UvA-DARE (Digital Academic Repository)

An agent based architecture for constructing Interactive Simulation Systems

Zhao, Z.

Publication date
2004

Link to publication

Citation for published version (APA):
Zhao, Z. (2004). An agent based architecture for constructing Interactive Simulation Systems.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (http
Download date:19 Sep 2021

https://dare.uva.nl/personal/pure/en/publications/an-agent-based-architecture-for-constructing-interactive-simulation-systems(d18835a7-17f0-43c4-b93c-2598d966fe50).html

Chapter 6

Towards an intelligent planning
environment for interactive
simulations

In the previous chapters, we discussed the architecture of ISS-Conductor and its util-
isation in constructing interactive simulation systems. The layered integration mech-
anism in ISS-Conductor improves the flexibility of controlling the application logic
of an ISS. Yet, the difficulties of describing Petri net based scenario nets may also
hamper the introduction of ISS-Conductor in Problem Solving Environments. In this
chapter, we discuss an approach to this problem in a proposed environment called
Interactive Simulation System Studio*.

6.1 Introduction

Problem Solving Environments integrate computing technologies and provide an ab-
stract environment for scientists to do research on various problem domains. Since
the 1980s, Problem Solving Environments have become an important subject in the
community of High Performance Computing [182-185]. Depending on the target do-
main of the system and the freedom that the scientists are allowed to customise the
system interaction, a PSE may have different guises, e.g. an Interactive Simulation
System with customisable configurations [186], or a library of solvers and its neces-
sary user interface as in [16]). But at an abstract level one can always distinguish
three main functional subsystems in a PSE: an environment for analysing problems
and designing experiments, a collection of necessary software resources for building
experiments and an environment for executing the experiments.

PSEs play a key role in the emergence of computer simulations, and in particular in-
teractive simulations, as an important experimental paradigm for problems that are

*Parts of this chapter have been published in Z. Zhao, G.D. van Albada, A. Tirado-Ramos, K.Z.
Zajac and PM.A. Sloot. “ISS-Studio: a prototype for a user-friendly tool for designing interactive ex-
periments in Problem Solving Environments”, in the proceedings of ICCS 2003, Melbourne, Australia
and St. Petersburg, Russia, Part I, in series Lecture Notes in Computer Science, June, 2003.

102 Towards an intelligent planning environment for interactive simulations

difficult to solve using conventional methodologies like experiments using normal lab
instruments. As we discussed in the earlier chapters, the complexity of implement-
ing an ISS lies in three main aspects: developing valid simulation or visualisation
kernels, coupling distributed modules of the system, and controlling their run-time
activities. Employing the simulation or visualisation kernels from legacy systems can
reduce both the risks and the costs of the development of an ISS. However, the custom-
ised integration mechanism resulting from such construction paradigm introduces a
strong dependency between the constituent system modules and hinders the further
deployment of the system in PSEs. One of the solutions is to use software component
technologies: industrial components, e.g. Java beans and DCOM, and scientific com-
puting components, e.g. CCA, have been used to encapsulate the simulation and visu-
alisation systems and to facilitate the interoperability between them [16,89, 90, 184].
Most of the available architectures provide a description mechanism to specify the
functionality of the components, e.g. the SOM (Simulation Object Model) in HLA and
the SIDL (Scientific Interface Description Language) in the CCA, and an integration
mechanism for assembling the components and for realising their run-time binding.
In those architectures, the interface specifications are basically used to promote the
interoperability between components; an explicit layer for controlling overall inter-
actions is not defined. Using these architectures, complex activity constraints, e.g.
multi-user interactive simulation, are often difficult to describe at the flow control
level. Therefore low level component programming is needed, which still hampers
the further introduction of ISSs in PSEs. Hiding these low level assembling and pro-
gramming details from a scientist and allowing him to plan an experiment at a high
level is desirable. Since the planning procedure will be partly automated by the sys-
tem, we call this the intelligent planning of interactive simulations.

The intelligent planning is basically approached by mechanisms which support auto-
matic (or semi-automatic) selection of components and derivation of the coupling de-
tails between them. The research on this subject received a great deal of attention
after significant progress was achieved on the reusability and interoperability of the
simulation components [187—189]. An efficient mechanism for selecting software com-
ponents has been considered as a necessary step to approach the intelligent planning.
A number of technologies were reviewed in [187], e.g. based on key words, facets, sig-
natures, behaviour and semantics. One of the conclusions drawn from the paper is
that semantic level component matching is essential to improve the searching effi-
ciency. A number of researchers studied the feasibility of automating the compatib-
ility check between the Simulation Object Model (SOM) and the Federation Object
Model (FOM) of an HLA application, but most of the matching mechanisms are lim-
ited to the syntactical level, e.g. in [188]. Using predefined templates, e.g. Process
Flow Templates [15], is a straightforward way to facilitate the composition of interac-
tions between components. But the templates are mostly composed manually by do-
main specialists. The burgeoning applications of Service Oriented Computing [190]
paradigms are an important force to push the research on automatic flow composi-
tion. One of the motivations is to compose the flow between intermediate services
and to provide a transparent binding interface for the service requester. A number of

6.2 A global picture 103

researchers have studied this problem in both architectures of web services and Grid
services [189,191,192]. The basic idea is to distinguish the dependencies between the
services according to their pre and post conditions on data, and describe them using
a workflow description language.

The ISS-Conductor architecture provides solutions for encapsulating legacy simula-
tion and visualisation tools, and for orchestrating their activities at run time. A Petri
net-based control mechanism for component activities supports the description of
sophisticated interactive scenarios. Automatically planning of ISS-Conductor based
experiments exhibits a number of differences from the other related work. First, the
capability descriptions of ISS-Conductor components are based on state machines;
they provide extended information for the simulation object models, and thus it be-
comes feasible to include more sophisticated matching mechanisms than in [188].
Second, the execution of an ISS-Conductor system is based on HLA, but the inter-
action scenarios between the components are based on Petri nets; they provide se-
mantics to complement the object model based composition with the activity con-
straints between components. One of the aims in this chapter is to study the feas-
ibility of composing scenarios which support human-in-the-loop computing.

In this chapter, Interactive Simulation System Studio (ISS-Studio), a framework for
deploying ISS-Conductor components in constructing interactive simulation based ex-
periments will be proposed. First, we give an overview of ISS-Studio and enumerate
its desired functionality. ISS-Studio is proposed specifically for the ISS-Conductor
compliant software resources. It intends to work with existing generic PSE frame-
works to enhance their services for supporting interactive simulation based exper-
iments. We will discuss this issue using an example of Grid-based Virtual Labor-
atory Amsterdam (VLAM-G) [15, 191, a general PSE framework developed at UvA.
After that we discuss the basic procedures to automate the story composition for an
ISS-Conductor based system. Finally, some experiments and earlier results will be
presented.

6.2 A global picture

The main goals to propose ISS-Studio is to facilitate the development of ISS-Conductor
based components and to simplify the construction of interactive simulation systems.
In this section, we will first describe the desired functionality of ISS-Studio and then
discuss the design requirements for them.

6.2.1 Proposed functional subsystems

From the lifecycle of developing ISS-Conductor based components and interaction
stories for the integrated systems, the functionality of ISS-Studio is grouped into four
subsystems: component management, knowledge management, experiment planning
and run-time experiment management.

104 Towards an intelligent planning environment for interactive simulations

Component management

Incorporating existing standalone tools which are designed for a specific problem as
reusable and customisable solvers for a spectrum of other problems [92] is an im-
portant way to enrich the software resource of a PSE. The first subsystem will aid
component developers to incorporate legacy simulation or interactive visualisation
programs into the ISS-Conductor architecture. The component management subsys-
tem provides tools for component developers to construct and maintain components,
e.g. to define a component capability, to develop code and to debug. The component
products, including the capability specification, the source, the documentation and
the binary are stored in repositories with version control. Services for retrieving and
updating components from the repositories are also provided.

Knowledge management

An efficient reuse of the software components depends not only on the nature of the
components but also on the mechanisms for searching and retrieving them from the
repositories where they are stored. As we mentioned, conventional search techniques
do not capture the run-time semantics of the components. In ISS-Conductor compon-
ents, the actions are complemented with pre and post conditions: the requirements
and influences on the data objects, but they do not guarantee that the retrieved ac-
tions provide the semantics that the component searching process needs because of
the possible diverse meaning of the actions and data classes. One of the solutions is
to synchronise the meaning of the vocabularies used in different repositories using a
knowledge-based backbone; the concepts used for describing software resources, e.g.
components and experiments, are associated with certain ontologies. A knowledge
management subsystem is proposed for this function.

Experiment planning

The third subsystem is to plan ISS based experiments. It intends to aid a scientist
to develop an interactive simulation based experiment at each phase of the lifecycle.
The subsystem needs to provide a user-friendly environment and supports intelligent
planning of the experiments. In the next section, we will come back to this point.

Execution management

An interactive experiment is executed on computing resources, e.g. supercomputers,
clusters or high performance virtual reality environments. The fourth subsystem
processes the resource requirements of an experiment and generates suitable job de-
scription for different types of computation resources. The execution management
subsystem also provides an interface to interact with tools for execution monitoring
and job migration.

6.2 A global picture 105

6.2.2 Design requirements

The system must meet a number of requirements. The first one is the user-centred
design; the system needs to consider different types of users, e.g. component de-
velopers and scientists, and their special requirements on the system interactions.
Second, integrating commercial off-the-shelf (COTS) tools into the system is another
important requirement; using mature COTS tools e.g. for supporting UML or XML,
avoids unnecessary rebuilding of similar utilities. The third requirement is the port-
ability of the implementation. The constituent tools of the system are likely to be
distributed. Thus, a portable framework to glue these assets is needed, and in ad-
dition, diverse interfaces to access these tools can also improve the usability of the
environment. The realisation of the system needs to benefit the existing platforms,
such as the management of distributed resources in Grid environments. Finally, the
feasibility to integrate with existing generic PSE frameworks also has to be taken into
account. Realising special purpose PSEs using a generic framework has emerged as
an important development paradigm [16,19]. Services provided by these frameworks,
e.g. for managing resources and run-time information, can simplify the development
of ISS-Studio.

In the next two sections, we will first discuss how available Grid middlewares can
contribute to the development, and then use VLAM-G as an example to discuss the
feasibility to deploy ISS-Studio in existing PSE frameworks.

6.2.3 1ISS-Studio and Grid environments

A core idea of Grid environments is to organise heterogeneous resources, e.g. com-
puting elements, storage devices and software components, and share them among a
group of trusted users (Virtual Organisations)’ [194, 195]. Resource management is
a central component in a Grid environment, it provides services for describing and
discovering resources, for scheduling and monitoring them at run time, and for fault
tolerance and security control. A number of resource management systems have been
developed, e.g. Condor [61], Globus toolkit [196] for computing resources, European
Data Grid [197] for data resources, and PUNCH [198] for services-based resources.
For instance, in the Globus toolkit, resources are described using an extensible re-
source specification language (RSL), the resource requests are handled by resource
brokers and processed through the information service provided by meta-computing
directory services (MDS). In the Globus toolkit, job schedules are organised in a dis-
tributed paradigm.

The rich set of protocols defined in available Grid environments provides a suitable
infrastructure for realising ISS-Studio, e.g. for component storing and discovery, and
for execution monitoring. There is also a large research body on flow control in Grid
environments [16,137,138]; most of them are based the Grid Service architecture and
describing the flow using data or task based dependencies, e.g. in GridAnt [138] and

TGrid environments are also classified as: computational, data and service Grids according to the
type of resources being managed and shared, e.g. computing elements, storage and software [193).

106 Towards an intelligent planning environment for interactive simulations

Taverna [137]. Compared to them, ISS-Conductor allows more sophisticated controls:
the states of human activity and the components execution are allowed to control the
flow branches, but the framework is currently based on HLA.

6.2.4 In the context of a PSE framework

VLAM-G is a generic PSE framework, which provides hierarchical solutions to man-
age different levels of resources, and encapsulates them as services in a middleware.
On top of the middleware, domain specific PSEs are supported. The middleware al-
lows users to work simultaneously and collaboratively at different levels of the frame-
work, e.g. as scientists, domain experts, tool developers and ICT* developers. It also
integrates the information management services with the lifecycle of a scientific ex-
periment [21]. An experiment is modelled using physical entities which are the instru-
ments to be used, activities to be performed by the scientists, and data elements which
are the input/output of the activities. An experiment is described as the flow between
these elements; in order to simplify the construction of an experiment, templates of
the flow are abstracted as Process Data Flow templates. A database infrastructure is
employed to manage both the static and run-time information.

Compared to VLAM-G, ISS-Studio uses the term experiments in a much narrower
sense. In ISS-Studio, experiments only refer to the interactive simulation based
paradigm, and they can be included as part of a VLAM-G experiment. ISS-Studio fo-
cuses on the mechanisms that can facilitate the composition of ISS-Conductor based
experiments. In the context of VLAM-G, ISS-Studio can be viewed as an upper level
PSE, where the subsystems can benefit from the services provided by VLAM-G mid-
dleware, e.g. for managing resources and experiment information.

In this chapter we will not discuss the detailed issues on using the Grid services to
realise ISS-Studio, but instead we focus on the intelligent planning of ISS-Conductor
based interaction scenarios.

6.3 Intelligent planning of ISS-Conductor based in-
teractive simulations

In this section, we will focus on the experiment planning subsystem and discuss the
feasibility of intelligent planning of ISS-Conductor based interactive simulations. The
goal of the subsystem is to allow a scientist to plan his interactive experiments from
the level of the problem domain instead that of the details of scenario nets composi-
tion. We will briefly discuss the phases: requirement description, component discov-
ery, story making and execution script generation.

Information and communication technologies.

6.3 Intelligent planning of ISS-Conductor based interactive simulations 107

6.3.1 Describing experiment requirements

The first phase aims to describe the requirements of the experiment. The description
will be the input to the experiment planning environment. It provides information
for the subsystem to determine the suitable components for the experiment and to
distinguish the interaction constraints between the components in a story. The goal
of employing interactive simulation in a scientific experiment is to use simulation
solvers to compute data properties of a model, and to allow the scientist to study
them by manipulating part of the data at run time. Therefore, we argue that the
experiment description should at least contain three main elements: data, activity
and the quality requirements.

1. Data. A scientist needs to specify the data for an experiment. It describes not
only the raw data that the user has but also the data he expects during the
experiment.

2. Activities indicate the action that the user will perform on the data. Some activ-
ities also indicate the transformations between data or causal relations between
the data.

3. Quality requirements on data and activities describe the performance constraints
of the experiment.

This model has a number of advantages. First, the activity flow of an experiment by
nature is a sequence of operations on the simulation data. Although the implementa-
tion information of the simulation and visualisation kernels is not explicitly modelled,
they can be included in the description as the quality requirements on the data or the
activity. Second, mature software modelling techniques, e.g. data flow and control
flow, can be directly used to describe the experiment. The description can be intuit-
ively represented using graphical primitives. Fig. 6.1 shows an example of describing
a bypass validation experiment. Finally, the description can be parsed and described
using a logic language, e.g. first order logic, which can be parsed and reasoned on by
agents for further searching and composition.

Visualise.

A Simulate blood flow. Visualise.
(3D images) w\ (3D images)
MRI images of a patient. .| Stenosis. .| Bypass over Blood flow in the bypass.
(input) Desi the stenosis. (contains velocity and pressure)
Segment esign

(3D visualisation) (draw in 3D images) \

Refine the bypass.
(3D images)

Figure 6.1: A graphical representation of the experiment requirement for a bypass-validation
experiment.

