An agent based architecture for constructing Interactive Simulation Systems

Zhao, Z.

Citation for published version (APA):
Contents

1 Introduction

1.1 Territory .. 1
 1.1.1 Computer simulation .. 1
 1.1.2 High performance computing 3
 1.1.3 Scientific visualisation 4
 1.1.4 Problem solving environments 5
1.2 Towards an Interactive Simulation System 6
 1.2.1 Requirements on the interconnection 6
 1.2.2 Requirements on the code incorporation 7
 1.2.3 Requirements on the Interaction module 8
1.3 Modularity and integration 8
 1.3.1 Middleware and interoperability 8
 1.3.2 Activity orchestration 11
1.4 Human-system interaction 12
1.5 Real-time interaction .. 13
 1.5.1 Performance and service quality 13
 1.5.2 Time management .. 13
1.6 Engineering methodologies 14
 1.6.1 Software Components and ISSs 15
 1.6.2 Agent technology and ISSs 16
1.7 Summary .. 18
1.8 Problem statement .. 19
1.9 Thesis organisation .. 20

2 An agent based component architecture 23
2.1 Introduction .. 23
2.2 Interactive Simulation System Conductor 24
 2.2.1 Modules as reusable components 24
 2.2.2 Basic architecture ... 24
2.3 Agent based design ... 25
 2.3.1 Agent definition ... 25
 2.3.2 Activity control ... 27
 2.3.3 Performance considerations 27
2.4 Constructing interactive simulation systems 27
<table>
<thead>
<tr>
<th>2.4.1 Composing an ISS</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2 Run-time framework</td>
<td>28</td>
</tr>
<tr>
<td>2.5 Summary</td>
<td>29</td>
</tr>
</tbody>
</table>

3 Agent based activity orchestration

<table>
<thead>
<tr>
<th>3.1 An ISS as a multiple Module Agents system</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Inherent functionality: component capability</td>
<td>32</td>
</tr>
<tr>
<td>3.2.1 Basic model</td>
<td>32</td>
</tr>
<tr>
<td>3.2.2 Capability modelling for the human interaction involved components</td>
<td>34</td>
</tr>
<tr>
<td>3.3 Interaction: story and scenarios</td>
<td>35</td>
</tr>
<tr>
<td>3.3.1 Place transition net</td>
<td>36</td>
</tr>
<tr>
<td>3.3.2 Scenario representation</td>
<td>37</td>
</tr>
<tr>
<td>3.3.3 Transitions and actions</td>
<td>38</td>
</tr>
<tr>
<td>3.3.4 Story: a scenario-net instance</td>
<td>39</td>
</tr>
<tr>
<td>3.4 World model</td>
<td>40</td>
</tr>
<tr>
<td>3.4.1 Basic structure</td>
<td>40</td>
</tr>
<tr>
<td>3.4.2 Perception and uncertain belief of the agent world</td>
<td>40</td>
</tr>
<tr>
<td>3.5 Controller</td>
<td>42</td>
</tr>
<tr>
<td>3.5.1 Collecting observations</td>
<td>42</td>
</tr>
<tr>
<td>3.5.2 Action execution control</td>
<td>42</td>
</tr>
<tr>
<td>3.6 Story execution</td>
<td>43</td>
</tr>
<tr>
<td>3.6.1 Basic paradigm: distributed scenario execution</td>
<td>43</td>
</tr>
<tr>
<td>3.6.2 Hierarchical execution paradigm</td>
<td>46</td>
</tr>
<tr>
<td>3.6.3 Centralised coordinator paradigm</td>
<td>47</td>
</tr>
<tr>
<td>3.6.4 Scenario switch and execution paradigm selection</td>
<td>48</td>
</tr>
<tr>
<td>3.6.5 Handling run-time exceptions</td>
<td>48</td>
</tr>
<tr>
<td>3.7 Summary</td>
<td>49</td>
</tr>
</tbody>
</table>

4 Implementation and performance analysis

<table>
<thead>
<tr>
<th>4.1 Communication agents</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Data object manager</td>
<td>51</td>
</tr>
<tr>
<td>4.1.2 Distribution manager</td>
<td>52</td>
</tr>
<tr>
<td>4.1.3 Events and action execution</td>
<td>53</td>
</tr>
<tr>
<td>4.2 Module Agents</td>
<td>53</td>
</tr>
<tr>
<td>4.3 Putting it all together</td>
<td>53</td>
</tr>
<tr>
<td>4.3.1 Current implementation</td>
<td>53</td>
</tr>
<tr>
<td>4.3.2 Actor and Conductor</td>
<td>54</td>
</tr>
<tr>
<td>4.3.3 Capability and story descriptions</td>
<td>55</td>
</tr>
<tr>
<td>4.3.4 Run-time configuration files</td>
<td>55</td>
</tr>
<tr>
<td>4.4 Performance analysis</td>
<td>56</td>
</tr>
<tr>
<td>4.4.1 Example components and the test bed</td>
<td>56</td>
</tr>
<tr>
<td>4.4.2 Delay for remote updating shared objects</td>
<td>57</td>
</tr>
<tr>
<td>4.4.3 Location of the RTI execution</td>
<td>58</td>
</tr>
</tbody>
</table>
4.4.4 Remotely updating objects to multiple Consumers 60
4.4.5 Message passing 60
4.4.6 Object model and update delay 62
4.4.7 Summary 63

4.5 Performance for action reasoning and story execution 63
4.5.1 Overall observations on the action reasoning 64
4.5.2 Overhead of the reasoning kernel 66
4.5.3 Reasoning complexity and delay 67
4.5.4 Brief comparison between execution paradigms 69
4.5.5 Summary 69

4.6 Discussion and conclusions 70
4.6.1 Evaluation 70
4.6.2 Conclusions 71

5 Rapid Prototyping of a surgical pre-operative planning environment 73

5.1 Introduction 73
5.1.1 Background 73
5.1.2 Goal of the chapter 75

5.2 From Legacy systems to reusable components 76
5.2.1 Basic steps 76
5.2.2 Legacy flow simulation and visualisation systems 77
5.2.3 Component 1: *C.Flow Simulator* 78
5.2.4 Component 2: *C.Desktop.VRE* 80
5.2.5 Discussion 81

5.3 Coupling component instances 82
5.3.1 Basic analysis: roles and interactions 82
5.3.2 Making an interaction story 83
5.3.3 Executing an ISS 84
5.3.4 Asynchronous data update 85

5.4 Automatic tuning of service quality 87
5.4.1 Adaptable state update 87
5.4.2 Solutions in ISS-Conductor 88
5.4.3 An example: adaptable rate for exporting *Flow.Data* 88

5.5 Collaborative interaction in an ISS 89
5.5.1 Requirements 90
5.5.2 Basic support 91

5.6 Collaborative data analysis and decision making 92
5.6.1 User opinions and decision points 92
5.6.2 Collaboratively exploring data 93
5.6.3 Experimental results 94

5.7 Multiple instances of a scenario net 95
5.7.1 Scenario template and data class mapping 96

5.8 Summarising discussion 97

5.9 Conclusions 98
6 Towards an intelligent planning environment for interactive simulations 101
 6.1 Introduction .. 101
 6.2 A global picture 103
 6.2.1 Proposed functional subsystems 103
 6.2.2 Design requirements 105
 6.2.3 ISS-Studio and Grid environments 105
 6.2.4 In the context of a PSE framework 106
 6.3 Intelligent planning of ISS-Conductor based interactive simulations 106
 6.3.1 Describing experiment requirements 107
 6.3.2 Component searching 108
 6.3.3 Story generation 110
 6.3.4 Generating execution scripts 110
 6.4 Prototype and preliminary results 110
 6.4.1 A multi-agent based experiment planning environment 110
 6.4.2 Experimental results 111
 6.5 Discussion and conclusions 113

7 Summary and discussion 115
 7.1 Summary ... 115
 7.2 Conclusions and discussion 116
 7.3 Future work .. 118

References 123

Nederlandse Samenvatting 143

Publications 145

Index 147

Acknowledgments 149