An agent based architecture for constructing Interactive Simulation Systems
Zhao, Z.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction .. 1
 1.1 Territory .. 1
 1.1.1 Computer simulation 1
 1.1.2 High performance computing 3
 1.1.3 Scientific visualisation 4
 1.1.4 Problem solving environments 5
 1.2 Towards an Interactive Simulation System 6
 1.2.1 Requirements on the interconnection 6
 1.2.2 Requirements on the code incorporation 7
 1.2.3 Requirements on the Interaction module 8
 1.3 Modularity and integration 8
 1.3.1 Middleware and interoperability 8
 1.3.2 Activity orchestration 11
 1.4 Human-system interaction 12
 1.5 Real-time interaction 13
 1.5.1 Performance and service quality 13
 1.5.2 Time management 13
 1.6 Engineering methodologies 14
 1.6.1 Software Components and ISSs 15
 1.6.2 Agent technology and ISSs 16
 1.7 Summary .. 18
 1.8 Problem statement .. 19
 1.9 Thesis organisation ... 20

2 An agent based component architecture 23
 2.1 Introduction ... 23
 2.2 Interactive Simulation System Conductor 24
 2.2.1 Modules as reusable components 24
 2.2.2 Basic architecture 24
 2.3 Agent based design ... 25
 2.3.1 Agent definition 25
 2.3.2 Activity control 27
 2.3.3 Performance considerations 27
 2.4 Constructing interactive simulation systems 27
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 Composing an ISS .. 27</td>
</tr>
<tr>
<td>2.4.2 Run-time framework .. 28</td>
</tr>
<tr>
<td>2.5 Summary ... 29</td>
</tr>
<tr>
<td>3 Agent based activity orchestration 31</td>
</tr>
<tr>
<td>3.1 An ISS as a multiple Module Agents system 31</td>
</tr>
<tr>
<td>3.2 Inherent functionality: component capability 32</td>
</tr>
<tr>
<td>3.2.1 Basic model ... 32</td>
</tr>
</tbody>
</table>
| 3.2.2 Capability modelling for the human interaction involved com-
| ponents ... 34 |
| 3.3 Interaction: story and scenarios 35 |
| 3.3.1 Place transition net .. 36 |
| 3.3.2 Scenario representation .. 37 |
| 3.3.3 Transitions and actions .. 38 |
| 3.3.4 Story: a scenario-net instance 39 |
| 3.4 World model .. 40 |
| 3.4.1 Basic structure ... 40 |
| 3.4.2 Perception and uncertain belief of the agent world 40 |
| 3.5 Controller ... 42 |
| 3.5.1 Collecting observations ... 42 |
| 3.5.2 Action execution control ... 42 |
| 3.6 Story execution .. 43 |
| 3.6.1 Basic paradigm: distributed scenario execution 43 |
| 3.6.2 Hierarchical execution paradigm 46 |
| 3.6.3 Centralised coordinator paradigm 47 |
| 3.6.4 Scenario switch and execution paradigm selection 48 |
| 3.6.5 Handling run-time exceptions 48 |
| 3.7 Summary ... 49 |
| 4 Implementation and performance analysis 51 |
| 4.1 Communication agents .. 51 |
| 4.1.1 Data object manager .. 51 |
| 4.1.2 Distribution manager ... 52 |
| 4.1.3 Events and action execution 53 |
| 4.2 Module Agents ... 53 |
| 4.3 Putting it all together .. 53 |
| 4.3.1 Current implementation ... 53 |
| 4.3.2 Actor and Conductor ... 54 |
| 4.3.3 Capability and story descriptions 55 |
| 4.3.4 Run-time configuration files 55 |
| 4.4 Performance analysis .. 56 |
| 4.4.1 Example components and the test bed 56 |
| 4.4.2 Delay for remote updating shared objects 57 |
| 4.4.3 Location of the RTI execution 58 |
Table of Contents

1. Introduction

1.1 Background

1.2 Goal of the chapter

1.3 Literature review

2. Methodology

2.1 System requirements

2.2 Design and implementation

2.3 Evaluation

2.4 Conclusion

3. Case Study: C-FlowSim

3.1 System overview

3.2 System architecture

3.3 Case study: C-FlowSim for cardiovascular surgery

3.4 Evaluation

3.5 Conclusion

4. Conclusion

4.1 Summary

4.2 Future work

5 Rapid Prototyping of a Surgical Pre-operative Planning Environment

5.1 Introduction

5.1.1 Background

5.1.2 Goal of the chapter

5.2 From Legacy Systems to Reusable Components

5.2.1 Basic steps

5.2.2 Legacy flow simulation and visualisation systems

5.2.3 Component 1: C.Flow Simulator

5.2.4 Component 2: C.Desktop.VRE

5.2.5 Discussion

5.3 Coupling Component Instances

5.3.1 Basic analysis: roles and interactions

5.3.2 Making an interaction story

5.3.3 Executing an ISS

5.3.4 Asynchronous data update

5.4 Automatic Tuning of Service Quality

5.4.1 Adaptable state update

5.4.2 Solutions in ISS-Conductor

5.4.3 An example: adaptable rate for exporting Flow Data

5.5 Collaborative Interaction in an ISS

5.5.1 Requirements

5.5.2 Basic support

5.6 Collaborative Data Analysis and Decision Making

5.6.1 User opinions and decision points

5.6.2 Collaboratively exploring data

5.6.3 Experimental results

5.7 Multiple Instances of a Scenario Net

5.7.1 Scenario template and data class mapping

5.8 Summarising Discussion

5.9 Conclusions

6 Conclusion

6.1 Summary

6.2 Future Work

7 References

7.1 General

7.2 C-FlowSim

7.3 C-Desktop.VRE
6 Towards an intelligent planning environment for interactive simulations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>101</td>
</tr>
<tr>
<td>6.2</td>
<td>A global picture</td>
<td>103</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Proposed functional subsystems</td>
<td>103</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Design requirements</td>
<td>105</td>
</tr>
<tr>
<td>6.2.3</td>
<td>ISS-Studio and Grid environments</td>
<td>105</td>
</tr>
<tr>
<td>6.2.4</td>
<td>In the context of a PSE framework</td>
<td>106</td>
</tr>
<tr>
<td>6.3</td>
<td>Intelligent planning of ISS-Conductor based interactive simulations</td>
<td>106</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Describing experiment requirements</td>
<td>107</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Component searching</td>
<td>108</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Story generation</td>
<td>110</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Generating execution scripts</td>
<td>110</td>
</tr>
<tr>
<td>6.4</td>
<td>Prototype and preliminary results</td>
<td>110</td>
</tr>
<tr>
<td>6.4.1</td>
<td>A multi-agent based experiment planning environment</td>
<td>110</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Experimental results</td>
<td>111</td>
</tr>
<tr>
<td>6.5</td>
<td>Discussion and conclusions</td>
<td>113</td>
</tr>
</tbody>
</table>

7 Summary and discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Summary</td>
<td>115</td>
</tr>
<tr>
<td>7.2</td>
<td>Conclusions and discussion</td>
<td>116</td>
</tr>
<tr>
<td>7.3</td>
<td>Future work</td>
<td>118</td>
</tr>
</tbody>
</table>

References 123

Nederlandse Samenvatting 143

Publications 145

Index 147

Acknowledgments 149