
UvA-DARE is a service provided by the library of the University of Amsterdam (http

UvA-DARE (Digital Academic Repository)

An agent based architecture for constructing Interactive Simulation Systems

Zhao, Z.

Publication date
2004

Link to publication

Citation for published version (APA):
Zhao, Z. (2004). An agent based architecture for constructing Interactive Simulation Systems.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:19 Sep 2021

https://dare.uva.nl/personal/pure/en/publications/an-agent-based-architecture-for-constructing-interactive-simulation-systems(d18835a7-17f0-43c4-b93c-2598d966fe50).html

Chapterr 6

Towardss an intelligent planning
environmentt for interactive

simulations s

Inn the previous chapters, we discussed the architecture of ISS-Conductor and its util›
isationn in constructing interactive simulation systems. The layered integration mech›
anismm in ISS-Conductor improves the flexibility of controlling the application logic
off an ISS. Yet, the difficulties of describing Petri net based scenario nets may also
hamperr the introduction of ISS-Conductor in Problem Solving Environments. In this
chapter,, we discuss an approach to this problem in a proposed environment called
Interactivee Simulation System Studio*.

6.11 Introduction

Problemm Solving Environments integrate computing technologies and provide an ab›
stractt environment for scientists to do research on various problem domains. Since
thee 1980s, Problem Solving Environments have become an important subject in the
communityy of High Performance Computing [182-185]. Depending on the target do›
mainn of the system and the freedom that the scientists are allowed to customise the
systemm interaction, a PSE may have different guises, e.g. an Interactive Simulation
Systemm with customisable configurations [186], or a library of solvers and its neces›
saryy user interface as in [16]. But at an abstract level one can always distinguish
threee main functional subsystems in a PSE: an environment for analysing problems
andd designing experiments, a collection of necessary software resources for building
experimentss and an environment for executing the experiments.
PSEss play a key role in the emergence of computer simulations, and in particular in›
teractivee simulations, as an important experimental paradigm for problems that are

’Partss of this chapter have been published in Z. Zhao, G.D. van Albada, A Tirado-Ramos, K.Z.
ZajacZajac and P.M.A Sloot. "ISS-Studio: a prototype for a user-friendly tool for designing interactive ex›
perimentss in Problem Solving Environments", in the proceedings of ICCS 2003, Melbourne, Australia
andd St. Petersburg, Russia, Part I, in series Lecture Notes in Computer Science, June, 2003.

1022 Towards an intelligent planning environment for interactive simulations

difficultt to solve using conventional methodologies like experiments using normal lab
instruments.. As we discussed in the earlier chapters, the complexity of implement›
ingg an ISS lies in three main aspects: developing valid simulation or visualisation
kernels,, coupling distributed modules of the system, and controlling their run-time
activities.. Employing the simulation or visualisation kernels from legacy systems can
reducee both the risks and the costs of the development of an ISS. However, the custom›
isedd integration mechanism resulting from such construction paradigm introduces a
strongg dependency between the constituent system modules and hinders the further
deploymentt of the system in PSEs. One of the solutions is to use software component
technologies:: industrial components, e.g. Java beans and DCOM, and scientific com›
putingg components, e.g. CCA, have been used to encapsulate the simulation and visu›
alisationn systems and to facilitate the interoperability between them [16,89,90,184].
Mostt of the available architectures provide a description mechanism to specify the
functionalityy of the components, e.g. the SOM (Simulation Object Model) in HLA and
thee SIDL (Scientific Interface Description Language) in the CCA, and an integration
mechanismm for assembling the components and for realising their run-time binding.
Inn those architectures, the interface specifications are basically used to promote the
interoperabilityy between components; an explicit layer for controlling overall inter›
actionss is not defined. Using these architectures, complex activity constraints, e.g.
multi-userr interactive simulation, are often difficult to describe at the flow control
level.. Therefore low level component programming is needed, which still hampers
thee further introduction of ISSs in PSEs. Hiding these low level assembling and pro›
grammingg details from a scientist and allowing him to plan an experiment at a high
levell is desirable. Since the planning procedure will be partly automated by the sys›
tem,, we call this the intelligent planning of interactive simulations.

Thee intelligent planning is basically approached by mechanisms which support auto›
maticc (or semi-automatic) selection of components and derivation of the coupling de›
tailss between them. The research on this subject received a great deal of attention
afterr significant progress was achieved on the reusability and interoperability of the
simulationn components [187-189]. An efficient mechanism for selecting software com›
ponentss has been considered as a necessary step to approach the intelligent planning.
AA number of technologies were reviewed in [187], e.g. based on key words, facets, sig›
natures,, behaviour and semantics. One of the conclusions drawn from the paper is
thatt semantic level component matching is essential to improve the searching effi›
ciency.. A number of researchers studied the feasibility of automating the compatib›
ilityy check between the Simulation Object Model (SOM) and the Federation Object
Modell (FOM) of an HLA application, but most of the matching mechanisms are lim›
itedd to the syntactical level, e.g. in [188]. Using predefined templates, e.g. Process
Floww Templates [15], is a straightforward way to facilitate the composition of interac›
tionss between components. But the templates are mostly composed manually by do›
mainn specialists. The burgeoning applications of Service Oriented Computing [190]
paradigmss are an important force to push the research on automatic flow composi›
tion.. One of the motivations is to compose the flow between intermediate services
andd to provide a transparent binding interface for the service requester. A number of

6.26.2 A global picture 103 3

researcherss have studied this problem in both architectures of web services and Grid
servicess [189,191,192]. The basic idea is to distinguish the dependencies between the
servicess according to their pre and post conditions on data, and describe them using
aa workflow description language.
Thee ISS-Conductor architecture provides solutions for encapsulating legacy simula›
tionn and visualisation tools, and for orchestrating their activities at run time. A Petri
net-basedd control mechanism for component activities supports the description of
sophisticatedd interactive scenarios. Automatically planning of ISS-Conductor based
experimentss exhibits a number of differences from the other related work. First, the
capabilityy descriptions of ISS-Conductor components are based on state machines;
theyy provide extended information for the simulation object models, and thus it be›
comess feasible to include more sophisticated matching mechanisms than in [188].
Second,, the execution of an ISS-Conductor system is based on HLA, but the inter›
actionn scenarios between the components are based on Petri nets; they provide se›
manticss to complement the object model based composition with the activity con›
straintss between components. One of the aims in this chapter is to study the feas›
ibilityy of composing scenarios which support human-in-the-loop computing.
Inn this chapter, Interactive Simulation System Studio (ISS-Studio), a framework for
deployingg ISS-Conductor components in constructing interactive simulation based ex›
perimentss will be proposed. First, we give an overview of ISS-Studio and enumerate
itss desired functionality. ISS-Studio is proposed specifically for the ISS-Conductor
compliantt software resources. It intends to work with existing generic PSE frame›
workss to enhance their services for supporting interactive simulation based exper›
iments.. We will discuss this issue using an example of Grid-based Virtual Labor›
atoryy Amsterdam (VLAM-G) [15,19], a general PSE framework developed at UvA.
Afterr that we discuss the basic procedures to automate the story composition for an
ISS-Conductorr based system. Finally, some experiments and earlier results will be
presented. .

6.22 A global picture

Thee main goals to propose ISS-Studio is to facilitate the development of ISS-Conductor
basedd components and to simplify the construction of interactive simulation systems.
Inn this section, we will first describe the desired functionality of ISS-Studio and then
discusss the design requirements for them.

6.2.11 Proposed functional subsystems

Fromm the lifecycle of developing ISS-Conductor based components and interaction
storiess for the integrated systems, the functionality of ISS-Studio is grouped into four
subsystems:: component management, knowledge management, experiment planning
andd run-time experiment management.

1044 Towards an intelligent planning environment for interactive simulations

Componentt management

Incorporatingg existing standalone tools which are designed for a specific problem as
reusablee and customisable solvers for a spectrum of other problems [92] is an im›
portantt way to enrich the software resource of a PSE. The first subsystem will aid
componentt developers to incorporate legacy simulation or interactive visualisation
programss into the ISS-Conductor architecture. The component management subsys›
temm provides tools for component developers to construct and maintain components,
e.g.. to define a component capability, to develop code and to debug. The component
products,, including the capability specification, the source, the documentation and
thee binary are stored in repositories with version control. Services for retrieving and
updatingg components from the repositories are also provided.

Knowledgee management

Ann efficient reuse of the software components depends not only on the nature of the
componentss but also on the mechanisms for searching and retrieving them from the
repositoriess where they are stored. As we mentioned, conventional search techniques
doo not capture the run-time semantics of the components. In ISS-Conductor compon›
ents,, the actions are complemented with pre and post conditions: the requirements
andd influences on the data objects, but they do not guarantee that the retrieved ac›
tionss provide the semantics that the component searching process needs because of
thee possible diverse meaning of the actions and data classes. One of the solutions is
too synchronise the meaning of the vocabularies used in different repositories using a
knowledge-basedd backbone; the concepts used for describing software resources, e.g.
componentss and experiments, are associated with certain ontologies. A knowledge
managementt subsystem is proposed for this function.

Experimentt planning

Thee third subsystem is to plan ISS based experiments. It intends to aid a scientist
too develop an interactive simulation based experiment at each phase of the lifecycle.
Thee subsystem needs to provide a user-friendly environment and supports intelligent
planningg of the experiments. In the next section, we will come back to this point.

Executionn management

Ann interactive experiment is executed on computing resources, e.g. supercomputers,
clusterss or high performance virtual reality environments. The fourth subsystem
processess the resource requirements of an experiment and generates suitable job de›
scriptionn for different types of computation resources. The execution management
subsystemm also provides an interface to interact with tools for execution monitoring
andd job migration.

6.26.2 A global picture 105 5

6.2.22 Design requirements
Thee system must meet a number of requirements. The first one is the user-centred
design;; the system needs to consider different types of users, e.g. component de›
veloperss and scientists, and their special requirements on the system interactions.
Second,, integrating commercial off-the-shelf (COTS) tools into the system is another
importantt requirement; using mature COTS tools e.g. for supporting UML or XML,
avoidss unnecessary rebuilding of similar utilities. The third requirement is the port›
abilityy of the implementation. The constituent tools of the system are likely to be
distributed.. Thus, a portable framework to glue these assets is needed, and in ad›
dition,, diverse interfaces to access these tools can also improve the usability of the
environment.. The realisation of the system needs to benefit the existing platforms,
suchh as the management of distributed resources in Grid environments. Finally, the
feasibilityy to integrate with existing generic PSE frameworks also has to be taken into
account.. Realising special purpose PSEs using a generic framework has emerged as
ann important development paradigm [16,19]. Services provided by these frameworks,
e.g.. for managing resources and run-time information, can simplify the development
oflSS-Studio. .
Inn the next two sections, we will first discuss how available Grid middlewares can
contributee to the development, and then use VLAM-G as an example to discuss the
feasibilityy to deploy ISS-Studio in existing PSE frameworks.

6.2.33 ISS-Studio and Grid environments

AA core idea of Grid environments is to organise heterogeneous resources, e.g. com›
putingg elements, storage devices and software components, and share them among a
groupp of trusted users (Virtual Organisations)* [194,195]. Resource management is
aa central component in a Grid environment, it provides services for describing and
discoveringg resources, for scheduling and monitoring them at run time, and for fault
tolerancee and security control. A number of resource management systems have been
developed,, e.g. Condor [61], Globus toolkit [196] for computing resources, European
Dataa Grid [197] for data resources, and PUNCH [198] for services-based resources.
Forr instance, in the Globus toolkit, resources are described using an extensible re›
sourcee specification language (RSL), the resource requests are handled by resource
brokerss and processed through the information service provided by meta-computing
directoryy services (MDS). In the Globus toolkit, job schedules are organised in a dis›
tributedd paradigm.
Thee rich set of protocols defined in available Grid environments provides a suitable
infrastructuree for realising ISS-Studio, e.g. for component storing and discovery, and
forr execution monitoring. There is also a large research body on flow control in Grid
environmentss [16,137,138]; most of them are based the Grid Service architecture and
describingg the flow using data or task based dependencies, e.g. in GridAnt [138] and

tGridd environments are also classified as: computational, data and service Grids according to the
typee of resources being managed and shared, e.g. computing elements, storage and software [193].

1066 Towards an intelligent planning environment for interactive simulations

Tavernaa [137]. Compared to them, ISS-Conductor allows more sophisticated controls:
thee states of human activity and the components execution are allowed to control the
flowflow branches, but the framework is currently based on HLA.

6.2.44 In the context of a PSE framework

VLAM-GG is a generic PSE framework, which provides hierarchical solutions to man›
agee different levels of resources, and encapsulates them as services in a middleware.
Onn top of the middleware, domain specific PSEs are supported. The middleware al›
lowss users to work simultaneously and collaboratively at different levels of the frame›
work,, e.g. as scientists, domain experts, tool developers and ICT* developers. It also
integratess the information management services with the lifecycle of a scientific ex›
perimentt [21]. An experiment is modelled using physical entities which are the instru›
mentss to be used, activities to be performed by the scientists, and data elements which
aree the input/output of the activities. An experiment is described as the flow between
thesee elements; in order to simplify the construction of an experiment, templates of
thee flow are abstracted as Process Data Flow templates. A database infrastructure is
employedd to manage both the static and run-time information.
Comparedd to VLAM-G, ISS-Studio uses the term experiments in a much narrower
sense.. In ISS-Studio, experiments only refer to the interactive simulation based
paradigm,, and they can be included as part of a VLAM-G experiment. ISS-Studio fo›
cusess on the mechanisms that can facilitate the composition of ISS-Conductor based
experiments.. In the context of VLAM-G, ISS-Studio can be viewed as an upper level
PSE,, where the subsystems can benefit from the services provided by VLAM-G mid›
dleware,, e.g. for managing resources and experiment information.
Inn this chapter we will not discuss the detailed issues on using the Grid services to
realisee ISS-Studio, but instead we focus on the intelligent planning of ISS-Conductor
basedd interaction scenarios.

6.33 Intelligent planning of ISS-Conductor based in›
teractivee simulations

Inn this section, we will focus on the experiment planning subsystem and discuss the
feasibilityy of intelligent planning of ISS-Conductor based interactive simulations. The
goall of the subsystem is to allow a scientist to plan his interactive experiments from
thee level of the problem domain instead that of the details of scenario nets composi›
tion.. We will briefly discuss the phases: requirement description, component discov›
ery,, story making and execution script generation.

** Information and communication technologies.

6.36.3 Intelligent planning of ISS-Conductor based interactive simulations 107 7

6.3.11 Describing experiment requirements

Thee first phase aims to describe the requirements of the experiment. The description
willl be the input to the experiment planning environment. It provides information
forr the subsystem to determine the suitable components for the experiment and to
distinguishh the interaction constraints between the components in a story. The goal
off employing interactive simulation in a scientific experiment is to use simulation
solverss to compute data properties of a model, and to allow the scientist to study
themm by manipulating part of the data at run time. Therefore, we argue that the
experimentt description should at least contain three main elements: data, activity
andd the quality requirements.

1.. Data. A scientist needs to specify the data for an experiment. It describes not
onlyy the raw data that the user has but also the data he expects during the
experiment. .

2.. Activities indicate the action that the user will perform on the data. Some activ›
itiess also indicate the transformations between data or causal relations between
thee data.

3.. Quality requirements on data and activities describe the performance constraints
off the experiment.

Thiss model has a number of advantages. First, the activity flow of an experiment by
naturee is a sequence of operations on the simulation data. Although the implementa›
tionn information of the simulation and visualisation kernels is not explicitly modelled,
theyy can be included in the description as the quality requirements on the data or the
activity.. Second, mature software modelling techniques, e.g. data flow and control
flow,, can be directly used to describe the experiment. The description can be intuit›
ivelyy represented using graphical primitives. Fig. 6.1 shows an example of describing
aa bypass validation experiment. Finally, the description can be parsed and described
usingg a logic language, e.g. first order logic, which can be parsed and reasoned on by
agentss for further searching and composition.

Visualise. .
(3DD images)

MRII images of a patient,
(input))

(3 3
Segment t

DD visualisatio

Stenosis. .

n)) < *

Design n
aww in 3D imag

Simulatee blood flow. Visualise,
(simulation)) (3D imaqes)

Bypasss over
thee stenosis.

9S)) ^ ^ ^

Refine e
(3C C

Bloodd flow in the bypass,
(containss velocity and pressure)

thee bypass,
images))

FigureFigure 6.1: A graphical representation of the experiment requirement for a bypass-validation
experiment. experiment.

1088 Towards an intelligent planning environment for interactive simulations

6.3.22 Component searching

Thee actual planning procedure starts when the user provides an experiment descrip›
tion.. Component searching is the first step, it finds a set of suitable components which
cann 1) produce all required data, 2) support all activities on them and 3) provide ser›
vicess with the required quality. In ISS-Conductor, the capability of a component is
describedd based on a finite state machine model, in which data classes, activities, and
thee dependencies between the data and activities are explicitly described. It provides
searchh agents basic information for match checking. Table 6.1 shows the details.

TableTable 6.1: Information source for evaluating experiment requirements.
Componentt capability
Dataa classes (shared and internal)
Activity y
Pre-conditionn and post-condition of Activities
Qualityy attributes

Experimentt requirement
Data a
Activities s
dependenciess between data
Qualityy requirements

Ass we mentioned above that the syntactical level matching does not guarantee the
semanticc level consistency between components and the requirements because the
terminologyy used in the description of component capability and in the experiment
requirementt might have different meanings. One of the solutions is to synchronise
thee meaning of these concepts using a consistently defined Ontology.
Originally,, the term of ontology refers to a philosophical discipline for dealing with the
naturenature and the organisation of being [199]. Recently, it is used in computer science
ass a term for describing the semantic relations between the symbolic representations
andd the actual meaning of concepts; it normally consists of a vocabulary and a set of
explicitt assumptions regarding the intended meaning of the vocabulary [200], The
assumptionss are represented using logic theories, e.g. first order logic or description
logic.. Based on the level of generality, different types of ontology are often distin›
guishedd as a hierarchical scheme, as shown in Fig. 6.2, [201]. According to the clas›
sifications,, we define four groups of ontologies. The ontologies in the top-level group
describee the most general concepts, e.g. ISS-Conductor components, component in›
stancess and interactive experiments. The ontologies in a domain group describe the
conceptss of different domains in software resources, which cover the terminology used
inn defining data object models in components and interaction stories. The ontologies
inn a task group describe the concepts of activities, services and their quality attrib›
utes,, which are related to software resources. Finally the ontologies in an application
groupp describe the concepts bound to specific applications. Taking the example in the
previouss chapter, the ontologies in the domain group describe the concepts in defin›
ingg data object models in components and interaction stories e.g. fluid flow, blood,
flowflow velocity and pressure. The ontologies in the task group include the concepts for
describingg component activities, e.g. flow simulation, visualising MM images and
designingg bypass.

6.36.3 Intelligent planning of ISS-Conductor based interactive simulations 109

FigureFigure 6.2: Different types of ontologies.

Usingg an ontology language, like OWL [202], concepts are described as classes, which
cann have subclasses and be a subclass of another class. A class can have a number of
attributes,, called properties or roles; the value restrictions on the properties are called
facets.facets. The instances of a classes are called individuals of the class. An ontology
togetherr with a set of individuals of classes constitutes a knowledge base. Fig. 6.3
showss a screen snapshot of top level ontologies (edited using ProtØgØ [203]). The
terminologyy used in the resource descriptions, e.g. component actions, states and
dataa classes, are mapped as individuals or subclasses of the classes in the ontologies.
AA resource description can be associated with more than one ontology.

MffffiffifflMEanani i
Protectt tm Window OWL Help

DD a» m % 9É r

££ OWflXlasses : P Properties

:: Asserted tter archy

99 owl Thing
99 'ë ISSConductor_Thing

'' dataAttriüut e
99 dalaClass

»--) SharedDataClass
csinternalDataClass s

' I c) state
;; Action

,C!! lSSConductot_Component
cc Problem

^^ -C;E>periment
§!§! Interactive Exp e rim ent

Namee : Eqiih/atent Properties

11 ’- "

OO Annotations

PfOB^tf f
!! iDJidfstommerrt

Ü Ü
value e

ProrjerttfOfanlSSt t

FigureFigure 6.3: Developing Ontologies using ProtØgØ.

Inn the searching procedure, the similarity between the concepts is first checked using
ontologyy reasoning algorithms. Only the components which have equal or similar
meaningg of the concepts as the experiment description will be checked for the further
matching. .

1100 Towards an intelligent planning environment for interactive simulations

6.3.33 Story generation

AA story can be generated when the components have been found from the component
repositories.. It is a procedure to assemble these components and make a story for
themm to work together. It has a number of detailed steps.

1.. The first step is to substitute the data and activities in the description of the ex›
perimentt requirement using the components found. During the substitution, the
roless of component instances and the common data interfaces between different
roless will be defined.

2.. Second, according to the condition and dependencies between activities, an inter›
mediatee activity diagram will be derived. In the activity diagram, the activities
willl be associated with specific role. In this step, a user can refine the control
conditionss between components in the loop.

3.. Third, the control patterns of the activity diagram will be mapped onto Petri
net.. The activities and its responsible roles will be mapped onto transitions, and
thee conditions between activities are mapped onto places.

4.. Finally, the Petri net is output as a story.

6.3.44 Generating execution scripts

Thee final step is to map a story onto the job description scripts of computing elements.
Thee story contains information about the computing requirements of each of the com›
ponents,, e.g. requirements on the parallelisation libraries and hardware platforms,
whichh can be used to generate a job description script using the demanded syntax
providedd by the description language of the computing elements.

6.44 Prototype and preliminary results

Thee implementation of ISS-Studio is still ongoing. In this section, we will describe
thee basic techniques that are used in the prototype and discuss some experimental
results. .

6.4.11 A multi-agent based experiment planning environment

ISS-Studioo will be a distributed environment; when there are a large collection of
componentt repositories, using multiple agents can improve the efficiency for compon›
entt searching. A multi-agent environment is proposed for the experiment planning
subsystem.. An experiment manager agent (EMA) provides a graphical interface for
userss to describe the experiment requirements, and co-ordinates search agents to find

6.46.4 Prototype and preliminary results 111 1

suitablee components for the experiment. Component search agents (CSA) scan com›
ponentt repositories and search components according to the requirements sent by the
EMA.. Finally the EMA also does the story making and execution script generation.
Thee agents are prototyped using the JADE, a Java-based agent development frame›
workk for the FIPA standard [204]. In JADE, agents communicate using an Agent
Communicationn Language (ACL) and are managed by an agent container at each
host.. The JADE framework provides services for managing the lifecycle of agents
includingg cloning and migrating them between hosts. In an agent, the reasoning ker›
nell of the agents is realised using Prolog. The ontology-reasoning module is realised
usingg Racer [205] which can be shared by different agents. Fig. 6.4 shows its basic
agentt architecture.

AgentAgent structure.

Reasoningg kernel.
(Prolog))

It It
+ +

Thee JADE agent library.

=1’’ >= IS. IS.
Thee JADE run-time environment.

FigureFigure 6.4: The basic architecture of an agent.

6.4.22 Experimental results
Experimentss for testing the feasibility of integrating the JADE framework, Racer and
thee Prolog reasoning kernel have been performed. Because of the powerful support for
network-basedd programming, SWI Prolog [206] is used in the prototype. The JADE
frameworkk is based on Java, and both SWI Prolog and Racer have a Java-based in›
terface.. The descriptions of component capabilities and the experiment requirements
aree parsed as Prolog terms; the Ontologies are in OWL and are processed by Racer.
Thee Prolog reasoning kernel communicates with the Racer server via sockets. The
JADEE framework handles inter-agent communication. By gluing them using Java,
thee basic control between the functional components of an agent can be realised.
Thee GUI of component management and experiment planning subsystems have been
prototypedd using a Java based graphical library, JGraph [207]. Fig. 6.5 shows a
screenn snapshot. The GUI allows a user to directly describe the activity-transition
graphh (see Section 3.2.1) of the component and export as the ISS-Conductor required
format.. Fig. 6.6 shows a screen snapshot, which shows the experiment requirement
describedd in Fig. 6.1: the rectangles and ellipses are respectively represent data and
activities.. The requirements are described using a set of triples, which are trans›
formedd into Prolog lists. From the planning menu, a user can start a CSA to discover
thee suitable components.

Ontology y
reasoning. .

(Racer))

1122 Towards an intelligent planning environment for interactive simulations

Componentt management <§> Interactive Simulat ion System Studio

Componentt Edit View Extras Window Help

[ojjajjz^^ajj ̌ « ’ r e P o? ’ a « Q % %
’iM|o|rA’r.. 7 s3 \ K v- n • x xif?i iToJlEilftl

FigureFigure 6.5: A snapshot of the component management subsystem.

ntPlanning&ISSS -studio (V o. i)
Requirementt Edit View t Plat); Options Window Help

[11 ö Q ö i Component discovery •• Ctri-D
- — p L i p r z c z :: i Draft filan

hh D O A O |; validate O**-SM>

II file:/nome/zhiming/IS Generate Story rf’Efrf’Ef SI

^ ~ HH 'Stenosis', []

iild_bypa5S',, [[do, 'build_byj

sualise',, [[do, ' vi sualise..;.

/ /

'Sii oulate', [[do, computing, 'parallel ' Jl

 : ’

[166 Cells / 1 Component (92% %

FigureFigure 6.6: A snapshot of the experiment planning subsystem.

AA reasoning kernel for a CSA has been prototyped. The prototype is able to find
componentss from a given collection using the matching rules discussed above: the set
off components can perform all the activities and process the data requested in the

6.56.5 Discussion and conclusions 113 3

requirementt description. Since we do not have a large collection of ISS-Conductor
componentss yet, the components (in total five) we discussed in the previous chapters
aree used as the basic collection. For the experiment purpose, we replicated them and
createdd a number of dummy components; in total the component collection contains
200 samples. The capabilities of these components are parsed into 700 Prolog terms.
Inn the experiment, the prototype can find components for each required activity, ex›
ceptt the first two, visualise and segment MRI images (see Fig. 6.1). To get the feel›
ingg on search complexity, we run the experiment with different number of requested
activities.. Fig. 6.7 shows the measurements for two situations: all the requested
activitiess and none of them can be found from the collection. For each requirement,
thee search procedure stops when it finds the first suitable component. When there is
noo component qualified for an activity, the search procedure takes more time, since it
hass to scan the entire collection of components, which indicates the upper bound of
thee searching time cost. Although the number of components is relative small, we can
observee that, the search cost increase linearly with the number of requested activities
inn the requirement description.

-a-- All components can not be found -»- All components can be found

166 -,

14--

»» 12-

ii io-
u u
11 8-
0)) 6 -

j== 4 -
22 -
0--

00 5 10 15 20
Numberr of activities in the request

FigureFigure 6.7: Searching different number of activities from the component collection.

6.55 Discussion and conclusions

Inn this chapter, we have reviewed the background of Problem Solving Environments
andd their role in modern scientific research, and then discussed the feasibility of
developingg a framework for deploying ISS-Conductor based components to proto›
typee interactive experiments. Compared to the related work, ISS-Studio introduces
aa number of novel ideas in its design. First, in ISS-Studio, an agent based sup›
portt environment performs resource discovery and the interaction scenario compos›
ition,, which intends to automate the procedures of experiment planning. In the
otherr PSEs [114,208,209], the human guided assembly of components and interac›
tionn descriptions are still the principal development activity. Second, ontology based
conceptt checking has been proposed in a number of service based computing systems,
e.g.. [210]. Finally, the scenario composition is performed before the system execution

1144 Towards an intelligent planning environment for interactive simulations

inn ISS-Studio. One of the reasons is that ISS-Studio intends to support human-in-the-
loopp interactions, rather than the one way data flow between components [92,211].

Thiss leads to the following conclusions.

1.. Component technology is suitable to encapsulate the functionality of software
resourcess and to integrate them in a layered paradigm.

2.. A semantic level searching mechanism is a key issue to automate the utilisa›
tionn of component resources. Using a knowledge based backbone to synchronise
thee meaning of the concepts used in the component specification enhances the
traditionall searching mechanisms.

3.. An agent-based framework is suitable for realising the experiment design en›
vironmentt for problem solving; employing agents to search for components and
too plan experiments distributes the computation onto available resources and
helpss to achieve a better resource utilisation.

4.. The rich set of services provided by the Grid environment constitute a suitable
infrastructuree for ISS-Studio to manage the component resources. We have not
explicitlyy discussed the integration of ISS-Studio with Grid middleware. In our
opinionn the Java based platform and the XML based information description of
ISS-Studioo make the realisation possible.

