An agent based architecture for constructing Interactive Simulation Systems
Zhao, Z.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction ... 1
 1.1 Territory ... 1
 1.1.1 Computer simulation 1
 1.1.2 High performance computing 3
 1.1.3 Scientific visualisation 4
 1.1.4 Problem solving environments 5
 1.2 Towards an Interactive Simulation System 6
 1.2.1 Requirements on the interconnection 6
 1.2.2 Requirements on the code incorporation 7
 1.2.3 Requirements on the Interaction module 8
 1.3 Modularity and integration 8
 1.3.1 Middleware and interoperability 8
 1.3.2 Activity orchestration 11
 1.4 Human-system interaction 12
 1.5 Real-time interaction 13
 1.5.1 Performance and service quality 13
 1.5.2 Time management 13
 1.6 Engineering methodologies 14
 1.6.1 Software Components and ISSs 15
 1.6.2 Agent technology and ISSs 16
 1.7 Summary .. 18
 1.8 Problem statement 19
 1.9 Thesis organisation 20

2 An agent based component architecture 23
 2.1 Introduction 23
 2.2 Interactive Simulation System Conductor 24
 2.2.1 Modules as reusable components 24
 2.2.2 Basic architecture 24
 2.3 Agent based design 25
 2.3.1 Agent definition 25
 2.3.2 Activity control 27
 2.3.3 Performance considerations 27
 2.4 Constructing interactive simulation systems ... 27
2.4.1 Composing an ISS .. 27
2.4.2 Run-time framework 28
2.5 Summary .. 29

3 Agent based activity orchestration 31
 3.1 An ISS as a multiple Module Agents system 31
 3.2 Inherent functionality: component capability 32
 3.2.1 Basic model 32
 3.2.2 Capability modelling for the human interaction involved components 34
 3.3 Interaction: story and scenarios 35
 3.3.1 Place transition net 36
 3.3.2 Scenario representation 37
 3.3.3 Transitions and actions 38
 3.3.4 Story: a scenario-net instance 39
 3.4 World model ... 40
 3.4.1 Basic structure 40
 3.4.2 Perception and uncertain belief of the agent world 40
 3.5 Controller ... 42
 3.5.1 Collecting observations 42
 3.5.2 Action execution control 42
 3.6 Story execution 43
 3.6.1 Basic paradigm: distributed scenario execution 43
 3.6.2 Hierarchical execution paradigm 46
 3.6.3 Centralised coordinator paradigm 47
 3.6.4 Scenario switch and execution paradigm selection 48
 3.6.5 Handling run-time exceptions 48
 3.7 Summary .. 49

4 Implementation and performance analysis 51
 4.1 Communication agents 51
 4.1.1 Data object manager 51
 4.1.2 Distribution manager 52
 4.1.3 Events and action execution 53
 4.2 Module Agents ... 53
 4.3 Putting it all together 53
 4.3.1 Current implementation 53
 4.3.2 Actor and Conductor 54
 4.3.3 Capability and story descriptions 55
 4.3.4 Run-time configuration files 55
 4.4 Performance analysis 56
 4.4.1 Example components and the test bed 56
 4.4.2 Delay for remote updating shared objects 57
 4.4.3 Location of the RTI execution 58
4.4.4 Remotely updating objects to multiple Consumers 60
4.4.5 Message passing 60
4.4.6 Object model and update delay 62
4.4.7 Summary 63

4.5 Performance for action reasoning and story execution 63
4.5.1 Overall observations on the action reasoning 64
4.5.2 Overhead of the reasoning kernel 66
4.5.3 Reasoning complexity and delay 67
4.5.4 Brief comparison between execution paradigms 69
4.5.5 Summary 69

4.6 Discussion and conclusions 70
4.6.1 Evaluation 70
4.6.2 Conclusions 71

5 Rapid Prototyping of a surgical pre-operative planning environment 73
5.1 Introduction 73
5.1.1 Background 73
5.1.2 Goal of the chapter 75

5.2 From Legacy systems to reusable components 76
5.2.1 Basic steps 76
5.2.2 Legacy flow simulation and visualisation systems 77
5.2.3 Component 1: C.Flow Simulator 78
5.2.4 Component 2: C.Desktop.VRE 80
5.2.5 Discussion 81

5.3 Coupling component instances 82
5.3.1 Basic analysis: roles and interactions 82
5.3.2 Making an interaction story 83
5.3.3 Executing an ISS 84
5.3.4 Asynchronous data update 85

5.4 Automatic tuning of service quality 87
5.4.1 Adaptable state update 87
5.4.2 Solutions in ISS-Conductor 88
5.4.3 An example: adaptable rate for exporting Flow.Data 88

5.5 Collaborative interaction in an ISS 89
5.5.1 Requirements 90
5.5.2 Basic support 91

5.6 Collaborative data analysis and decision making 92
5.6.1 User opinions and decision points 92
5.6.2 Collaboratively exploring data 93
5.6.3 Experimental results 94

5.7 Multiple instances of a scenario net 95
5.7.1 Scenario template and data class mapping 96

5.8 Summarising discussion 97

5.9 Conclusions 98
6 Towards an intelligent planning environment for interactive simulations 101
6.1 Introduction .. 101
6.2 A global picture .. 103
 6.2.1 Proposed functional subsystems 103
 6.2.2 Design requirements 105
 6.2.3 ISS-Studio and Grid environments 105
 6.2.4 In the context of a PSE framework 106
6.3 Intelligent planning of ISS-Conductor based interactive simulations 106
 6.3.1 Describing experiment requirements 107
 6.3.2 Component searching 108
 6.3.3 Story generation 110
 6.3.4 Generating execution scripts 110
6.4 Prototype and preliminary results 110
 6.4.1 A multi-agent based experiment planning environment 110
 6.4.2 Experimental results 111
6.5 Discussion and conclusions 113

7 Summary and discussion 115
7.1 Summary ... 115
7.2 Conclusions and discussion 116
7.3 Future work .. 118

References 123

Nederlandse Samenvatting 143

Publications 145

Index 147

Acknowledgments 149