements 48
 2.6 Analysis of Base ICT Infrastructure Requirements 49
4.5 Functionality Modelling for Collaboration, Administration and Security 154
 4.5.1 Collaboration Functionality 155
 4.5.2 Administration Functionality 156
 4.5.3 Security Functionality 157
4.6 Methodology for Integrating New Domains and Applications in CEE 160
 4.6.1 Integration of a New Domain in CEE 160
 4.6.2 Integration of a New Application in CEE 161
4.7 Conclusions .. 162

5 Management of Information in the VLAM-G Experimentation Environment 163
 5.1 VLAM-G Experimentation Environment – Revisited 164
 5.1.1 Experiment Model of the VLAM-G 164
 5.1.2 VLAM-G User Environment: Front-End 164
 5.1.3 Experimentation in the VLAM-G 167
 5.2 VIMCO: Virtual Laboratory Information Management for Cooperation 169
 5.3 The VIMCO Architecture 170
 5.3.1 VIMCO Communication Servers 171
 5.3.2 VIMCO Core Functionality Server 172
 5.3.3 VIMCO DB Servers 177
 5.3.4 Implementation of VIMCO 177
 5.4 VIMCO Databases ... 178
 5.5 Functionality/Services Provided by VIMCO 183
 5.5.1 Overview of the VIMCO API 184
 5.5.2 Services for Accessing VIMCO 185
 5.5.3 Services for Session, User and Access Rights Management 188
 5.5.4 Services for Managing Experiment-Related Information 192
 5.6 Conclusions .. 196

6 The DNA Microarray Application Case 197
 6.1 DNA Microarray Technology and Microarray Experiments 198
 6.2 A Motivatin g Microarray Experiment Scenario 199
 6.3 The DNA Microarray Application 201
 6.3.1 The Expressive System 201
 6.3.2 Developing and Integrating the Expressive System 201
 6.3.3 Data Loading ... 214
 6.3.4 Representing Different Types of Experiments 214
 6.4 Using the Expressive System 215
 6.5 Conclusions .. 216

7 Conclusions 217
 7.1 Overview of the Proposed Approach 217
 7.2 Summary of Thesis Achievements 219
 7.3 Evaluation and Comparison of the Proposed VLAM-G/VIMCO Approach 221