Indonesian sponges: biodiversity and mariculture potential

de Voogd, N.J.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CHAPTER 2

INDONESIAN SPONGES OF THE GENUS \textit{Petrosia} Vosmaer (\textit{demospongiae: Haplosclerida})

Nicole J. de Voogd & Rob W. M. van Soest
ABSTRACT

Sponges of the genus *Petrosia* (Demospongiae: Haplosclerida) are large and characteristic components of many Indonesian reefs. We identify and provide descriptions of seven species of *Petrosia* collected recently on Sulawesi reefs (Eastern Indonesia), two of which are new to science: *Petrosia* (*Petrosia*) *alfiani* spec. nov. and *Petrosia* (*Petrosia*) *hoeksemai* spec. nov. Additional species recorded are *Petrosia* (*Petrosia*) *lignosa* Wilson, 1925, *Petrosia* (*Petrosia*) *nigricans* Lindgren, 1897, *Petrosia* (*Petrosia*) *plana* Wilson, 1925, *Petrosia* (*Strongylophora*) *corticata* (Wilson, 1925) and *Petrosia* (*Strongylophora*) *strongylata* Thiele, 1903. The species are discussed and compared with *Petrosia* records from other Indonesian and neighbouring Indo-West Pacific areas. We also present a key to the common *Petrosia* species of Sulawesi.

INTRODUCTION

If trends observed in other marine benthic groups also apply to sponges, Indonesian waters may be expected to contain the world’s highest sponge biodiversity. Van Soest (1989, 1990, 1994) and Hooper et al. (2000) reviewed the sponge fauna of this area on the basis of literature and informal database records, and these reviews confirm the richness. However, the published knowledge base of Indonesian sponges is woefully incomplete: much of the collected material still awaits formal description and many locations in the area remain to be explored. The present study is induced by the search for sponge secondary metabolites with properties useful to mankind, financed under the EC-MAS3 project ‘SYMBIOSPONGE’ and the NWO-WOTRO-project (W84-474) ‘Sponges as a potential resource of Eastern Indonesia’. It is also one of a recently started ongoing series of genus-by-genus revisions of the Indonesian sponge fauna (Hofman & Van Soest 1995; Van Soest, 1998), which eventually will result in a much greater accessibility of the Indonesian sponges for interested ecologists and chemists.

MATERIALS AND METHODS

The material was collected by B.W. Hoeksema (fieldnumbers # BH97/xxxx/xx and 98/NS or SS/xxxx/BH/xx), N.J. de Voogd (NV/97/xx/xx; NV/xx/xx00/xx), H. Moll and R.W.M. van Soest from various locations in Indonesia. The specimens are preserved in 70% ethylalcohol and deposited in the sponge collection of the Zoological Museum Amsterdam (ZMA) and the National Museum of Natural History of Leiden (RMNH). The descriptions presented below are based on external morphology, skeletal architecture and shape and size of the spicules. For study of the skeletal architecture hand-cut tangential sections of the ectsosome and perpendicular sections of the choanosome were made. The sections were air-dried, mounted in Canada-balsam on a microscope slide, and studied under a Leitz high power light microscope.
Spicule preparations were made by dissolving a small piece of the specimen in 100% nitric acid (HNO₃), after which the residue was rinsed four times with water, once with hydrogen peroxide (H₂O₂) and finally once with 96% ethylalcohol. The spicules were air-dried on microscopic slides and prepared for study with the light microscope, as well as put on aluminium stubs and coated with gold for study with a Jeol Scanning Electron Microscope (SEM).

Systematics

Phylum Porifera Grant, 1835
Class Demospongiae Sollas, 1885
Order Haplosclerida Topsent, 1928
Suborder Petrosina Boury-Esnault & Van Beveren, 1982
Family Petrosiidae Van Soest, 1980

Definition. — Haplosclerida with ectosomal skeleton consisting of an isotropic reticulation of single spicules or spicule tracts, and a choanosomal skeleton verging towards an isotropic reticulation of spicule tracts, in which primary and secondary tracts are indistinct.

Genus Petrosia Vosmaer, 1887

Definition. — Petrosiidae with an ectosomal triangular or polygonal reticulation of spicule tracts or single spicules, usually echinated at the nodes or along the tracts by a smaller category of spicules. Chooanosomal skeleton basically a lamellate-isotropic reticulation of spicule tracts, and an interstitial unispicular reticulation. Megascleres with distinct size categories of strongyles or oxeas, often with a special category of ectosomal microxeas or microstrongyles.

N.B. This definition includes sponges referable to the genus *Strongylophora* Dendy, 1905. Its separate generic status vis-à-vis *Petrosia* is doubtful, and in a forthcoming revision (Desqueyroux-Faünde z in litteris) both are treated as subgenera of *Petrosia*. This is followed here.

Reviews in Dendy (1905); van Soest (1980); Bergquist & Warne (1980); De Weerdt (1985); Desqueyroux-Faünde z (1987), Desqueyroux-Faünde z & Valentine (2002); Fromont (1991).

Subgenus Petrosia Vosmaer, 1887

Definition. — Spicule complement includes two or three size categories of oxeas or strongyles, in which the smallest is concentrated at the surface.
Petrosia (Petrosia) alfiani spec. nov.
(Figs 1A-C, 5A)

Shape. — Massive, globular, or thick undividing arm-like branches, of a maximum length of 20 cm, 10 cm in width and 4 cm in height. Holotype ZMA 15992 measures 9 × 7.5 × 2 cm, paratype ZMA 14499 is 8 × 4 × 3 cm. Numerous small oscules are scattered across the sponge body, 2-6 mm in diameter. The surface is smooth and microscopically hispid. The consistency varies from stony hard to very slightly compressible.

Colour. — Bright canary yellow, turns cherry red-brown exposed to air. In spirit light to dark chocolate brown. Preservative turns very dark red-brown.

Skeleton. — The ectosomal skeleton is an isodictyal reticulation of multispicular tracts (2-6 µm), forming irregular round meshes (200-250 µm), echinated at the nodes by brushes of the smaller sized spicules. The smaller sized spicules are only present in the ectosomal skeleton. The ectosomal skeleton is obscured by abundant pigment cells. The choanosomal skeleton is more compact with thick multispicular tracts (7-15 spicules) forming round meshes (200-400 µm), regularly arranged parallel to the surface. Pigment cells are still present in the choanosome, but not so dense as in the ectosome. Spongin is scarce, causing the stony texture of the sponge.

Spicules. — The species has three sizes of abruptly pointed oxeas or strongyles with smooth rounded ends: 183-253 × 10-15 µm, 106-153 × 7-14 µm, and 60-70 × 6-7 µm.

Etymology. — The species is named after Prof. dr. Alfian Noor. He is co-ordinator of the Buginesia Programme and Head of the Radiation Chemistry Laboratory of the Hasanuddin University, Makassar.

Habitat. — On reef slopes, from shallow waters down to 40m; growing as thick encrusting masses on coral blocks and rubble or coral sand.

Distribution. — Spermonde Archipelago, SW Sulawesi.

Remarks. — The sponge resembles *Petrosia similis* var. *compacta* (Ridley & Dendy, 1887) sensu Hentschel (1912); however the smaller oxeas and the changing from the bright yellow to red brown are not mentioned. The original description by Ridley & Dendy concerns a sponge from Kerguelen in the subantarctic Indian Ocean. It shares the bright yellow colour and it turns likewise to brown when exposed to air. However our newly described species does not exude abundant mucus mentioned by Ridley & Dendy, and the habitus is also very different.

It is unusual for a petrosiid to be of a vivid yellow colouration as most of the species are beige, red, brown or black. Desqueyroux-Faúndez (1987) described a
lemon-yellow species, *Petrosia capsia* from New Caledonia, but this species differs substantially from the new species in oxea sizes and classes (two classes: 140-210 \(\times \) 2.5-10 \(\mu \)m and 40-60 \(\times \) 6-8 \(\mu \)m), habitus (massive-cylindrical) and skeleton (thicker fibers). No colour change was noted for *P. capsia*.

![Fig. 1 A-C. *Petrosia (Petrosia) alfiani* spec. nov., holotype ZMA POR. 15992, A. tangential view of ectosomal skeleton (scale — 250 \(\mu \)m), B. cross section of choanosomal skeleton (scale — 250 \(\mu \)m), C. spicules (scale — 250 \(\mu \)m). D-F. *Petrosia (Petrosia) hoeksemai* spec. nov., D. spicules (scale — 250 \(\mu \)m), E. tangential view of ectosomal skeleton (scale — 250 \(\mu \)m), F. ditto at larger magnification to show brushes of microxeas (scale — 100 \(\mu \)m).]
Petrosia (Petrosia) hoeksemai spec. nov.
(Figs 1D-F, 5B)

Petrosia contignata sensu van Soest, 1989: 227, fig. 2-45 (not: Thiele, 1899).

Shape. — Arm-thick creeping branches with thick walled oscular chimneys. In some specimens the oscules are more depressed and have a typical sieve-like grid. The texture is stony, the ectsosome may be brittle or crumbly. The sponge exudes copious slime when handled, the amount of slime may vary per individual. The type specimen is a fragment (5 × 7 × 9 cm) of a larger specimen (7 × 150 cm) and the oscules are 1.5 × 1.5 cm. This species can grow into great size, crawling across and under corals. Stomatopod crustaceans are frequently lodged in the choanosome.

Colour. — A warm chocolate red-brown to dark brown-black. The sponge may be very pale in colour (e.g. like in Fig. 5B) when growing in caves or underneath overhangs, this species clearly derives its colour from symbionts. The inside is lighter, almost greyish. The colour persists more or less in spirit, but a greyish tinge predominates.

Skeleton. — Ectosomal paucispicular tangential skeleton forming polygonal meshes 150-200 µm, surrounded by characteristic tufts of small spicules (5-15 spicules). The ectsosome is carried by a subectosomal system of tracts (3-8 spicules) and 20-50 µm in width, forming polygonal meshes (250-350 µm). The ectosomal skeleton is obscured by dark pigment grains. The amount of these grains and the colour is variable between specimens. Choanosomal skeleton consists of thick spicule tracts forming a reticulation of more or less elongated rectangular meshes, 500-1000 µm with a thickness of 100-500 µm.

Spicules. — Abruptly pointed oxeas in three size categories: 240-305 × 10-20 µm, 90-130 × 7-12 µm and 40-75 × 5-9 µm. The smaller spicules only occur in the ectosomal skeleton and form the tufts.

Etymology. — This species is named after Dr. Bert W. Hoeksema, renowned coral biologist and head co-ordinator of the marine research group at the National Museum of Natural History, Leiden.
Indonesian sponges of the genus *Petrosia*

Habitat. — Creeping across live and dead corals, cryptic underneath coral blocks.

Distribution. — Throughout Indonesia.

Remarks. — Previous records of this species were under the name *Petrosia contignata* Thiele, 1899 (e.g. Van Soest, 1989), but subsequent examination of the type specimen from the Basel Museum (Nr. 31) showed that this is not a *Petrosia*, but a *Xestospongia* (no size categories of the oxeas). There is also a superficial resemblance to *P. pigmentosa* Fromont, 1991 described from the Great Barrier Reef. We re-examined the type specimen, Museum for Tropical Queensland QM 925020, Whitsunday Island, 20°48'S 149°16'E. This is a cake-shaped fragment with small more or less flush oscules. The skeleton consists of shorter and thinner spicules than those of *P. hoeksemai*, and these are also predominantly strongyles. The species *P. hoeksemai*, *P. lignosa* and *P. plana* (cf. below) are easily distinguished from each other by habit (respectively repent-branching, cup-shaped and tubular), but their skeletons are very much alike. The meshes of the choanosomal skeleton of *P. lignosa* are somewhat smaller and the overall compactness of the skeleton is looser because of the lack of spongin. *P. plana* appears to be restricted to the Togian Islands and North Sulawesi, while *P. lignosa* is also a widespread species, but occurs in vertical reef habitats, rather than on shallow reef slopes. *P. hoeksemai* spec. nov. is the most common species in the Spermonde Archipelago, and is found in every shallow reef monitored.

Petrosia (Petrosia) lignosa Wilson, 1925

(Figs 2A-C, 5C)

Petrosia lignosa Wilson, 1925: 403, pl. 41 fig. 3, pl. 48, fig. 9.

Shape. — Wide flaring vasiform bowls with a characteristic thickened rim. Outer surface irregular, with blunt projections or bumps. Size may be considerable, up to 1 m in diameter. Inner surface smooth with characteristics annulated ridges, with scattered small oscules. Texture is incompressible, stony.

Colour. — Dull golden brown, inside cream or slighter lighter.

Skeleton. — Ectosomal paucispicular tangential skeleton forming meshes 150-200 μm, the sides of which are characteristic tufts of small spicules (5-10 spicules), consisting of an intermediate sized spicule carrying a bouquet of the smallest spicules. Pigment grains are adhering to the binding spongin, not dominating or obscuring the skeleton. The ectosomal skeleton in its turn carried by a subectosomal system of tracts of 3-8 spicules and 20-50 μm in width, forming polygonal meshes of 250-350 μm. Choanosomal skeleton consists of thick spicule tracts with a thickness.
of 250-450 μm forming a reticulation of more or less elongated rectangular meshes, 500-1500 μm.

Spicules. — The spicules are smooth, slightly curved, and range from oxeas to real strongyles; this may vary individually; some contain only strongylotes. The size ranges from large to very small ones, in which 3 categories may be distinguished, 230-300 × 14-18 μm, 75 - 150 × 10-13 μm and 35-65 × 7 × 10 μm.

Distribution. — Sulawesi, Bali.

Habitat. — Vertical reef slopes, 25 m and deeper.

Remarks. — As mentioned above, *P. lignosa* is similar to *P. hoeksemai* and *P. plana* in skeletal features, but they differ strongly in habit. Desqueyrroux-Faúndez (1987) described a petrosiid sponge, *P. caps*, from New Caledonia which is very similar to *P. lignosa* in habit. She decided, that her species was different from Wilson’s species based on skeletal features (much smaller, tighter choanosomal meshes of 300-400 μm only) and spicule dimensions (megascleres only up to 210 × 10 μm), and this is confirmed by our material.

Petrosia (Petrosia) nigricans Lindgren, 1897
(Figs 2D-H, 5D)

Petrosia nigricans Lindgren, 1897: 5, pl. 17 fig. 5, pl. 19 fig. 4; Van Soest, 1989: 226.

Petrosia imperforata Thiele, 1899: 20, pl. 2 fig. 7, pl. 5 fig. 12.

Petrosia cancellata Thiele, 1903: 938, fig. 3.

Petrosia nigricans var *irregularis* Hentschel, 1912: 405.

Shape. — Lamellate, flabelliform, cup-shaped or broadly tubular sponges. The size may be considerable, up to 150 cm in height, 200 cm in diameter and with a lateral thickness of up to 10 cm. The outside surface is undulate or irregularly sharply ridged, almost honeycombed, while the inner side is smooth. Oscules, other than an eventual vent in more tubular specimens are not very obvious, but are 0.5-1 cm in diameter and are slightly elevated. Copious slime is exuded when the sponge is cut or put in alcohol. The amount of slime may be variable per specimen.

Colour. — Chocolate-brown to dark, almost black-brown; choanosome is lighter coloured. These colours more or less persist in spirit, although a greyish tinge predominated.
Indonesian sponges of the genus Petrosia

Fig. 2. A-C. Petrosia (Petrosia) lignosa, A. cross section of choanosomal skeleton (scale — 500 μm), B. overview of spicules (scale — 250 μm), C. detail of spicules (scale — 100 μm). D-H. Petrosia nigricans, D. spicules of holotype Uppsala Mus. nr. 391 (scale — 100 μm), E. holotype of P. nigricans Lindgren, Uppsala Mus. nr. 391 (scale — 1 cm), F. spicules of ZMA POR. 15989 (scale — 100 μm), G. tangential view of ectosomal skeleton of ZMA POR. 15989 (scale — 250 μm), H. detail of ectosomal skeleton of ZMA POR. 15989 (scale — 100 μm).
Chapter 2

Skeleton. — The ectsosomal skeleton is a tangential reticulation of bundles and single larger megascleres, on the nodes of which short bushes of small megascleres are erected. Brushes consist of 6-8 spicules which are intertwining. The ectsosomal skeleton often contains large pigment grains. The subectosomal tracts consist of 10-20 spicules and are 40-100 μm in diameter. The hexagonal subectosomal meshes are 100-450 μm in diameter. This region is independent from the choanosomal skeleton and is easily detachable. The choanosome is a system of thick spicule tracts forming large almost rectangular meshes, 500-900 μm in diameter. The tracts consist of 20 or more spicules and are 100-500 μm in diameter, spongin is not visible, but the tracts are distinct. Pigment grains are also present in the choanosome, but not so abundant as in the ectsosome.

Spicules. — Oxeas and strongylote modifications, predominantly bluntly pointed, but occasionally sharply pointed or even rounded, in 3 distinct size categories: 240-305 × 8-16 μm, 120-188 × 9-10 μm, and 57-85 × 5 μm. The smaller category only occurs in the ectsosomal tufts.

Habitat. — From 3 to 45 m. Smaller specimens grow attached to coral rubble or more cryptic, whereas the larger sized specimens may grow on sand slopes. Lionfishes are often associated with this sponge and it provides shelter for large variety of reef animals. Crinoids and large numbers of holothurians of the genus *Synaptula* are often present on the outside of the sponges.

Distribution. — Apparently widely distributed in the Indo-Australian area.

Remarks. — The type specimen of Lindgren (Fig. 2E) originated from the Java Sea. A small thick plate of 7 × 7 × 3 cm is the remnant of an originally larger specimen. The consistency is stony, the colour greyish brown and no oscules are visible. The oxeas of the type (Fig. 2D) are obviously thicker (20 μm), than the specimens from the material we examined (up to 14 μm), but this may be caused by different environmental silica levels. We re-examined Thiele's (1899) *P. imperforata* (Basel Museum nr. 28) and found the skeleton to be in complete accordance with our own specimens. The fragment of Thiele had an undulating but essentially smooth surface like Lindgren's fragment. Fromont's (1991) *P. pigmentosa* from the Great Barrier Reef, which is a massive sponge with short protuberances, shows some similarity to *P. nigricans*. After examination we concluded that this is a different species, based on the differences in habit, texture and the size of the spicules (these are shorter and thinner strongyles in *P. pigmentosa*). Oscules are also not conspicuous. The importance of mucus is stressed here, but according to our observations, mucus excretion may vary between specimens of the same species. Thiele (1903) described *P. cancellata* from Ternate (Indonesia, northern Moluccas) as a small fragment of an apparently bigger specimen. He mentioned that his specimen may very well be *P. nigricans*, but that the surface of Lindgren's type is completely smooth and even, while his specimen's surface is more undulating. The oxeas are of various sizes, but he gives only the largest measurements, 250 × 16 μm. The habit is described ambiguously, but because he mentions the resemblance to *P. nigricans*, and because in our experience the surface features show great variation from smooth to almost honeycombed, we suggest that *P. cancellata* is a synonym of *P. nigricans*. Hentschel (1912) described *P. nigricans* var. *irregularis* from the Aru Islands (Indonesia, eastern Moluccas). He mentioned the similarities to Lindgren's material, but its skeleton is more confused and the oxeas are different in form.
Indonesian sponges of the genus Petrosia

We believe this to fall within the variation of the nominal species. *P. nigricans* is a common, prominent, large species in the Spermonde Archipelago and elsewhere in Eastern Indonesia, and we think this species could hardly have been overlooked in the past by collectors. The skeleton and spicule sizes often differ only slightly between different *Petrosia* species, thus we stress the importance of the habit in designating the different species.

Petrosia (Petrosia) plana Wilson, 1925
(Figs 3A-D, 5E)

Petrosia lignosa var. *plana* Wilson, 1925: 404, pl. 41 figs 4-5.

Material. — ZMA POR. 14516, N Sulawesi, S off Tilise I., E slope Tindila I., 01°48'N 125°03'30"E, reef slope 19 m, # 98/NS/MAY06/BH/070, 6.v.1998; ZMA POR. 14520, N Sulawesi, Tanjung Torowitan, 01°45'N 124°58'30"E, steep slope 29 m, # 98/NS/MAY06/BH/074, 6.v.1998; ZMA POR. 14541 SW, N Sulawesi, Nain I., 01°45'30"N 124°46"E, reef slope 13 m, # 98/NS/MAY08/BH/095, 8.v.1998. The specimens were collected by B.W. Hoeksema.

Fig. 3. *Petrosia (Petrosia) plana*, A. tangential view of ectsosomal skeleton (scale— 250 μm), B. at greater magnification (scale— 100 μm), C. cross section of choanosomal skeleton (scale— 500 μm), D. spicules (scale— 100 μm).
Shape. — Massive cylindrical tube, several tubes may be fused together. The texture is stony and the surface is slightly roughened.

Colour. — Grey-brown to dark brown, choanosome lighter in colour. The colour persists more or less in spirit. Copious slime is exuded when handled.

Skeleton. — Ectosomal paucispicular tangential skeleton forming meshes 60-150 µm, the sides of which consist of characteristic tufts of small spicules with intermediate sized spicules carrying a bouquet of 5-10 of the smallest spicules. The ectosome is carried by a subectosomal system of tracts, 3-8 spicules and 15-50 µm in width, forming polygonal meshes of 150-250 µm. Choanosomal skeleton consists of thick spicule tracts, 100-400 µm in width, forming a reticulation of more or less elongated, rectangular meshes, 500-1000 µm in size. Choanosomal tracts contain more spongin than those of the ectosome. Pigment grains are present throughout the body.

Spicules. — These are abruptly pointed oxeas in 3 size categories, 190-290 × 7-14 µm, 95-130 × 7-9.5 µm and 43-75 × 5-9 µm.

Habitat. — Reef slopes from 15 m to deeper waters.

Distribution. — North Sulawesi, Togian Islands.

Remarks. — Wilson (1925) described two new petrosiid species from the Togian Islands, P. lignosa and P. lignosa var. plana. He emphasised the similarities in habit and skeletal features, but distinguished a cylindrical var. plana with a smooth surface, from the cup-shaped nominal variety with irregular protuberances on the outside. P. plana is also similar in many features to P. nigricans, but that species has obviously thicker subectosomal tracts, consisting of 10-20 spicules, whereas those of P. plana have only 3-8 spicules.

Subgenus Strongylophora Dendy, 1905

Definition: *Petrosia* with 4 or 5 categories of strongyles including sharp angled microxeas concentrated at the surface.

Petrosia (Strongylophora) corticata (Wilson, 1925)
(Figs 4A-C, 5F)

Strongylophora corticata Wilson, 1925: 392, pl. 40 fig.7, pl. 48 figs 2,7.
Strongylophora strongylata; Colin & Arneson, 1995: 48, fig. 157 (not: Thiele, 1903)

Material. — ZMA POR. 16748, SW Sulawesi, Spermonde Archipelago, Barang Lombo 1, 15 m # NV/BA/061000/151. 6.x.2000; ZMA POR. 08254, Tukang Besi Islands, southern reef of Karang Kaledupa, east of entrance, 05°56'S 123°48'E, 4-10 m, 6.viii.1984, coll. R.W.M. van Soest, Dutch-Indonesian 'Snellius II' Exped. stat. 016/II/44.

Shape. — Undulating smooth branches, 3-10 cm diameter, up to 30 cm long; numerous small typical sieve-like oscules (4-8 mm) are scattered across the surface. The ectosome forms a distinct, firm rind; is slightly transparent and easily detachable from subdermal regions. The inside is pulpy.
Indonesian sponges of the genus Petrosia

Fig. 4. A-C. *Petrosia (Strongylophora) corticata*, A. tangential view of ectosomal skeleton (scale—100 μm), B. subectosomal skeleton (scale—250 μm), C. spicule overview and detail of microxea/microstrongyle (scale overview—100 μm, inset—25 μm). D-F. *Petrosia (Strongylophora) strongylata*, D. spicules (microxeas lacking) (scale—100 μm), E. tangential view of ectosomal skeleton (scale—100 μm), F. cross section of choanosomal skeleton (scale—250 μm).

Colour. — Ochre-greenish tinge, in spirit dull brown.

Skeleton. — The ectosome is a paucispicular reticulation of the larger spicules forming irregular triangular meshes, with perpendicular tufts of the intermediate spicules, and with moderate amounts of echinating microxeas and microstrongyles. Subectosomal tracts form regular polygonal meshes of 100-300 μm. The tracts of 2-4 spicules are 30 μm in width, and consist mainly of the larger spicules.
The choanosomal skeleton is dense, tracts are 250-300 \(\mu m \) in width, and many spicules are scattered loosely and singly.

Spicules. — The dominating spicules are strongyles, smooth, slightly curved with evenly rounded ends. The strongyles appear to occur in 3 sizes, 300-360 \(\times \) 11-14 \(\mu m \), 80-200 \(\times \) 11-14 \(\mu m \), and 21-50 \(\times \) 3-9 \(\mu m \). Many immature spicules of these are oxeas, 70-300 \(\times \) 6 \(\mu m \), and these lie in between the meshes. Sharp angled ectosomal microxeas are 30-45 \(\times \) 1-3 \(\mu m \).

Habitat. — Shallow reefs.

Distribution. — Philippines, Eastern Indonesia, Papua New Guinea.

Remarks. — Pulitzer-Finali (1996) assigned this species to the genus *Tabulocalyx* Pulitzer-Finali (Phoeodictyidae), because of the difference in the skeletal structure with other species of *Petrosia* (*Strongylophora*), but admitted that the spiculation is indistinguishable from *Strongylophora*. The pulpy ectosome is clearly unusual for the normal stony texture of the family Petrosiidae; this feature together with the easily detachable ectosome fits better in the family Phloeodictyidae. However, the spicules are unmistakably those of *Petrosia* (*Strongylophora*). Moreover, typical phloeodictyid sponges have fistules issuing from a turnip-shaped body.

Colin & Arnesen (1995) mistook this species for the closely related *P. (S.) strongylata*. This is a dark coloured tube-shaped species, which also has clearly smaller ectosomal strongyles (see below).

Petrosia (Strongylophora) strongylata (Thiele 1903)
(Fig. 4D-F, 5G)

Strongylophora strongylata Thiele, 1903: 938, fig. 2.
(not: *S. strongylata* Colin & Arneson, 1995: 48, fig. 157 = *P. corticata*)

Shape. — Smooth tube, up to 4 cm diameter, up to 6 cm long, rising from a broader base; conspicuous concentric rings inside the tube. Consistency extremely hard and stony.

Colour. — Dark-brown to black, choanosome lighter in colour.

Skeleton. — The ectosome is a tangential skeleton of single spicules arranged in triangular meshes forming a larger hexagonal system. Vague brushes of middle sized spicules are arranged on the nodes of the triangular meshes. Microxeas and microstrongyles echinate the single spicules. The subectosomal skeleton consists of larger spicules forming polygonal meshes, diameter 50-250 \(\mu m \), of bundles consisting of 2-4 spicules and with diameter 40-50 \(\mu m \). A very dense choanosomal skeleton consists of a reticulation of spicule tracts, cored by up to 20 larger and smaller spicules, diameter 70-150 \(\mu m \), forming polygonal meshes, 150-250 \(\mu m \).
Indonesian sponges of the genus *Petrosia*

Loose single spicules are scattered in between the meshes.

Spicules. — True strongyles, isodiametric, some are curved, many juvenile stages are thin blunt oxenas; 3 size categories can be distinguished; 326 × 18 μm, 95-145 × 10-12 μm and 44-60 × 8-12 μm. Abruptly pointed, curved microxneas; 28-32 × 1-2 μm.

Habitat. — Cryptic, in caves and under coral overhangs.

Distribution. — Throughout Indonesia, Papua New Guinea.

Remarks. — This species was originally assigned to the genus *Strongylophora*, based on the presence of microstrongylote spicules and characteristic sausage-shaped microstrongyles; however this feature is now included in the genus *Petrosia*. Both *P. corticata* and *P. strongylata* have the characteristic echinating micro-oxenas in the euctosomal skeleton, but the species are easily distinguishable from each other on basis of habit. In addition to this, the euctosomal microstrongyles of *P. corticata* (21-50 × 3-9 μm) are much smaller in size than those of *P. strongylata* (44-60 × 8-12 μm).

KEY TO THE PETROSI A SPECIES OF EASTERN INDONESIA

1 Creeping arms or thickly encrusting with prominent oscules
- Tubes, vases or lamellate 2

2 Bright yellow
- Brown or ochre-greenish 3

3 Detachable euctosome and pulpy from the inside
- Stony texture, pigment grains abundant *Petrosia (Strongylophora) corticata*

4 Microxneas echinating euctosomal tracts
- Megascleres strongyles to oxenas, no microxneas *Petrosia (Strongylophora) strongylata*

5 Cup/bowl-shaped with narrow base and a thickened rim
- Tubes or vases with broad base, or upright plates *Petrosia (Petrosia) lignosa* 6

6 Cylindrical smooth tubes
- Lamellate, flabelliform, or broadly tubular sponge *Petrosia (Petrosia) nigricans* 7

DISCUSSION

The *Petrosia* species treated here form a common and striking complement of Indonesian reefs. Nevertheless, there is a considerable list of additional Petrosia species recorded from this area in the literature. Based on re-examination of type material or on published descriptions, many of these do not conform to the definition of *Petrosia* employed here, but rather are valid species or junior synonyms of species belonging to the genus *Xestospongia*. Examples are *P. chaliniformis* Thiele, 1899, *P. contignata* Thiele, 1899, *P. expansa* Thiele, 1903, *P. pulvilla* Thiele, 1899, *P. rava* Thiele, 1899, *P. seriata* Hentschel, 1912, *P. similis granulosa* Wilson, 1925, *P. truncata aruensis* Hentschel, 1912, and *P. densissima* Dendy, 1905.

Remaining species recorded from the Indo-Malayan area which are likely to be true *Petrosia* are: *Petrosia (Petrosia) brachysclera* Lévi & Lévi, 1989, *Petrosia (Petrosia) hebes* Von Lendenfeld, 1888, and *Petrosia (Strongylophora.) durissima* Dendy, 1905.
Fig. 5. In situ photos of Indonesian *Petrosia* species, A. paratype of *Petrosia (Petrosia) alfini* spec. nov. (ZMA POR. 14999), photo B.W. Hoeksema; B. holotype of *Petrosia (Petrosia) hoeksemai* spec. nov. (ZMA POR. 15991), photo B.W. Hoeksema; C. *Petrosia (Petrosia) lignosa* (ZMA POR. 14554), photo B.W. Hoeksema; D. *Petrosia (Petrosia) nigricans* (POR.15989), photo B.W. Hoeksema; E. *Petrosia (Petrosia) plana* (POR. 14516 and POR. 14520), photo B.W. Hoeksema; F. *Petrosia (Strongylophora) corticata* (ZMA POR. 16478 / NV/BA/061000/151), photo N.J. de Voogd; G. *Petrosia (Strongylophora) strongylata* (ZMA POR. 16747), photo N.J. de Voogd.
ACKNOWLEDGEMENTS

Many specimens and photographs were contributed by our colleague Dr Bert W. Hoeksema (Naturalis, Leiden) and we are also grateful for his help with logistics and field supervision. Prof. Alfi an Noor (Hasanuddin University, Makassar) kindly provided access to his laboratory and supported in many other ways. The curator of the Basel Museum, Mrs. Stockman, is thanked for the loan of Thiele’s Celebes material. The curator of the Uppsala Museum, Mr. Mats Eriksson, is thanked for the loan of Lindgren’s P. nigricans. The curator of the Museum for Tropical Queensland, Mr. Peter Arnold, is thanked for the loan of P. pigmentosa. Prof. Sven Zea (Universidad Nacional, Colombia) kindly reviewed the manuscript and made useful corrections. Fieldwork of NdV was financed by NWO-WOTRO under grant nr. W84-474. The EC-MAS3 grant CT97-0144 (‘SYMBIOSPONGE’) to RvS provided funds for field collecting and photographing of Dr B.W. Hoeksema.