Neural representation of reward information: coding by single cells and populations in rat orbitofrontal cortex

van Duuren, E.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 3

Population coding of reward magnitude in the orbitofrontal cortex of the rat
Abstract

Although single cell coding of reward-related information in the orbitofrontal cortex (OFC) has been characterized to some extent, much less is known about the coding properties of orbitofrontal ensembles. We examined population coding of reward magnitude by performing ensemble recordings in rat OFC while animals learned an olfactory discrimination task in which various reinforcers were associated with predictive odor stimuli. Ensemble activity was found to represent information about reward magnitude during several trial phases, namely when animals moved to the reward site, anticipated reward during an immobile period and when they received it. During the anticipation phase, Bayesian and template matching reconstruction algorithms decoded reward size correctly from the population activity significantly above chance level (highest value of 43 and 48%, respectively; chance level 33.3%), whereas decoding performance for the reward delivery phase was 76 and 79%, respectively. In the anticipation phase, the decoding score was only weakly dependent on the size of the neuronal group participating in reconstruction, consistent with a redundant, distributed representation of reward information. In contrast, decoding was specific for temporal segments within the structure of a trial. Decoding performance steeply increased across the first few trials for every rewarded odor, an effect that could not be explained by a nonspecific drift in response strength across trials. Finally, when population responses to a negative reinforcer (quinine) were compared to sucrose reinforcement, coding in the delivery phase appeared to be related to reward quality, and thus was not based on ingested liquid volume.
Introduction

The orbitofrontal cortex (OFC) is thought to contribute to the guidance of goal-directed behavior through the formation of neural representations of predicted outcomes. Studies examining single unit activity in OFC during operant behavior demonstrated that firing rates are modulated by the motivational value of stimuli and represent reward-predictive information during anticipation of various types or amounts of reward (Hikosaka and Watanabe, 2000; Ichihara-Takeda and Funahashi, 2006; Lipton et al., 1999; Padoa-Schioppa and Assad, 2006; Ramus et al., 2007; Roesch and Olson, 2004; Roesch et al., 2006; Schoenbaum et al., 1999, 2003; Simmons and Richmond, 2008; Thorpe et al., 1983; Tremblay and Schultz, 1999; Wallis and Miller, 2003; Yonemori et al., 2000). These single cell studies have not shown how predicted or actual rewards are dynamically represented by populations in OFC. This question is especially relevant for understanding how other, connected brain areas may read out population activity from this structure (Wu and Amari, 2005; Pouget et al., 2000). Until now, population coding analyses have been mainly used for reconstruction of arm movement direction during a reaching task (e.g. Georgopoulos et al., 1986), reconstruction of an animal’s environmental location (e.g. Wilson and McNaughton, 1993), and to predict behavioral responses (e.g. Baeg et al., 2003; Laubach et al., 2000). Only a few studies have thus far described ensemble activity within OFC. Gutierrez et al. (2005) found that ensemble activity in rat OFC discriminated between sucrose versus water reward, but this distinction was made in a free-licking situation, thus without predictive cues and a contingent operant response. In a sensory discrimination task in rats, Schoenbaum and Eichenbaum (1995b) showed that, during stimulus sampling, OFC population activity represented expectation of a reward presented in the following trial. However, it remains unknown how actual and predicted rewards are represented in the population within a specific trial phase during an operant task, and whether such a population code would be specific for different trial phases. Here it is of special interest to compare representations when the animal anticipates reinforcement or when he receives it. For the reinforcer consumption phase, we also asked whether the observed ensemble coding is related to reward quality or can be explained by coding of the ingested volume of liquid reinforcer. In addition, we examined whether reward magnitude is represented in OFC in a sparse or redundant manner, i.e. by a few highly specifically tuned cells or in a broadly distributed way (cf. Narayanan et al., 2005). Finally, we addressed the dynamics by which consistent coding develops as the learning task progresses. It has been hardly feasible to examine learning-related changes on a trial-by-trial basis in single unit recordings from OFC, because single-unit firing patterns show great variability from trial to trial, making it difficult to track systematic changes during learning. To address these various aspects of
population coding, ensemble recordings were made from rat OFC during a five-odor discrimination ‘go/no-go’ task, in which odors were predictive for various amounts of an appetitive sucrose solution, for no reward or an aversive quinine solution.

Materials and Methods

Subjects
All experiments were approved by the Animal Experimentation Committee of the Royal Netherlands Academy of Arts and Sciences and were carried out in accordance with the National Guidelines for Animal Experimentation. Data were collected in 17 sessions recorded from 6 male Wistar rats (Harlan CPB; Horst, The Netherlands; sessions partially overlapped with those presented in a single unit study, Van Duuren et al. 2007). Animals were weighed and handled daily and socially housed in standard type 4 macrolon cages under a reversed 12 hr light/dark cycle (dimmed red light at 7:00 AM). Weight at the time of surgery was 325-425 g. After surgery, animals were housed individually in a larger cage (1 x 1 x 1 m) under similar conditions. Food was available ad libitum, but animals were water restricted. They had access to water with a variable delay after the end of the recording session in the home cage for a 2 hour period.

Behavior

Apparatus
Recordings were made in a black plexiglas operant chamber (40 x 37 x 41.5 cm), placed in a sound attenuated and electrically shielded box. The front panel contained on the right side a light signaling trial onset and an odor sampling port, and on the left side a delivery well for fluid reinforcement. Responses made by the animal in the sampling port and fluid well were registered by an infrared beam transmitter and detector. Behavioral events during task performance and data collection were controlled by a computer. Odor delivery was controlled by a system of solenoid valves and flow meters. To prevent mixing up of odors within the system, separate delivery lines for each odor were present. The different types of fluid reinforcement were delivered with separate fluid lines. Fluid delivery was gravity-driven, with a tap and valves controlling the flow and amount of fluid delivered. The odorants (Tokos BV; Noordscheschut, The Netherlands) were separated into different families, i.e. woody, fruity, herbal, citrus and floral. Each set of odors used in a discrimination session contained one odor from each family. In addition, no single family of odors was preferentially associated with a particular trial outcome.
Behavioral paradigm

When animals were habituated to the recording chamber, the training on the behavioral procedure of the five-odor olfactory discrimination ‘go-no/go’ task started. In this task, odors signaled whether a ‘go’ response resulted in a particular amount of a positive reinforcement, or in a negative one. We used five different odors in each session, each of which was uniquely predictive throughout the trial of either an amount of an appetitive sucrose solution (10% sucrose in water, i.e. 0.05, 0.15 and 0.30 ml), no reward (non reinforced-condition), or an aversive quinine solution (0.15 ml of a 0.015 M quinine in water). A particular odor was never used in more than one session. Criterion for behavioral performance was set at 15 trials per positively rewarded trial type, because it was difficult to reliably obtain more trials due to the larger reward volumes. When animals reached this criterion during training, they were implanted with a multi-tetrode array (“hyperdrive”) and recordings started. For each recording session a new set of five odors was used. During the task, in which odors were presented pseudo-randomly, the onset of the trial light indicated that animals could initiate a trial by making an odor poke. If no odor poke was made within 15 s after onset of the light, the light switched off and the inter-trial interval started (with a variable duration of 10-25 s). After initiation of an odor poke the trial light switched off after 500 ms, followed 500 ms later by the odor presentation. This interval was included to prevent the animal from moving during cue sampling. Odor sampling itself was required to last at least 1 s. After retraction from the odor sampling port or whenever a maximal duration for odor sampling (10 s) was exceeded, odor presentation was terminated. Premature retraction from the odor sampling port (odor poke shorter than the minimal duration of 2 s) resulted in the onset of the inter-trial interval. The nose poke in the fluid well marked the onset of an immobile waiting period of 1.5 s after which reinforcement was delivered. Whenever reinforcement was delivered, animals had 10 s to consume the reward, after which the inter-trial interval started. Incorrect (‘go’) responses after sampling an odor predictive of quinine or the non-rewarded contingency had no further programmed consequences. Furthermore, no other, separate reinforcer was applied during these trials. The behavioral sequence comprising the departure from the sampling port to the fluid well, including nose entry and waiting period in the well, will be referred to as the ‘go’ response.

Surgery, electrophysiology and histology

Animals were anaesthetized with 0.08 ml/100 g Hypnorm i.m. and 0.04 ml/100 g Dormicum s.c. (Roche Netherlands, Woerden) and mounted in a Kopf stereotaxic frame. After exposure of the cranium 5 small holes were drilled into the cranium to accommodate surgical screws, one of which served as ground. Another larger hole was drilled over the OFC in the left hemisphere (centre of the hole 3.2
mm anterior, 3.2 mm lateral to bregma according to Paxinos and Watson, 1996). The dura was opened and the exit bundle of the hyperdrive was lowered onto the exposed cortex. The hole was subsequently filled with a silicone elastomer (Kwik-Sil, World Precision Instruments, Sarasota, Florida), after which the hyperdrive was anchored to the screws with dental cement. The hyperdrive consisted of an array of 12 individually drivable tetrodes and 2 reference electrodes (13 μm nichrome wire; Kanthal, Palm Coast, Florida), spaced apart by at least 310 μm (Gothard, 1996; Gray et al., 1995). Immediately after surgery all tetrodes and reference electrodes were advanced 1 mm into the brain; in the course of the next three days the tetrodes were gradually lowered until the OFC was reached. Animals were allowed to recover at least 7 days before the start of the recordings. Before each session started, tetrodes were lowered with increments of 40 μm to search for novel neurons to be recorded, after which the animal was brought back to his home cage and left to rest for at least two hours for the brain tissue to stabilize. Electrophysiological recordings were made using a Cheetah recording system (Neuralynx, Bozeman, Montana). Signals from the individual leads of the tetrodes were passed through a low noise unity-gain field-effect transistor preamplifier, insulated multi-wire cables and a 72 channel commutator (Dragonfly, Ridgeley, West Virginia) to digitally programmable amplifiers (gain 5000 times; band-pass filtering 0.6-6.0 KHz). Amplifier output was digitized at 32 KHz to record spike waveforms and stored on a Windows NT station. The occurrence of task events in the behavioral chamber was recorded simultaneously.

When all experiments with a given rat were finished, tetrode positions were marked by passing a 10 s, 25 μA current through one of the leads of each tetrode. After approximately 24 hours animals were perfused transcardially with a 0.9% saline solution followed by 10% formalin. Upon removal from the skull, brains were stored in a 10% formalin solution for several days before sectioning. Brain sections of 40 μm were cut using a vibratome and were Nissl-stained to reconstruct the tracks and final positions of the tetrodes. This showed that recording sites ranged from 2.7 mm to 4.7 mm anterior to bregma, and were limited to the ventral and lateral orbital regions of the OFC. Recording depth ranged from approximately 3.0 mm to 5.5 mm (Paxinos and Watson, 1996; Fig.1).

Data analysis

Behavior

Behavioral data was analyzed using SPSS for Windows (version 11.0). Unless otherwise stated, results are expressed as mean ± SEM values. We distinguished two measures to analyze reaction times during the task: Movement Time was defined as the duration between nose retraction from the odor port and nose entry into the
Figure 1. Localization of tetrode recording sites. As indicated by rectangles, recordings in all rats were localized in the ventral and lateral regions of the OFC, between 2.7 and 4.7 mm anterior from bregma. Recording depth ranged from approximately 3 mm to 5.5 mm (Paxinos and Watson, 1996). Indicated by black arrows in the histological section are several partially visible tetrode tracks. Black asterisks mark the lesion sites that show the final position of three tetrodes.

fluid well, Overall Response Time as the duration of the entire sequence of odor sampling (starting at odor presentation) and nose entry into the fluid well. The mean response times per reward magnitude were obtained from all corresponding trial types within all the sessions that were used for analysis. These measures were compared across different trial types with the non-parametric Kruskal-Wallis test (P < 0.05), followed by a post-hoc Mann-Whitney U test (P < 0.05).

Electrophysiology

Isolation of single units

Single units were isolated by off-line cluster cutting procedures (BCClust/MClust 3.0). Before a cluster of spikes was accepted as a single unit, several parameters and graphs were checked visually: the averaged waveform across the four leads, the cluster plots showing spike parameter distributions such as peak amplitudes across the four dimensions, the autocorrelogram and the spike interval histogram. Since the absence of spike activity during the refractory period (2 ms) is indicative for good isolation, units of which the autocorrelogram and the spike interval histogram revealed activity during this period were removed from the analysis. For the ensemble analysis, all remaining units were taken into consideration.
Variability of the representation of reward magnitude

To examine variability in firing rates to reward magnitude, we calculated two variability measures (these have also been used for indicating sparseness of neural coding; cf. Perez-Orive et al., 2002; Rolls and Tovee, 1995). Briefly, the population variability (S_{pop}) is indicative of the variability in the mean firing rate of single cells across the population, irrespective of reward size, and is computed by:

$$S = \frac{N}{N-1} \frac{\bar{r}^2 - (\bar{F})^2}{\bar{F}^2}$$ \hspace{1cm} (Eq.1)

with

$$\bar{r} = \frac{1}{N} \sum_{j=1}^{N} r_j$$

and

$$\bar{F}^2 = \frac{1}{N} \sum_{j=1}^{N} F_j^2$$

where N indicates the number of units and r_j the mean firing rate of neuron j during a particular trial phase, averaged across all three reward conditions. Thus, \(\bar{r} \) represents the mean firing rate in the population and \(\bar{F}^2 \) the mean squared firing rate. The parameter variability (S_{par}), which is indicative of a single cell’s response variability attributable to differences in reward size, was calculated in a similar fashion, but index j now indicates each reward size and N the total number of reward sizes (N = 3 in the current study). Both measures were calculated for the waiting and reward delivery phase within a time frame of 1.5 s; for the movement period the frame was 1.0 s. Values ranged between 0 and 1, with 1 representing the maximum variability attainable.

Ensemble analysis: general principles of population coding.

Population activity was examined using two different reconstruction methods, the Bayesian method and template matching. Before explaining both methods in more detail, we will first point out the general concepts behind them. A central postulate in systems neurophysiology is that macroscopic parameters (usually in the external world, such as the speed of a moving object) are encoded in the patterns of action potentials generated by neurons. Given these spike patterns, one may also ask how one could make sense out of them, that is how one could understand what type of information about macroscopic objects or properties they represent. To operationalize this general task, we may ask what a given spike train can tell the experimenter about the stimulus or cognitive process that gave rise to the spike train in the first place (Rieke et al., 1997). For example, given a situation in
which a particular spike train may have been evoked by any of three sensory stimuli, the task for a neutral observer, not aware of the actual stimulus, is to decide which of these stimuli was in fact applied to elicit the spike train. This process of reconstructing the original stimulus (or other macroscopic variables) from the spike train is termed decoding. The current objective is to decode the variable reward magnitude from multi-neuron spike trains. This can be attempted for spike trains generated in anticipation of the reward (expected magnitude, as a cognitive variable), or in relation to the actual reward, as it is delivered to the animal.

Decoding can be accomplished successfully on the basis of single-cell firing activity (e.g. Bialek et al., 1991). If one would choose to use the average firing rate of a single neuron in order to decode a macroscopic variable, the procedure would rely on one scalar value. In ensemble recordings studies, however, the firing activity of many neurons offers a potentially much richer source of information; firing-rate values of all simultaneously recorded neurons can be used for decoding, and the series of firing-rate values from all neurons is conceptualized as a population vector. If one records N neurons in a given session, a population vector \mathbf{v} can be represented as a series of firing rate values: $\mathbf{v} = (s_1, s_2, ..., s_N)$, where s_i is the firing-rate value (scalar) of the first neuron, etc. Geometrically, a vector is an entity in Euclidean space that has both magnitude and direction; for instance, a vector composed of the firing rates of two cells [$\mathbf{v} = (s_1, s_2)$] can be rendered as an arrow in a two-dimensional plane.

If a neutral observer is only provided with a sample of firing-rate values of a given set of recorded neurons, but has no knowledge of how macroscopic parameters ’map onto’ their firing responses, he would not be able to decode those parameters successfully. Thus, knowledge is needed as to how neurons are ‘tuned’ to the parameter under study; in other words, we need to know what the ’standard’ parameter mapping or encoding of these neurons is. Thus, besides needing a population vector for actually decoding the sample set of firing-rate responses back to the value of the macroscopic parameter (i.e. the population vector for decoding), we also should have a ’template’, or separate set of firing-rate values that tells us what the ‘standard’ mapping from the parameter onto firing-rate responses is (i.e. the population vector for encoding). In the current study, a total of 15 trials for each of the five odor-outcome pairs was available, and our standard approach was to extract the ’template’ (or encoding vector) from the last 6 trials of each pair (i.e. trials 10-15), whereas the sample set for decoding was obtained from trials 1-9 of each pair (see below).

Given the population vectors for encoding and decoding, some kind of mathematically explicit comparison between the vectors must next be carried out to complete the task of decoding. The sample (decoding) set of firing-rates must be compared to the template (encoding vector) to reconstruct which macroscopic parameter value was the most likely one giving rise to the observed sample responses.
While both the template-matching and Bayesian reconstruction methods are described below in more detail, the template-matching method works essentially as follows. If we define a template (encoding vector) for two cells as \(T = (t_1, t_2) \) with \(t_i \) being the firing-rate response of cell \(i \) to a given parameter, and a to-be-decoded sample of the same cells as \(D = (d_1, d_2) \), then it is straightforward to visualize these two vectors as two arrows in two-dimensional space, having the same origin. The similarity (or degree of matching; hence the term ‘template matching’) between the vectors can be expressed as the cosine of the angle between the two vectors, as further explained below.

Although population-coding methods as described have the potency to yield important insights bridging gaps between the single-neuron and behavioral-cognitive levels, some limitations can be delineated. The objective of decoding is naturally limited to the parameter that was varied (in this case, reward magnitude); thus the OFC is likely to encode other macroscopic variables (cf. O’Doherty et al., 2001; Roesch et al., 2006; Wallis and Miller, 2003), which however should be addressed separately. Secondly, because we only measure and consider neural correlates of reward in OFC, no conclusions can be drawn as to how OFC populations come to express the capacity for reward-size coding; afferent pathways and intracortical mechanisms for achieving this capacity must be studied separately. Thirdly, while in the current study mean firing rate (per trial phase) was used as a measure of neural response, other aspects of firing patterns, such as related to spike timing, may make additional contributions to population coding (cf. Narayanan and Laubach, 2005). Besides these aspects there is no ‘code’ in the neural patterns that could be deciphered, or at least the current methods do not provide a way to do this, if possible at all.

Population coding of reward magnitude: template matching

For the main analysis, only the three positively rewarded trial types were taken into consideration, since the quinine and non-reinforced conditions did not yield enough trials for a meaningful analysis except for a control procedure (see Results section). As pointed out above, the sessions, all containing 15 correctly performed trials per reward size, were divided into two blocks, of which the first block (trials 1-9) was used for decoding and the second (trials 10-15) for encoding. The first nine trials of the session were chosen for decoding to be able to examine how the representation of reward information builds up during the initial learning phase in the task. We also examined whether a random selection of trials for decoding would provide a similar result; this analysis showed that with randomly selected trials decoding scores were obtained that were generally higher than with the trials 1-9.
Two vectors were constructed for each reward size, denominated as $\mathbf{x} = (x_1, x_2, ..., x_N)$ and $\mathbf{y} = (y_1, y_2, ..., y_N)$, containing the spike counts within a specified time window for the encoding (\mathbf{x}) and the decoding block (\mathbf{y}), with x_i and y_i indicating the spike count of cell i averaged across trials. Thus, the population vector \mathbf{x} is used for the encoding part of the procedure (i.e. for determining the “template” or ‘tuning curves’ of the cells towards reward magnitude, using the last part of the session, trials 10-15; see above). The population vector \mathbf{y} is used for the decoding part of the procedure, where the spike counts, specific for reward sizes, are taken from the same cells, but now from the first part of the session, trials 1-9). The two vectors were then compared to calculate the decoding score, which is the percentage of correctly identified reward amounts in the decoding phase, based on the activity patterns found in the encoding phase (Fig. 2). Hence the ensemble code for reward magnitude is made up of the different firing rates of all recorded cells combined in the en- and decoding phase in relation to reward magnitude. Note that, besides mean firing rate per trial phase, other aspects of firing patterns, such as related to spike timing, may make additional contributions to ensemble coding (cf. Narayanan and Laubach, 2005).

For each trial phase in which we examined population coding of reward size we used a standard time window, corresponding with the duration of that particular phase within the trial. Reconstruction of reward size for the period during which the animal moved from the sampling port to the fluid well was done with a time frame of 1 s, whereas for the period when the animal awaited reinforcement with its nose in the fluid well, a time-frame of 1.5 s was used. During the reward delivery phase, the time frame in which reward size was reconstructed was 10 s, unless otherwise mentioned.

With template matching, the similarity between the vectors containing the spike count in the defined time window for the encoding and decoding block was calculated by computing the cosine of the angle between them (Lehky and Sejnowski, 1990; Zhang et al., 1998; Louie and Wilson, 2001). A value of 1 represents an exact similarity between the two vectors and -1 the exact opposite, whereas 0 (i.e. orthogonal) indicates no similarity between the two vectors. We first calculated the inner product of \mathbf{x} and \mathbf{y}:

$$\sum_{i=1}^{N} x_i y_i$$ \hspace{1cm} (Eq. 2)

where x_i and y_i indicate the average firing rate of neuron i from a total of N cells within the specified time window for the encoding and decoding block, respectively (Fig. 2). Then the cosine was calculated by:
\[
\cos \theta = \frac{\sum_{\text{all } i} x_i y_i}{\|x\| \cdot \|y\|}
\]
(Eq.3)

with the denominator representing the product of the absolute vector lengths. If the decoding spike vector belonging to a particular reward amount produced the highest cosine value with respect to the encoding vector, then that particular reward size was selected as reconstructed amount of reward (Fig.2).

Figure 2. Schematic representation of the template matching procedure. This example shows the decoding of 150 \(\mu\)l of sucrose solution. First three encoding vectors are generated, one for each reward size, which contain the firing rates of all cells obtained from trials 10-15. These vectors serve as templates. The sample set (or decoding vector) contains the firing rates obtained in trials 1-9. The decoding set is compared with the template in order to reconstruct which parameter value gave most likely rise to the observed sample response. To this end, the similarity between the encoding and decoding vectors is calculated for all three reward amounts by computing the cosine of the angle \(\theta\) between the decoding vector and each of the three encoding vectors (see also Eq. 3). The highest cosine value (max \(\cos \theta\)), which indicates the highest similarity between two vectors, is selected as reconstructed amount of reward. In this example, the decoding vector shows the highest similarity with the encoding vector constructed for 150 \(\mu\)l. Hence, 150 \(\mu\)l is selected as the reconstructed amount of reward.

In several graphs, the decoding score (i.e. the percentage of trials in which the amount of reward was correctly reconstructed) was expressed as a function of time or as a function of the size of the ‘reconstruction ensemble’, i.e. the group of neurons which was subsampled from the entire population and used for the calculations. The maximum size of the reconstruction ensemble was 37: this value represents the median value of the number of cells recorded in all sessions, which ranged between
26 and 60. Calculations were made for each recording session, after which data was averaged. For the assessment of decoding as a function of size of the reconstruction ensemble, the decoding score was calculated a hundred times for each group size, each time with neurons randomly picked from the population recorded in that particular session. Decoding as a function of time was calculated with a reconstruction ensemble of 37 neurons as well: the decoding score was calculated a hundred times per time window, each time with randomly picked neurons. The decoding curves were further analyzed by applying linear regression analysis (P < 0.05) and a one-way ANOVA test with Bonferroni correction (P < 0.05).

Population coding of reward magnitude: Bayesian reconstruction

Bayesian or probabilistic reconstruction was used as previously described by Földiák (1993), Sanger (1996), Zhang et al. (1998) and Thiel et al. (2007). Briefly, population vectors were calculated as pointed out above and decoding was based on the equation of conditional probability:

\[P(s \mid y)P(y) = P(y \mid s)P(s) \quad \text{(Eq.4)} \]

where \(P(s \mid y) \) indicates the probability of a reward size \(s \) given the multi-neuron spike pattern vector \(y \), \(P(s) \) indicates the prior probability of reward size, which does not need to be calculated since it has a fixed value of \(1/3 \) due to the three different amounts of rewards that were applied with equal probability across trials. The probability \(P(y) \) for the spike-containing decoding vector \(y \) to occur does not need to be calculated as well: because the reconstructed amount of reward was the most probable reward size of the probability distribution (see below), this can be considered as an unnecessary scaling factor.

Under the assumptions of a Poisson distribution of spike timing and cells firing independently from each other, \(P(y \mid s) \) for every reward size \(s \) was computed by:

\[P(y \mid s) = P(y \mid x(s)) = \prod_{i=1}^{N} P(y_i \mid x(s)) = \prod_{i=1}^{N} \frac{(x_i(s))^y_i}{y_i!} \exp(-x_i(s)) \quad \text{(Eq.5)} \]

where \(x_i \) is the product of the length of the time window \(\tau \) and the average firing rate \(f_i(s) \) of cell \(i \) for a given reward size, and \(x(s) \) is the multi-neuron spike pattern vector used for encoding (i.e., determining the ‘tuning’ of neurons to reward size). We calculated the logarithms of the probabilities \(P(y \mid x(s)) \) to avoid working with extremely small values. The most probable reward size of the probability distribution was taken as the reconstructed amount of reward, which is the maximum of
\(P(y \mid x(s)) \). The latter quantity is equivalent to \(P(s \mid y) \) (see Eq. 4). Further data analysis was done as described for template matching.

Analyzing the data with these different decoding methods revealed that in all cases decoding scores for reward amount were slightly higher with template matching than with the Bayesian method. To elaborate on the lower decoding scores for Bayesian method as observed in our results, we recalculated decoding with various variants of the Bayesian method. When the spike timing distributions are approximated by a Poisson distribution, the firing rates within the decoding vector are rounded to integers (see Eq. 5). To examine whether the use of integer values contributes to a lower performance, we tried a gamma distribution instead, but did not observe an improvement. When a Gaussian was used as distribution of spike timing, decoding scores were comparable with those obtained under a Poisson distribution as well. This may be due to the high proportion of cells with low firing rates, which causes the use of a Gaussian distribution to be inappropriate. It should be noted, however, that cells with low firing rates were found to be important for reconstruction, since their removal from the reconstruction ensemble led to lower decoding scores than when these cells were taken into account.

Results

Behavior

Data from 17 recording sessions were used for the analysis, obtained from 6 rats. For all three positively rewarded trial types, animals needed on average about 17 trials to reach the criterion of 15 successful trials per reward size (0.05 ml: 16.7 ± 0.4, proportion correct 88%; 0.15 ml: 16.8 ± 0.6, proportion correct 88%; 0.30 ml: 17.9 ± 0.7, proportion correct 83%). For the non-reinforced and quinine trial types animals made on average 5.4 ± 0.7 and 5.1 ± 0.8 ‘go’ responses, respectively (sucrose versus quinine or versus non-reinforced: \(P = 0.000 \); paired sampled t-test). The reason why rats initially perform responses during quinine trials might be that they have to taste the reinforcing fluid in order to learn which outcome to avoid or to approach based on the initially neutral olfactory stimuli.

Examination of the Movement Time showed no significant differences between the positively reinforced trial types (0.05 ml: 1.42 ± 0.04 s, 0.15 ml: 1.40 ± 0.04 s and 0.30 ml: 1.41 ± 0.04 s; number of trials per reward size: 255). When the positively reinforced trial types were combined (1.41 ± 0.01 s), Movement Time for sucrose trials was significantly shorter compared to quinine trials, but not compared to the non-rewarded trial types (quine ‘go’ responses: 1.82 ± 0.16 s; \(n = 87 \); non-rewarded ‘go’ responses: 1.51 ± 0.07 s; \(n = 88 \)). The Overall Response Time revealed that animals responded significantly faster to obtain the highest amount of
reward compared to the lowest amount; comparison of these reward amounts with the middle-sized reward showed no significant difference (0.05 ml: 3.76 ± 0.07 s, 0.15 ml: 3.60 ± 0.06 s and 0.30 ml: 3.48 ± 0.06 s). Thus, learning within this task was evident from the faster Overall Response Time for the largest reward and from the lower number of quinine responses, which were performed with a slower Movement Time as well compared to responses during sucrose trials.

Electrophysiology
Variability in the representation of reward magnitude
Over the course of 17 sessions recorded in 6 animals, a total number of 683 single units was obtained. The number of single units recorded per session ranged from 26 to 60 (mean ± SEM: 40.2 ± 2.4), with a mean firing rate of 1.85 ± 0.15 spikes/s. Neurons could be specifically activated during several task phases, including odor sampling, the behavioral phase in which animals moved from the odor sampling port to the fluid well (‘movement phase’), the period of waiting for reinforcement in the fluid well and the reward period (i.e. the period after reward delivery lasting for 10 s) (Fig. 3). Examination of ensemble activity focused mainly on two task periods, namely the waiting and reward delivery period, because we expected reward predictive information to be coded especially during the waiting period, and information about the size of the actual reward after reward delivery. When of particular interest, population coding was also examined for the movement phase. Since the task was not designed to determine whether differential responses during cue sampling were due to different sensory inputs (odor identity) or expectancy of varying reward magnitude, results regarding the coding of expected reward magnitude during this phase would be inconclusive. Hence, ensemble activity in this task period was not examined.

Prior to studying population coding principles themselves, we first aimed to assess (i) to what extent the firing-rate variability of single cells is attributable to effects of reward size, and (ii) whether whole OFC populations exhibit a high or low degree of overall firing-rate variability, irrespective of reward size. This was done by calculating two variability measures, namely parameter variability (S_{par}) and population variability (S_{pop}). The mean S_{par}, indicating the response variability of individual neurons associated with variations in reward size (their ‘tuning curves’), was 0.23 for the waiting period and 0.28 for the reward delivery phase (Fig. 4A and B). The mean S_{pop}, which represents the variability in firing rate across the population regardless of reward size effects, was 0.70 for the waiting period and 0.73 for the reward period (Fig. 4C and D). Similar findings were obtained for the movement period, namely a mean S_{par} value of 0.25 and a mean S_{pop} value of 0.76. These results show, first, that there is a high variability of firing rates throughout the
population, as illustrated by the high S_{pop} values throughout the 3 trial phases. Second, this phenomenon is not matched by a similarly high reward-related variability when individual cells are considered: OFC neurons displayed less variability in their tuning curves to reward size, since for all three task periods the large majority of the cells had values below 0.5 (movement period: 76%, $n = 518$; waiting period: 79%, $n = 541$; reward period: 76%, $n = 520$). Apparently, other factors must be present besides the reward-modulated response profiles of the individual cells to explain the high variability in the overall population, e.g. differences in baseline firing rate or differences in responsivity during various task phases, although a small subgroup was present with a very high parameter variability (range 0.9-1.0) in all three task phases.

In conclusion, whereas firing rates throughout OFC populations are highly variable, modulation of single-cell firing rate that is attributable to reward size is
relatively subtle, in line with a previous analysis of single-unit activity in OFC (Van Duuren et al., 2007).

Figure 4. Distribution of population variability and parameter variability across orbitofrontal cell populations. A and C: waiting period; B and D: reward period. Values of population variability across sessions were generally in a high range between 0.4 and 1.0, with means of 0.71 and 0.73 for the waiting and reward period, respectively. Parameter variability values varied more strongly, spanning the whole range from 0.0 to 1.0 for both periods, with means of 0.23 and 0.28 for the waiting and reward period, respectively. Similar findings were obtained for the movement period, namely a mean S_{pop} value of 0.25 and a mean S_{par} value of 0.76 (not shown). Note the subgroup of cells with very high parameter variability (0.9-1.0).

Population coding of expected and actual reward magnitude

We will describe first an application of the Bayesian method and template matching in which the magnitude of reward was decoded from ensemble activity in the positively rewarded trial types across the first 9 trials of the session, whereas trials 10 to 15 were used for encoding. During the movement, waiting as well as the reward period, the magnitude of reward was decoded from the population activity with a percentage of correct performance significantly above the 1/3 chance level for both methods (one-way ANOVA; $P = 0.000$ in all three cases). When the decoding score was plotted as a function of the number of cells participating in the reconstruction ensemble, regression analysis showed that with template matching the slope of the decoding curve was significantly positive for all three task phases ($P = 0.000$ in all cases), meaning that the decoding performance improved with an
increasing amount of cells (Fig. 5). The maximum decoding scores were 57% (at n = 30 cells) for the movement period, and 48% (n = 36 cells) and 76% (n = 36 cells) for the waiting and reward period, respectively. We also calculated the decoding score for the subgroup of the sessions that did not show a significant difference in response latency between the lowest and highest amount of reward. Reward magnitude could be reconstructed above chance level in this group as well. This finding indicates that significant population coding is present in OFC even in the absence of overt behavioral differences, which corroborates the notion that OFC activity is not necessarily tied to motor behavior and involves a cognitive process.

The Bayesian method produced similar although generally somewhat lower decoding scores, with maximum scores of 44% for the movement period and waiting period (at respectively n = 26 and n = 24 cells), and 79% for the reward period (n = 36 cells). Also for this method, regression analysis indicated a significantly rising score with increasing ensemble size for the reward period (P = 0.000). For the waiting and movement period, however, no significant effect was found.

Across all analyses presented here, Bayesian reconstruction and template matching produced similar results for the reward period, whereas for the waiting-anticipation phase the decoding scores were similar or lower for the Bayesian as compared to template-matching method. Such differences may be due to several factors (see Materials and Methods). Below, we will concentrate on results obtained with template matching.

![Figure 5](image.png)

Figure 5. Decoding of reward magnitude with template matching: dependence on ensemble size. The horizontal axis indicates the size of the reconstruction ensemble, the vertical axis the percentage of trials in which reward size was correctly decoded. In the graphs presented here and below, the horizontal dashed line indicates chance level (33.3%) and dotted lines flanking the curves represent the 95% confidence interval (two times the standard error of proportion).

Temporal resolution of ensemble coding

Because the results indicated reward magnitude to be represented in population activity during task performance in a manner that was consistent across
de- and encoding blocks, the question arose what the temporal resolution of population coding was. This question is relevant for understanding OFC function, because when significant coding is present across short time intervals, this may facilitate rapid decision-making and fast behavioral responding. We first asked how the decoding score depends on the width of the time window used for en- and decoding applied to either the waiting or reward period. To this end we selected smaller time windows from the overall time windows of the waiting and reward period (1.5 and 10 s, respectively), and calculated the decoding score for time windows of increasing duration. This provides a cumulative measure of the percentage of decoded reward size over time within each trial phase. The waiting period was divided into 6 time windows that started at 250 ms till 1.5 s, with increments of 250 ms. Time windows used for the reward period were, in addition to the six windows of 250 ms, 2, 3, 4, 5, 6, 8 and 10 s. Regression analysis indicated that with template matching the percentage of reward amount correctly decoded during the waiting and reward period rose with increasing length of the decoding window, with the slope of the decoding curve being significantly positive (waiting period: \(P = 0.039 \); reward period: \(P = 0.000 \); Fig. 6A and B). The maximum decoding scores obtained were 47% and 80% for the waiting and reward period, respectively. A one-way ANOVA indicated that during the waiting period only the decoding score obtained with a decoding window of 1.5 s was significantly above chance level (\(P = 0.001 \)), and furthermore revealed that there was no significant variation between the various window widths. In contrast, during the reward period, all time windows with exception of the first one differed significantly from chance level (\(P = 0.000 \)). Furthermore, the first two time windows (i.e. 250 and 500 ms) had a significantly lower decoding score than the final 6 time windows (i.e. 3, 4, 5, 6, 8 and 10 s). Thus, for a significant success rate in decoding actual reward size, only a short time segment (\(\sim 0.5 \) s) of the population response is needed, whereas the time segment needed for a significant success rate in decoding expected reward is somewhat longer, namely 1.5 s.

We next asked how the decoding capacity of the population varies over time across consecutive segments of the waiting and reward periods. This question probes the time resolution at which significant reward-predictive information is represented across consecutive time segments of a behavioral task phase. Therefore the percentage of correctly decoded reward amount was calculated for successive time segments across the entire length of the overall time windows of the waiting and reward period. Thus, a sequential method was adopted instead of the cumulative method used above. For the waiting period we used three consecutive time segments of 500 ms, for the reward period decoding was calculated during the first 2 s in time segments of 500 ms, followed by four time segments of 1 s, and the final two segments of 2 s. During both the waiting and reward period, regression analysis and
one-way ANOVA did not show a significant variation in decoding success, indicating that the amount of decodable information did not significantly differ across the various time segments within this task period (Fig. 6C and D).

Figure 6. Decoding of reward magnitude within specific trial phases. The size of the reconstruction ensemble was 37 neurons. Decoding score using time windows of increasing duration for (A) the waiting and (B) the reward delivery period. The horizontal axis shows the size of the time window (s) from which spikes were taken for reconstruction, the vertical axis the percentage of correctly decoded trials. Panels C and D depict the decoding success for consecutive temporal segments in the waiting and reward period, respectively. The horizontal axis now shows the time segment of trial phase used for reconstruction. In C, the decoding segments are the intervals (0-0.5), (0.5-1.0) and (1.0-1.5) s relative to fluid poke onset. In D, the segments are (0-0.5), (0.5-1.0), (1.0-1.5), (1.5-2.0), (2.0-3.0), (3.0-4.0), (4.0-5.0), (5.0-6.0), (6.0-8.0), (8.0-10.0) s relative to reward delivery.
Development of population coding during task progression

Since the data on Response Times and the number of trials per reinforcer indicated that in the course of a session animals generated predictions about response outcome and learned to discriminate between different amounts of reward, we addressed the question how the representation of reward magnitude by population activity evolved in the course of learning during a session. To this end, the decoding block was divided into four consecutive 2-trial blocks (block 1: trial 1 and 2; block 2: trial 3 and 4, block 3: trial 5 and 6; block 4: trial 7 and 8), and decoding was compared between these four blocks. Trial numbers 10-15 were used for encoding (as above). In all four trial blocks and for both the waiting and reward period, reward magnitude was decoded from the population activity above chance level (one-way ANOVA; \(P = 0.000 \)). Regression analysis indicated for the waiting period a significant slope of the decoding score for blocks 2, 3 and 4. Decoding with the first trial block differed significantly from all three other blocks, with an improvement in decoding score as the task progressed, except for the final (fourth) trial block. The second block did not differ from the third block, whereas the third block differed significantly from the fourth (Fig. 7A). During the reward period, all blocks showed a significant slope of the decoding curves. Furthermore, the decoding curves differed significantly between the first and the second block and the third versus the fourth, with an improvement of decoding success; the second block did not differ from the third block (Fig. 7B). An additional two-way ANOVA indicated no interaction between cell group size and trial block.

The trial-block sequence observed for the waiting period, in which block 1 is flat whereas the blocks 2, 3 and 4 show increasing decoding with an augmenting number of cells as indicated by the regression analysis, suggests that OFC ensembles have only a weak predictive ability at the beginning of the session (the first block), which is already consistently present in small subsets of neurons. At this time in the session, the decoding score does not rise with an increasing amount of cells; adding more cells to the ensemble adds both ‘confirmatory’ and ‘conflicting’ evidence about the predicted reward size. However, the ability to predict reward size increases with experience over trial blocks (blocks 2, 3 and 4), and the decoding score now comes to depend on the number of cells that participate in the ensemble, as indicated by the regression analysis. This means that at this point, the code has developed in a more consistent and redundant manner within OFC, with less conflicting neural evidence.

Non-specific drift across trials as a possible confounding factor

The increased decoding success found for later trial blocks relative to earlier ones may be either explained by a learning effect or by a non-specific ‘drift’ in ensemble responses over trials since the final block of 5 trials (i.e. trials 10-15) was used for the encoding.
Figure 7. Changes in reconstruction success across consecutive blocks of learning trials. Panels A and B show the percentage of correctly decoded reward amounts per trial block for the waiting and reward period, respectively. In view of the reliability of reconstruction due to the low number of trials per trial block, a reconstruction ensemble of 26 neurons was used, which was the minimal number of neurons present in all sessions. Horizontal axis indicates the size of the reconstruction ensemble. In A and B, encoding vectors were obtained from trials 10 to 15 for each reward size. To maintain clarity, standard errors of proportion are not shown, but these values were generally comparable to those in Fig.4. Panels C and D show mean decoding success for the encoding by late trials (i.e., 10-15) and its temporal mirror image (encoding by early trials, i.e. 1-6) for the waiting (C) and reward period (D). The abscissa denotes the proximity of decoding trials to the encoding block; the larger the decoding block number, the closer that block is to the encoding block. Error bars indicate SEM values.

To check whether the latter, confounding possibility would apply, we compared the 2-trials decoding blocks when the encoding block was situated at the session end (trials 10-15) with 2-trials blocks when the encoding block was situated at the start of the session (encoding block trials 1-6; decoding block 1: trial 7 and 8; block 2: trial 9 and 10, block 3: trial 11 and 12; block 4: trial 13 and 14). Because outcome-prediction learning is expected to be unevenly distributed across trials (with a rapid decrease in go-responses for the quinine and non-rewarded trials early in the session), it is predicted that these decoding procedures should yield separate or at most
partially overlapping curves for the waiting period if the progressive change in decoding is indeed due to learning. Thus, the curve with encoding by late trials should rise more steeply and then stabilize as compared to its temporal mirror image. As illustrated in Fig. 7C, showing the average of the decoding curves per trial block for the waiting period (as in Fig. 7A), the curves indeed confirmed this prediction. A one-way ANOVA (P < 0.05) indicated that for the waiting period all trial blocks of the two different encoding conditions differed significantly from each other, except for the fourth block. For the reward period – in which additional learning may or may not take place - the first and the fourth trial block differed significantly between the two encoding conditions, with a steeper rise across trial blocks when the encoding block was at the session end (Fig. 7D).

Altogether, these results indicate that progressive learning of odor-reward associations coupled to motor responses is accompanied by a quick rise in population coding of expected reward magnitude during the waiting period, followed by relative stabilization – a time course not attributable to non-specific drift. An additional learning-related increase in population coding appears to take place in the reward period, although this effect is less strong.

Temporal specificity of reward-coding within trials

In principle, it is possible that population activity does not code reward magnitude only during the single trial phases for which it was examined. For example, information about reward amount may be carried over from one trial period to the next, similar to ‘delay cells’ in e.g. monkey dorsolateral prefrontal cortex (Funahashi et al., 1989). In contrast, one may hypothesize that this type of information is coded by specific neuronal groups, active during a particular trial phase, without any working memory-like activity or carry-over to the next trial phase. To examine this, the time window in which decoding was calculated for the movement period (1 s) was shifted in time with a step size of 0.25 s relative to the onset of this period, whereas the time window for encoding remained unchanged. For each step the amount of decoding success was recalculated. If coding of expected reward magnitude is confined to periods around such a specific event, decoding is expected to approximate chance level shortly before and after the event period. As expected, Fig. 8A shows that during the movement period the decoding score for the expected magnitude of reward was highest when no time-shift was applied (∆t = 0). For both negative and positive shifts in time, the decoding scores decreased rapidly to chance level: the scores differed significantly from the decoding score calculated at time t = 0 (i.e. lower than two times the confidence interval at time t = 0) in the period after + 0.5 and before - 0.5 s, suggesting a large segregation with population coding during earlier and later trial phases.
The same procedure was applied for the waiting period, having a time-frame of 1.5 s (Fig. 8B). Relative to the maximal decoding score obtained when no time-shift was applied, the score dropped slightly within + 1.5 s after event onset, but only slowly returned to chance level after the + 1.5 s period. The decoding score differed significantly from the decoding score at time t = 0 in the period after + 2.0 s. The slow decay is likely related to a certain consistency in ensemble firing patterns across the phases of expected versus actual reward. In contrast, negative shifts in time produced a steep decrease in decoding score; the decoding scores were found to be significantly lower compared to the score at time t = 0 in the period before – 0.2 s.

Figure 8. Temporal specificity of coding reward size assessed with reference to (A) the movement, (B) the waiting and (C) the reward delivery period. A reconstruction ensemble of 26 cells was used, and the decoding time windows were 1 s for the movement period and 1.5 s for both the waiting and reward period. The abscissa plots the time (s) by which the decoding vector was shifted in 0.25 s steps relative to the encoding vector, with t = 0 at the offset of odor sampling (A), the onset of fluid poking (B) and reward delivery (C). The decoding score is significantly lower (i.e. lower than two times confidence interval) compared to time t = 0 before – 0.5 s and after 0.5 s for the movement period. For the waiting period, the decoding score is significantly lower before – 0.25 s and after + 2.0 s, for the reward delivery period before – 0.25 s and after + 0.75 s. Parallel vertical lines in indicate the average onset of odor poking (OP), fluid poke onset (FP), reward delivery (R) and onset of the inter-trial interval (IT). For reasons of clarity, standard errors of proportion are not shown. Horizontal lines represent two times the standard deviation above or below chance level.
For the reward period, a time window of 1.5 s was applied as well (Fig. 8C). Also in this case, the percentage of correct decoding decreased relatively slowly within +3.0 after event onset. Shifting leftwards, the decoding scores were found to be significantly lower as compared to the score at time t = 0 in the period before − 0.25 s, again suggesting a segregation with earlier trial phases, and in the period after + 0.75 s. We also examined a time window of 10 s for the reward period (data not shown), which provided a comparable result, although the decay slopes for positive and negative shifts in time were less steep because an overlap between the encoding and decoding window remained until boundaries of +10 or -10 s were reached by time shifting.

We performed an additional analysis to examine whether the template for encoding the magnitude during the reward phase can be used for decoding the expected magnitude during the anticipatory period, and how such matching develops as learning progresses. If significant matching exists, this would confirm the consistency of the ensemble pattern across the two trial phases. To this end, we used the reward period for encoding and the firing activity during the anticipatory period for decoding. We divided the decoding block into four consecutive 2-trial blocks (block 1: trial 1 and 2; block 2: trial 3 and 4, block 3: trial 5 and 6; block 4: trial 7 and 8), and compared decoding between these four blocks. Trial numbers 10-15 were used for encoding. This analysis showed that in all four trial blocks there was a modest but significant decoding of reward magnitude (P < 0.05), but the fourth block showed a significantly lower decoding score with respect to the previous three trial blocks (mean ± SEM: block 1: 38.5 ± 0.2%; block 2: 38.6 ± 0.2%; block 3: 38.3 ± 0.3%; block 4: 35.3 ± 0.4%; Fig.9). This indicates that initially the representation of reward magnitude is similar between these two task phases, meaning that in this phase of the learning task there is a large overlap in reward-related ensemble patterns of the anticipatory and delivery phases. During later stages of the task, however, the neural representations of the reward and anticipatory phases become more differentiated. Apparently, during task progression the activity of the cells involved in magnitude representation shows a marked change upon the transition from the anticipatory to the delivery phase, which can be viewed as a partial decorrelation of the code.

In conclusion, whereas the ensemble firing patterns in the movement phase do not show marked carry-over to adjacent phases, a notable consistency in coding exists between the waiting and delivery periods. This consistency is also expressed when using the reward phase for encoding and the waiting period for decoding, especially in the early phases of learning. As regards the lack of consistency or carry-over between the earlier trial phases (odor sampling, movement and waiting period), it is of note that our data are at variance with a view where reward-magnitude information would be maintained by the OFC throughout various trial phases in a
working memory-like manner, as exemplified by dorsolateral prefrontal neurons in
primates showing enhanced firing during delay intervals (Leon and Shadlen 1999;
Fuster et al., 2000; Wallis et al., 2001).

![Figure 9](image)

Figure 9. Decoding of reward size during the waiting period when spike
vectors from the reward delivery period were used for encoding. A
reconstruction ensemble of 26 neurons was used and the decoding time
window was 1.5 s. For all four two-trial blocks (see also Fig. 7), a
decoding score was obtained significantly above chance level. The fourth
trial block showed a significantly lower decoding score with respect to
the previous three trial blocks. Error bars indicate SEM values.

Contribution of individual cells to coding of reward magnitude

Decoding expressed as a function of cell number (Fig. 5) does not reveal
individual contributions of cells to the population code of reward magnitude since in
this calculation decoding scores were averages across groups of randomly selected
neurons. To assess the contribution of individual cells to the decoding success, we
computed for all recorded neurons the difference in the percentage of decoded
information when a specific cell was added to a group of five neurons randomly
selected from the same session. Apart from the consideration that single cells may
contribute reasonably to coding by such a relatively small group, this size was chosen
arbitrarily. For each cell this calculation was done a hundred times, each time with a
new randomly selected group of five additional neurons. This procedure showed that
during the movement period, 32% of the cells \((n = 219)\) made a minimal
contribution to the decoding capacity of the population \((-0.5 \text{ and } 0.5\%)\). Thirty five percent of the cells \((n = 239)\) made a positive contribution \(> 0.5\%\) to
successful reconstruction \((\text{average contribution } \pm \text{ SEM}: 6.5 \pm 0.4\%\)), whereas 33%
\((n = 225)\) contributed negatively \(< -0.5\%)\) with an average of \(4.3 \pm 0.4\%\),
implying that addition of these cells led to a decrease in correct decoding. The positive contribution was found to be significantly higher than the negative one
\((\text{unpaired t-test; } P = 0.000)\). Three percent of the cells \((n = 20)\) made a
contribution of \(> 15\%\) to the decoding score \((\text{average: } 20.1 \pm 0.9\%\)) , whereas
1.5\% \((n = 10)\) made a large negative contribution \(< 15\%)\) that was significantly
lower than the positive contribution, namely \(17.2 \pm 0.7\%\) \((\text{unpaired t-test; } P < 0.05)\).
During the waiting period, 26% of the cells \((n = 178)\) made a minimal contribution to the decoding capacity of the population, whereas 40% of the cells \((n = 273)\) made a positive contribution \((> 0.5\%)\) to successful reconstruction \((\text{average contribution } \pm \text{ SEM}: 5.1 \pm 0.3\%)\). Thirty four percent \((n = 232)\) contributed negatively with an average of 4.5 \pm 0.3\%. The average positive contribution, however, did not differ significantly from the negative one. Examination of the number of cells that made a contribution of more than 15% to the decoding score (either positive or negative) showed that 2% of the cells \((n = 14)\) contributed positively to the decoding score with an average of 21.4 \pm 1.9\%, whereas 0.6% \((n = 2)\) made a negative contribution that was significantly lower than the positive contribution, namely 20.5 \pm 1.4\% \((\text{unpaired t-test}; P < 0.05)\).

During the reward period, 15% of the cells \((n = 102)\) made a minimal contribution, whereas 50% \((n = 342)\) and 35% \((n = 239)\) contributed in a positive \((\text{average contribution } \pm \text{ SEM}: 6.7 \pm 0.4\%)\), and negative \((4.0 \pm 0.4\%)\) manner, respectively. The positive contribution was found to be significantly higher than the negative one \((\text{unpaired t-test}; P = 0.000)\). Six percent of the cells \((n = 41)\) contributed more than 15% to the decoding score in a positive manner \((23.4 \pm 1.3\%)\), whereas 0.4% \((n = 3)\) was found to contribute more than 15% in a negative manner \((19.0 \pm 1.3\%)\). Also in this case, the negative contribution was significantly lower compared to the positive one \((\text{unpaired t-test}; P = 0.000)\).

In addition, cells that showed the largest variability in their response towards reward magnitude \((\text{i.e. parameter variability between 0.9 and 1.0}; \text{Fig. 4})\) were removed from the entire population of neurons and the decoding score for the remaining population was recalculated \((\text{number of neurons removed: movement period: } n = 69; \text{waiting period: } n = 62; \text{reward period: } n = 79)\). This resulted in decoding scores that did not differ significantly from the decoding curves obtained using the entire population.

In summary, for all three task phases we found large subgroups of cells making modest to large contributions to the population representation of reward magnitude, both positive and negative. These results confirm the notion \(\text{(see also Fig. 5)}\) that reward magnitude is coded in a distributed and redundant manner. Although subsets making positive contributions generally outweighed the ‘negative contributors’, it is striking to note that so many ‘negative contributors’ were found, which implies that many cells generated firing patterns that were inconsistent with respect to reward size across en- and decoding trials. This notion is especially relevant when framed in the context of the problem, how target areas of the OFC ‘read out’ its population activity \((\text{cf. Pouget et al., 1998; 2000})\). If one considers previously acquired results indicating single OFC cells to code information on e.g. expected reward size or delay up till reward delivery, one may be inclined to think that such single-cell signals can be easily “read out” and used by a target area \((\text{such}}
as the striatum) for further computations, but this is a simplification of the problem if one reflects on the current results. Namely, there appear to be many other OFC neurons in the vicinity of the specifically tuned one that may contribute ‘noise’ and or even make a negative contribution to the population code, relative to that neuron. Despite this read-out problem, the present results also show that target areas of the OFC – if endowed with proper processing circuitry – can extract significant information on predicted and actual reward sizes from OFC population output, even in early phases of learning.

Erroneous go-trials: quinine responses versus sucrose responses

During the task, animals learned to avoid negative response outcomes, as visible by the low number of go-responses to quinine (‘false alarms’). We examined whether reconstruction of reward size could be achieved by using the quinine-reinforced Go trials for encoding and positively reinforced trials for decoding. If, as hypothesized, the decoding success during the waiting period is truly attributable to the expectation and processing of reward information, reconstruction for quinine versus sucrose trials should deliver a random decoding score (i.e. close to 33.3% correct). Alternatively, however, some correct reconstruction may occur due to the expected and actual volume of liquid ingested, regardless of the quality of the reinforcer (the volume of quinine solution was equal to the middle-sized sucrose reward, viz. 150 microliter). If this is the case, a significant decoding success is predicted to occur during both the waiting and reward period. For this calculation, all available quinine trials were used for encoding, whereas for decoding the sucrose trials 1-9 were used. Fig. 10 shows that for both the waiting and reward period the decoding score for reward size was around chance level regardless of ensemble size, confirming that decoding success in Fig. 5-8 is attributable to reward quality. Using only trials with 0.15 ml of sucrose reward to calculate the decoding score when quinine was used for encoding yielded a similar result, namely a percentage correct at chance level. This furthermore indicates that variations in population activity observed during these two trial periods are not due to licking behavior of the animal, since in both trial types reinforcement was consumed by the animals (see also Van Duuren et al., 2007 for consistent single unit results in relation to licking).

Discussion

The involvement of the OFC in decision-making has been primarily examined by lesion experiments or single unit recordings made during task performance. Based on these studies, the OFC has been proposed to integrate learned associative information with action plans to guide behavior in a flexible manner (Baxter et al.,
Figure 10. Decoding scores for reward size (sucrose solution) when spike vectors from quinine trials (amount of 0.15 ml) were used for encoding. Results for (A) the waiting and (B) reward delivery period. During both task phases the decoding success for reward size is around chance level, which indicates that the population activity represents reward quality and not volume of liquid reinforcer. When only trials with 0.15 ml of sucrose reward were used for decoding, a similar result was obtained: the decoding score was around chance level. To maintain clarity, standard errors of proportion are not shown, but these values were generally comparable to those in Fig. 4.

2000; Dias et al., 1997; Fellows and Farah, 2003; Gallagher et al., 1999; O’Doherty et al., 2001; Plassmann et al., 2007; Ramus et al., 2000; Schoenbaum et al., 1998, 2006; Tremblay and Schultz, 1999). However, it has remained uncertain how behaviorally meaningful information is represented by OFC population activity when adaptive behavior is required. By performing ensemble recordings while animals learned odor-reinforcer associations, we showed that information about reward magnitude could be decoded from OFC population activity during three trial phases, viz. when animals generated movements directed at reward, during waiting for reward, and when reward is received. Comparing reconstruction success between these periods, the decoding score was highest for the reward period; apparently, population activity is more discriminative with respect to varying reward amount when based on the actual presence of reward than based on predictive information derived from odor cues. It can be argued that during the reward period OFC receives other information besides valuation inputs, viz. sensorimotor feedback related to liquid ingestion per se, but this does not explain the random decoding score when quinine trials were used for encoding and sucrose trials for decoding. Despite this argument, population activity during the reward period may be determined by other processes besides reward-appraisal, e.g. tasting, which is inextricably linked to it. The lower decoding scores observed in the waiting period may be explained by the fact that animals were in the process of learning novel odor-reward contingencies, which is supported by the rapidly rising decoding scores during progressive trial blocks (Fig. 7A). Another, not mutually exclusive explanation holds that no specific task requirement to obtain a high reward amount was present, possibly leading to a
relatively weak demand on the system’s computational resources to represent reward magnitude. Although animals are immobile during the waiting period, we cannot rule out the possibility that for example small changes in posture may influence neural activity within this period. Changes in attention, intimately linked to reward expectation, might also occur, but it is unlikely that the results would be confounded by attentional factors, because OFC has not been implicated in attention per se, and attentional modulation of firing responses would not explain the difference between coding for sucrose versus quinine.

Development of population representation of reward magnitude

Despite a limited number of trials, we were able to demonstrate for the first time an increasing success in reconstructing reward size during task progression. Across trials, animals learned to discriminate between different reward sizes, and hence this increase in correct predictions of reward size may reflect learning-related changes. Indeed, testing the alternative hypothesis of a non-specific ‘drift’ in ensemble response over trials indicated a learning effect, because the forward curve (late encoding) exhibited a steeper rise and a modest decay as trials progressed compared to the more gradually rising backward curve (early encoding). Increasing decoding scores were also found for the reward period, where the forward curve rose more steeply than the backward curve. This may be explained by an adaptation in ensemble activity correlating to an additional learning process. An initial number of trials in which the various rewards are actually assessed by the animal may be needed to train the population to distinguish them. Admittedly, however, our task did not include requirements to assess this type of learning explicitly.

Variability and redundancy of the representation of reward magnitude

Mean firing rates across the population showed a high degree of variability, consistent with a great variability in activity levels during specific trial phases. Despite this, individual cells showed a vast range of variability values towards reward magnitude. Thus, the great overall variability in neural activity in the population was only partially matched by differences in individual neuronal responses to reward size (‘tuning’), suggesting a limited degree of the variability in reward-magnitude representations.

Decoding scores were weakly dependent on the ensemble size used for reconstruction (Fig. 5), and removing the fraction of cells demonstrating high parameter variability did not significantly alter the score, implying that the absence of these cells did not result in a significant loss of reward-predictive information. Considering individual cell contributions to the performance of a small ensemble (n = 5), only a few cells made a substantial (> 15%) positive contribution to the decoding score, whereas a large number of cells made small to moderate (0.5 - 15%)
conclusions. These results are consistent with the concept of redundant coding, meaning that reward magnitude is coded in a broadly, distributed manner within the OFC, and losses of considerable subpopulations will not lead to a strongly degraded output signal. That the amount of cells making either a negative or positive contribution in the waiting period is about equal, is compatible with a gradual development of reward-predictive population activity during learning and a moderate decoding success for this phase. Such negative contributions may easily arise when spike patterns show a high variability across trials inconsistent with variations in upcoming reward size.

Temporal specificity of reward coding within and across trial phases

Besides decoding reward size within specific temporal phases of learning trials, we also studied whether representations remain detectable at a finer time resolution. When reconstruction time windows in the reward phase were gradually increased, decoding performance tended to stabilize after about 3 s, indicating that significant representations can be detected at a time resolution finer than entire trial phases. For the waiting period, however, 1.5 s was needed to reach a significant decoding score (Fig. 6A and B). Analysis of decoding performance across successive time segments of both trial phases (Fig. 6C and D) showed that decoding success did not greatly vary with the temporal position of the segment in each phase. However, this preserved decoding capacity for small intervals within trial phases does not imply that the same OFC ensemble would code reward information consistently throughout the trial, as shown by a decreased success rate when decoding frames were shifted in time (Fig. 8). For the waiting period a shift towards the right resulted in a slow decrease in decoding success, but a shift in the reverse direction quickly brought decoding to chance level. Apparently, cell groups representing reward-predictive information during this period do not generate similar representations during earlier trial phases, e.g. odor sampling. A similar lack of carry-over was found for the movement phase. In addition, no consistent decoding of reward-frames was found during the inter-trial interval, arguing against a maintenance of reward representations by the same neurons between consecutive trials.

Population coding of reward information in OFC: functional implications

Only a few studies have related ensemble activity to reward processing in OFC. In an odor discrimination task, Schoenbaum and Eichenbaum (1995b) found that during odor sampling ensembles coded odor identity and expectation of reward presented in the following trial. This pioneering study differs from ours because we focused on outcome prediction on the basis of a cue within the same trial, on temporal coding specificity within trials, and on dynamic adaptation during learning of novel associations. Gutierrez et al. (2005) demonstrated population activity
discriminating water and sucrose rewards, both when animals anticipated reward and when they tasted it. In this experiment, predictive cues were absent and animals were allowed to drink water, followed by a session of sucrose-solution intake. Such a coarse time indicator for outcome anticipation may be confounded by drifts in ensemble coding over session time, and differential anticipatory activity may be confounded by differences in motor preparation. An advantage of a parametrically varied reward is that such possible confounds can be controlled for since animals perform similar behavior to obtain different reinforcers.

The overall concept of OFC population coding emerging from the present findings holds that representations of reinforcer quality and magnitude are broadly distributed across ensembles and are characterized by a high, sub-second time resolution. These properties cannot be deduced by other techniques such as single-cell recording or fMRI imaging. Combining the current results with single-unit results suggesting task-phase specific coding (Simmons and Richmond, 2008), neural coding in OFC appears highly specific and well-articulated for the temporal phase an animal is in towards achieving a goal, while reward parameters as magnitude are expressed more as modulatory signals, rather than being main determinants of firing rate. When considering how such parallel-distributed signals may be read out by neuronal populations in target areas of OFC, it is noteworthy that significant readout of reward-predictive information can occur by processing output from small groups of neurons and of narrow time segments within trials, enabling rapid decision-making. If such target populations assume a particular functional organization as a continuous attractor, they have the natural capacity, at least in principle, to read out OFC output efficiently by template matching or Bayesian reconstruction (Zhang et al., 1998, Pouget et al. 1998, Wu and Amari, 2005).

Acknowledgements

This work was supported by NWO Grant 903-47-084, NWO grant 918.46.609 and BSIK (SenterNovem) grant 03053. We would like to thank David Redish and Peter Lipa for providing the cluster cutting software, Els Velzing for help with graphical illustrations and our colleagues for their comments on the manuscript.