Stellar collisions in young star clusters
Gaburov, E.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1
 1.1 Stellar collisions in star clusters 1
 1.2 Outline of the thesis 5

2 Mass segregation in star clusters 9
 2.1 Introduction 10
 2.2 The Model 11
 2.3 Results 14
 2.3.1 Core radii 14
 2.3.2 Colour gradients 17
 2.4 Discussions and conclusions 17

3 Mass function in the central region of the Arches cluster 21
 3.1 Introduction 22
 3.2 Dynamical evolution of the mass function 22
 3.2.1 Parameters for the simulations 22
 3.2.2 Dynamical evolution towards core collapse 24
 3.2.3 Post-collapse mass function 26
 3.3 Mass function of the Arches cluster 27
 3.4 Discussion and conclusions 29

4 Dynamics of the first collision in young star clusters 33
 4.1 Introduction 34
 4.2 Setup and initial conditions 35
 4.3 The circumstances of the first collision 37
 4.3.1 The location of the first collision 37
 4.3.2 The time of the first collision 38
 4.3.3 Mass distributions 43
 4.4 The collision geometry 46
 4.5 Discussion and conclusions 48

5 Hydrodynamics of the first collision in young star clusters 53
 5.1 Introduction 54
 5.2 Methods and Conventions 56
 5.2.1 SPH code 56
 5.2.2 Equations of motion 56
5.2.3 Integration in Time 58
5.2.4 Choice of Units 58
5.2.5 Relaxing a single star 59
5.3 Relaxing a binary star 60
5.4 Initial conditions 63
5.5 Results .. 67
5.6 Discussion and Conclusions 82

6 Mixing in massive stellar mergers 87
6.1 Introduction ... 88
6.2 Methods ... 89
 6.2.1 Guiding Principle 89
 6.2.2 Sorting method 89
 6.2.3 Stability Criterion in High Mass Stars 91
6.3 Validation ... 92
 6.3.1 Initial conditions 92
 6.3.2 Results ... 93
6.4 Discussion and conclusions 97

7 The evolution of runaway stellar collision products 101
7.1 Introduction ... 102
7.2 Methods ... 103
 7.2.1 Stellar collisions 103
 7.2.2 Stellar evolution 104
 7.2.3 Mass loss 105
 7.2.4 Rotation .. 106
7.3 Results .. 107
 7.3.1 Structure and size of the merger remnants 113
 7.3.2 Final remnant masses 115
 7.3.3 Surface abundances and chemical yields 116
 7.3.4 Metallicity effects 119
7.4 Discussion and conclusions 120

Summary .. 123

Samenvatting ... 127

Acknowledgements 131

List of publications 133

Bibliography ... 135