
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Towards system level runtime design space exploration of reconfigurable
architectures

Sigdel, K.; Thompson, M.; Pimentel, A.D.; Bertels, K.

Publication date
2008

Published in
Proceedings ProRISC 2008

Link to publication

Citation for published version (APA):
Sigdel, K., Thompson, M., Pimentel, A. D., & Bertels, K. (2008). Towards system level runtime
design space exploration of reconfigurable architectures. In Proceedings ProRISC 2008 (pp.
100-107). Technologiestichting STW. http://www.stw.nl/NR/rdonlyres/45BDD6AB-D5AC-
4756-B80E-579752B72A8B/0/sigdel.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:05 Dec 2023

https://dare.uva.nl/personal/pure/en/publications/towards-system-level-runtime-design-space-exploration-of-reconfigurable-architectures(e2f91f4a-8ba1-4852-86e3-284fce972f9e).html
http://www.stw.nl/NR/rdonlyres/45BDD6AB-D5AC-4756-B80E-579752B72A8B/0/sigdel.pdf
http://www.stw.nl/NR/rdonlyres/45BDD6AB-D5AC-4756-B80E-579752B72A8B/0/sigdel.pdf


1

Towards System Level Runtime Design Space Exploration of Reconfigurable
Architectures

Kamana Sigdel, Mark Thompson1, Andy D. Pimentel1, Koen Bertels

Computer Engineering, EEMCS
Delft University of Technology, The Netherlands

{kamana,koen}@ce.et.tudelft.nl

1Computer Architecture Systems Group
University of Amsterdam, The Netherlands

{mthompsn,andy}@science.uva.nl

Abstract—
The ever increasing intricacy of the systems and the

increasing use of reconfigurble heterogeneous devices
significantly enlarges the design complexity of the mod-
ern embedded systems. As a result, to create a good
design, it is essential to perform Design Space Explo-
ration(DSE) at various design levels in order to evalu-
ate several design choices. DSE at early design stages
helps designers to systematically explore trade-offs be-
tween various design goals and to make various design
decisions such as hardware/software partitioning, ar-
chitecture – to – application mappings, task schedul-
ing and task allocation, performance evaluation etc. As
the design progresses, the design space can be gradually
trimmed and pruned at different design levels of unsuit-
able design alternatives until a final optimal solution is
reached. In this work, we present a system level frame-
work for higher level runtime design space exploration
of reconfigurable architectures.

Keywords: Reconfigurable Computing, Design
Space Exploration, System Level Modeling

I. INTRODUCTION AND BACKGROUND

Reconfigurable computing (RC) is becoming in-
creasingly popular as it bears the promise of combin-
ing the flexibility of software with the performance of
hardware. Reconfigurable devices can serve as run-
time re-usable devices for performance critical sys-
tems, which allows the reduction of the hardware re-
sources required [1]. Generally, the reconfigurable
system consists of traditional microprocessor and a re-
configurable hardware. Hardware implementation of
a function in general can have better performance than
software implementation, thus, moving selected soft-
ware region to the reconfigurable hardware can im-
prove the performance of the whole system. There-
fore, the reconfigurable systems benefit by speeding

up the whole application through implementation of
selected application kernels onto reconfigurable hard-
ware [2].

The runtime reconfiguration allows the dynamic or
runtime configuration of the hardware, which pro-
vides the ability to change the hardware as they are
needed during the program execution. Dynamic re-
configuration has the flexibility to accelerate large
portion of the application on the same hardware, how-
ever, it also introduces reconfiguration latencies. With
partial reconfiguration, several tasks can be config-
ured on the hardware individually without interfering
with the other tasks running on the same hardware at
different stages. As partial reconfiguration configures
only a part of the hardware, the computation of one
task can be overlapped with the configuration of other
task, as a result the configuration latency can be sig-
nificantly reduced.

The emergence of partial dynamic reconfiguration
has added new dimensions to the reconfigurable com-
puting, however, at the same time, it has added new
set of challenges to the designers in evaluating the
performance of such systems. As a result, the tradi-
tional exploration and mapping methods, which only
assign the tasks to the fixed hardware and software are
not sufficient for designing reconfigurable systems, as
they cannot address how the reconfigurable space can
be efficiently used to accelerate the tasks.

While designing the dynamic reconfigurable sys-
tems, there are several issues that need to be ad-
dressed, which are listed as follows:

• Hardware Software Partitioning: It deals with the
identifying and assigning application or part of ap-

100



plication onto heterogeneous set of architectural units
such as ASICs, General purpose processor (GPP), re-
configurable processor(RP) and so forth. Spatial par-
titioning is the process of identifying the part of the
application which can be implemented onto the recon-
figurable hardware (HW tasks) and which should be
executed as software (SW tasks). The reconfigurable
nature of the reconfigurable devices allows it to map
the application that is larger than the physical size of
the hardware. As a result, for the implementation of
applications which requirement exceeds the capacity
of the hardware, it is necessary to perform temporal
partitioning. Temporal partitioning divides the design
into mutually exclusive, limited size segments such
that requirement for implementing each segment is
less than or equal to the capacity of the hardware. It
partitions the HW tasks into mutually exclusive “con-
figurations” that will be sequentially executed on the
reconfigurable devices at each configuration time.

• Design Space Exploration: Design Space Explo-
ration(DSE) allows to systematically explore trade-
offs between various design goals and find the optimal
solution. While designing reconfigurable systems, in
order to explore all the possible design choices and se-
lect an appropriate design point it is essential to per-
form DSE at various design level. The design point
should be determined based on the various system
constraints imposed on the system. One example of
such design point is the best execution time and area
trade-off.

• Task Allocation: Task allocation deals with allo-
cating a hardware task onto a reconfigurable logic re-
sources. The efficiency of the reconfigurable systems
is also effected by how tasks are allocated and placed
on the hardware for execution. By changing the order
of task allocation and/or altering the task placement
on the hardware can change the reconfiguration over-
head.

• Task Scheduling: Task scheduling is another prob-
lem which deals with scheduling of the various tasks
on the architecture. The software tasks, the hardware
tasks and the communication channels (shared by the
general purpose processor, reconfigurable hardware
and other architectural components) have to be sched-
uled dynamically in order to meet the execution crite-
ria and to avoid the various resource conflicts.

The expanding sophisticated user functionalities
and at the same time the increasing use of reconfig-
urable heterogeneous platforms, significantly enlarges
the design space of the modern system. In order to
construct a good design and to identify the optimal
design choices, it is necessary to explore many design
alternatives. However, when using traditional design
methods and tools, it is difficult to estimate, analyze or
evaluate the performance impact of systems including
such reconfigurable logic devices into a system de-
sign. Thus, recent demand while designg such system
is to have a comprehensive methods which can guide
the designers at early design stages for rapid explo-
ration of design in order to make various prudent de-
cisions such as hw/sw partitioning, architecture – to –
application mappings, task scheduling and task plac-
ing, performance evaluation etc.

In this work, we present a system-level framework
for higher level runtime design space exploration,
which can assist designers at very early stages in de-
sign to perform rapid exploration of different recon-
figurable design alternatives. Furthermore, we extend
the framework to address the dynamic and adaptive
systems where applications as well as architecture can
evolve over time. In such dynamic cases, the design
process becomes more sophisticated as all the design
decision has to be carried out dynamically and the sys-
tem has to be optimized in terms of runtime behaviors.
The framework integrates various techniques related
to reconfigurable systems design such as dynamic par-
titioning, runtime DSE, runtime mapping, dynamic
scheduling and placement. For this the Sesame frame-
work has been extended to support partially dynamic
reconfigurable architecture of Molen. This work has
been presented in our previous paper [3].

The organization of the paper is the following: Sec-
tion II presents the context for this work. Section III
and IV presents the description of the Molen architec-
ture and Sesame simulation framework respectively.
Section V discusses our system framework. And, fi-
nally, section VI presents the summary and the future
work.

II. SYSTEM CONTEXT

This work has been carried out in the context of
Delft Workbench [4]. Delft Workbench is a platform
for hardware-software co-design assisting designers
in tackling various challenges while designing recon-

101



C2C

rSesame

. . .
C Code

. . .

g(.)
f(.) Retargetable 

Compiler

VHDL 
Generator

Cost Model
Architecture 

GPP

SW

HW

Fig. 1
THE DELFTWORKBENCH PLATFORM FOR HARDWARE

SOFTWARE CO-DESIGN

figurable heterogeneous systems. It addresses opti-
mal and rapid designing of reconfigurable embedded
systems starting from high-level descriptions and in-
volves various phases such as program analysis, hard-
ware cost estimation, design space exploration, hard-
ware software partitioning, compilation for reconfig-
urable platform and VHDL generation. The Delft-
workbench platform is shown in Figure 1. The scope
of this work lies in the module rSesame as shown in
the figure.

One of the major requirements for the project such
as Delft Workbench while designing heterogeneous
reconfigurable systems is to obtain the optimal system
with efficient utilization of the reconfigurable logic
resources. With the increasing design space many
choices has to be evaluated and judged before mak-
ing any kind of design decisions at every design stage.
Performing Design Space Exploration at various de-
sign levels helps to explore trade-offs between vari-
ous design goals and to find optimal solutions. As
design progresses further, the design space is gradu-
ally pruned at different levels in order to find a final
optimal solution.

Our focus of the design space exploration is at very
higher level where the design to be explored is enor-
mous as no design decisions have yet been made.
Making design choices at higher level can rapidly
prune the design spaces. In the system level design
space exploration, designers can investigate and ex-
plore system at early design stages and evaluate the
performance very early in the design process. At this
level, system behavior (application behavior or archi-
tecture characteristics) is represented using several ab-
straction models. These models are relatively easier
and faster to construct, as a result, designer can apply

this to traverse a large design. These system-level im-
plementations are evaluated and compared one after
another at high level of abstraction and a set of candi-
dates are identified. These candidate sets can further
be analyzed at lower abstraction level (such as synthe-
sizable register level (RTL)) in order to reach the opti-
mal solution. Thus, performing DSE at higher level of
abstraction facilitates design decisions to be made at
very early stages, which can significantly reduce over-
all design time.

III. THE RECONFIGURABLE ARCHITECTURE

Reconfigurable Processor

Core 
Processor

CCUρμ-code 
unit

Memory

Arbiter

Memory 
MUX

Fig. 2
THE MOLEN ARCHITECTURE

Though our exploration framework is not restricted
to a particular type of reconfigurable architecture, for
the evaluation purpose, in this research, we use Molen
as an example of reconfigurable architecture. The
Molen polymorphic processor is established on the
basis of the tightly coupled co-processor architectural
paradigm [5][6]. The two main components in the
Molen machine organization are the ‘Core Proces-
sor’, which is a General Purpose Processor(GPP) and
the ‘Reconfigurable Processor’ (RP). The reconfig-
urable processor is further subdivided into the ρµ-
code unit and custom configured unit (CCU). The
CCU consists of reconfigurable hardware, e.g., a field-
programmable gate array (FPGA), and memory. GPP
and RP are connected to one ’Arbiter’ which controls
the co-ordination of the GPP and RP (see fig 2). In-
structions are issued to either of these processors by
the arbiter. In order to speed up the program by run-
ning on the reconfigurable hardware, parts of the ap-
plication running on a GPP can be implemented on the
CCU. The code to be mapped onto the reconfigurable
hardware is annotated with special pragma directives.
When arbiter receives the pragma instruction for the

102



hardware execution, it initiates the reconfigurable op-
eration signal to the reconfigurable unit, gives the data
memory control to the RP and drives GPP into a wait
state. When arbiter receives an end of reconfigurable
signal, it releases back the data memory control back
to the GPP and GPP can resume its execution. An op-
eration executed by the RP, is divided into two distinct
phases: set and execute. In the set phase, the CCU is
configured to perform the supported operations and in
execute phase the actual execution of the operation is
performed.

IV. SESAME FRAMEWORK

We use Sesame framework as a modeling and simu-
lation platform. Sesame is a DSE environment which
facilitates designers at system level exploration of
the complex embedded multimedia architectures. In
this context, the Sesame environment has been ex-
tended in order to model the dynamic reconfigurable
behavior of the reconfigurable architectures [3]. The
Sesame modeling and simulation environment [7][8]
is geared towards fast and efficient exploration of em-
bedded multimedia architectures, typically those im-
plemented as heterogeneous MPSoCs. Sesame ad-
heres to a transparent simulation methodology where
the concerns of application and architecture model-
ing are separated. An application model describes the
functional behavior of an application and an architec-
ture model defines the architectural resources and con-
straints.

VB Vc VD VE

P0

A
pp

lic
at

io
n 

La
ye

r
M

ap
pi

ng
 

La
ye

r

VA

P1 P2

A
rc

hi
te

ct
ur

e 
La

ye
r

A B

C

E

D
R
X
w

R
X
w

R
X
w

R
X
w

R
X
w

Fig. 3
THREE LAYERS IN SESAME FRAMEWORK

For application modeling, Sesame uses the Kahn
Process Network (KPN) model of Computation [9]
which is suitable for modeling stream-based (multi-
media) applications. This application model consists

of concurrent Kahn processes that communicate us-
ing blocking read/non-blocking write synchronization
over unbounded Kahn channels. The application pro-
cesses models contain functional application code to-
gether with annotations. The application model gen-
erates event traces : Read (R), Write (W) and Execute
(EX). The events Read (R) and Write(W) are com-
munication event and they describe communication
of the Kahn channel between two Kahn processes.
And, the Execute (EX) event is a computation event
and it describes the computation performed by the
Kahn process (typically a function). These events
generated by each process while executing the appli-
cation, are collected into event traces. These traces
are mapped onto an architecture model using an in-
termediate layer called - mapping layer. The Figure
3 shows this mapping with Sesame’s three layers: the
Application Layer, the Mapping Layer and the Archi-
tecture Layer.

The intermediate mapping layer consists of Vir-
tual Processors (VPs). These virtual VPs are con-
nected using same network topology as the appli-
cation model, however using the bounded size data
channel components. The main purpose of the map-
ping layer is to forward the event traces from the Kahn
process in the application layer to the the architec-
tural components in the architecture model. This for-
warding is done according to a user-specified mapping
of application processes and communication channels
onto processors and communication structures respec-
tively. The components in the mapping layer simulate
synchronization of communication events in such a
way that forwarded events are “safe”: that means they
don’t cause deadlock due to unmet data dependen-
cies when mapped onto shared resources. In Sesame
framework, the application model is not timed, while
the mapping layer and architecture layer are modeled
in (the same) timed simulation domain.

In the architecture model, the architectural tim-
ing consequences of the events are modeled. The
processor components model the processor utiliza-
tion of the application process by using a lookup ta-
ble that related to each computation(EX) events to
an execution. The interconnection and the memory
components model the utilization and the contention
caused by communication events - Read (R) and Write
(W). These latency values may be obtained from lit-
erature, hardware measurements, rough estimates or

103



from more detailed simulators such as described in
[10].

V. SYSTEM FRAMEWORK

Within the context of this research, we are focused
on developing an approach for system level design
space exploration and dynamic mapping for dynam-
ically reconfigurable systems targeting the streaming
applications of multimedia domains. The applica-
tion is represented as a graph at granularity of the
coarse-grain task or function level KPN (Kahn Pro-
cess Network) [9] specification, KPN = (Vk, Ek),
where set Vk and Ek refer to the Kahn nodes and the
directed FIFO channels between these nodes, respec-
tively. Kahn processes are functions which operate
on streams. This streaming nature of Kahn processes
makes KPNs very suitable for modeling the dynamic
nature of streaming applications of the multimedia do-
mains. For this particular reason, KPN is chosen as
a modeling structure to model the application behav-
ior. The KPN graphs used in this case are static and
acyclic KPN graph. An example KPN graph is shown
in Figure 4.

There are different types of tasks to be specified
in the system: fixed-software tasks, fixed-hardware
tasks and pageable tasks. The fixed-software tasks
are those tasks which are implemented always on soft-
ware, fixed-hardware tasks are those which are imple-
mented only as hardware and pageable task are those
which can be switched between hardware and soft-
ware processor and can be executed on both of the
resources. Given an acyclic KPN graph and given the
different types of the tasks, the partitioning assigns
each task to the given task set. And, given a partition-
ing, the mapping binds a given task to a processing
resource.

1

2

3

4

5

6

1

2

3

4

5

6

T1

T3

T2

T6

i

i + 1

T4

T5

Fig. 4
EXAMPLE KPN GRAPH OF THE APPLICATION

To illustrate this, consider the example application

graph as in Figure 4 and a given reconfigurable archi-
tecture Molen. Molen consists of two types of pro-
cessing elements GPP (a general purpose processor)
and RP (a reconfigurable processor) [for detail de-
scription of the Molen architecture refer to Section
III]. The partitioning identifies the list of the tasks as:
fixed-software, pageable tasks and fixed-hardware

fixed-software tasks = (T1)SW

pageable tasks = (T2, T3)HW/SW and,
fixed-hardware tasks = (T4, T5, T6)HW

This process of identifying set of tasks that belongs
to a particular resource type is called spatial parti-
tioning. Given the above partitioning, the mapping
binds each task to execute on a particular resource.
For the spatial partitioning given above the following
mappings can be identified.

Mapping 1 : (T1, T2)GPP , (T3, T4, T5, T6)RP

Mapping 2 : (T1, T2, T3)GPP , (T4, T5, T6)RP etc.

A reconfigurable architecture is subject to various
types of system constraints such as area, power etc.
Due to the area constraint, the reconfigurable hard-
ware can accelerate only as much of the program as it
fits within the programmable structures. As a result,
not all the tasks that are mapped onto RP can be exe-
cuted on the RP at the same time. Therefore, depend-
ing on the area capacity of the RP, these tasks have
to divided into various configurations such that each
configuration can be executed onto the RP at once.
This process is called temporal partitioning.

Let us assume the given RP cannot fit more than
two tasks at once, in that case, execution of the above
mappings on RP is not possible at once. As a result,
the tasks mapped to RP have to be divided into differ-
ent configurations as below:

Mapping 1 : (T1, T2)GPP , ((T3, T4)C1 , (T5, T6)C2)RP ;
Mapping 2 : (T1, T2, T3)GPP , ((T4, T5)C1 , (T6)C2)RP ;

where C1 and C2 are different configurations

In this case, in Mapping 1, though tasks T5 and T6

are in the same configurations, due to the dependency
between these two tasks, they cannot run on RP at the
same time. However, the task T6 can be configured
and made ready for execution on the RP while the task

104



Application Program

General Purpose 
Processor (GPP)

Reconfigurable 
hardware (RP)

Molen

H
W

 Tasks

SW
 Tasks Time 

SW Estimation 
(Profiling)

HW Cost 
Estimation 

(QUIPU)

KPN 
Representation

Annotated KPN 
Profiling information 
such as execution 

time, memory 
transfer etc

Hardware Cost 
Estimation, Area 

prediction etc

Design Space 
Exploration

Performance 
Evaluation

Mappings

sesame

Fig. 5
THE EXPLORATION FRAMEWORK

T5 is still executing. This overlaps the configuration
time of one task with the execution time of another
task. This is called configuration hiding. In similar
ways, the configuration hiding is possible also for the
tasks T4, T5 in Mapping 2.

From a given acyclic KPN graph, the goal of the ex-
ploration framework is to dynamically identify a set
of hardware tasks and a set of software tasks, to al-
locate the architectural resources to these tasks, and
to schedule these tasks such that all the application
as well as architectural constraints are satisfied. For
a dynamic system where application and architecture
can evolve, these task sets can change at the runtime,
as a result at the end of exploration three sets of task
can be identified viz hardware task, software task and
pageable task. This allows for a system to be opti-
mized based on runtime behavior and values, which is
hard to determine using any static methods.

Moreover, the designers can specify any kind of de-
sign constraints in the system such as area, commu-
nication, power consumption etc. The designers can
also indicate various design objectives such as to max-
imize the performance of the system, to minimize the
power consumption etc. The exploration framework
takes these goals and the constraints into considera-
tion and finds the optimum task sets for architectural
mapping. The dynamic reconfiguration capabilities of

the architecture is also taken into account, meaning,
not only it finds the best tasks for implementation onto
reconfigurable hardware, it also finds how different
configurations can be mapped sequentially on recon-
figurable hardware in order to share the available area.

The exploration framework is shown in Figure 5. In
the first phase, the application program is transformed
into KPN specification. The designer guides the iden-
tification and extraction of the critical regions and can
also implicitly decide for some task to be either fixed-
software, fixed-hardware and pageable. The granular-
ity of task can also be specified in this phase. The
assumption is that, each task in the KPN graph al-
ways has less or equal constraint than any constraints
imposed on the RP. For instance, each task on KPN
graph individually cannot take more area than total
RP area available, which implies, Ai ≤ ARP where
Ai is the area required by task Ti and ARP is total the
RP area.

As a preprocessing phase, the application is pro-
filed to identify performance critical regions (in terms
of computation time and communication time). The
profiling of the application provides various estima-
tions for the task when it executes as software tasks
on GPP. It analyzes the program statically and/or dy-
namically in order to determine relevant information
such as execution time, memory size, number of time

105



the task is executed etc. In this context, we are mainly
interested in following SW estimates:
1. Computation Time is the quantitative measure of
the total execution time for a task while it is executing
on GPP. This is the software execution time for a task
(Ti) in a given KPN graph and is denoted as tiSWexe.

2. Communication Load is the quantitative measure
of the total number of bytes exchanged (written or
read) through a FIFO channel in a given KPN graph.
It is computed as product of number of tokens sent
through a FIFO channel and the size of a token in
bytes sent through that particular channel. Communi-
cation load between tasks Ti and Tj can be calculated
as:

CLij =
N∑

k=0

nijk.mk; where nijk is the number of to-

ken sent through channel k between tasks Ti and Tj ,
mk is the token size of channel k and N is total num-
ber of FIFO channels between Ti and Tj .

Similarly, hardware cost estimations are provided
by quantitative hardware estimation model (QUIPU
model [11]). The hardware prediction method esti-
mates different hardware attributes (such as hardware
area, interconnect delays, hardware latency etc) for
design exploration and partitioning. These are the es-
timated values for the task attributes when a task is
executing on the RP. We are interested in following
HW estimates:
1. Area Occupancy is the quantitative measure of the
area occupied by a task on a given RP. This can be
measured in slices and can also be expressed as a per-
centage of the total area of the RP. The area prediction
for a task Ti is denoted by Ai

2. Hardware Latency is the quantitative measure of
the total execution time for a task while it is executing
on RP. The hardware execution time for a task (Ti) is
denoted as tiHWexe.

Every task in the KPN graph is annotated with these
attributes. In this particular phase, designers can also
apply several heuristics methods on the given anno-
tated KPN graph to statically identify various map-
pings for the underlying architectures. The different
mappings generated are then given to the architec-
ture for execution. However, in the dynamic system
where the application as well as architecture behavior
changes, in order to satisfy changing behavior of the
dynamic system, the design space exploration has to

be performed at the runtime by identifying different
set of mapping at different period of application ex-
ecution. For this, the mapping of the tasks is altered
from one resource to another resource at one period
to another period. As a simple example, assume, at
particular period t1 tasks T1, T2 are mapped onto GPP
and tasks T4, T5, T6 are mapped onto CCU1, CCU2
and CCU3 of RP. Lets say at time period t2, due to
some reason CCU2 has been shut down in order to
save power in the RP, as a result the mapping identi-
fied in time t1 is not feasible in time period t2. Hence,
the mapping has to be changed dynamically by mov-
ing the tasks from one resource to another.

The exploration process is guided by the various in-
formation provided from the underlying architecture
such as free resources, timing information etc. Based
on these information about applications as well as ar-
chitecture, mapping desision is made for every task.
The performance impacts of each mapping is moni-
tored for a particular system funnction on the given
architecture. This evaluation results can assist for fur-
ther decision making while identifying various other
mappings.

VI. SUMMARY AND FUTURE WORK

To tackle the enormous design space resulted with
the increasing functionalities and the massive use of
reconfigurable heterogeneous platforms, it is neces-
sary to perform Design Space Exploration at various
design levels to explore the tradeoffs between various
design goals and to find optimal solutions. Performing
DSE at very early stages facilitates design decision to
be made early, as a result overall design time can be
significantly reduced. In the dynamic system where
application as well as architecture behavior changes,
in order to satisfy such changing behavior of the dy-
namic system, the design space exploration has to be
performed at runtime to evaluate the design for run-
time values and behaviors. In our future work, we
will implement and validate the runtime exploration
and mapping of the reconfigurable architectures for
the dynamic systems.

REFERENCES

[1] K. Compton and S. Hauck, “Reconfigurable computing: A
survey of systems and software,” ACM Computing Surveys,
vol. 35, June 2002.

[2] T. Todman, G. Constantinides, S. Wilton, O. Mencer,
W. Luk, and P. Cheung, “Reconfigurable computing: ar-

106



chitectures and design methods,” in IEEE proceedings of
Computers and Digital Techniques, vol. 152, June 2005, pp.
193–207.

[3] K. Sigdel, M. Thompson, A. Pimentel, T. P. Stefanov, and
K. Bertels, “System-level design space exploration of dy-
namic reconfigurable architectures,” in Proceeding of Inter-
national Symposium on Systems, Architectures, MOdeling
and Simulation (SAMOS VIII Workshop), Samos, Greece,
July 2008, pp. 279–288.

[4] “Delft work bench: http://ce.et.tudelft.nl/dwb/.”
[5] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels,

G. Kuzmanov, and E. M. Panainte, “The molen polymorphic
processor,” IEEE Transactions on Computers, pp. 1363–
1375, November 2004.

[6] S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, and E. M.
Panainte, “The molen programming paradigm,” in Proceed-
ings of the Third International Workshop on Systems, Archi-
tectures, Modeling, and Simulation, July 2003, pp. 1–10.

[7] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra,
“A framework for system-level modeling and simulation of
embedded systems architectures,” EURASIP J. Embedded
Syst., vol. 2007, no. 1.

[8] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic ap-
proach to exploring embedded system architectures at multi-
ple abstraction levels,” IEEE Trans. Comput., vol. 55, no. 2,
pp. 99–112, 2006.

[9] G. Kahn, “The semantics of a simple language for parallel
programming,” in Proc. of the IFIP Congress 74, 1974.

[10] A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas, “On
the calibration of abstract performance models for system-
level design space exploration,” in ICSAMOS, G. Gaydad-
jiev, C. J. Glossner, J. Takala, and S. Vassiliadis, Eds. IEEE,
2006, pp. 71–77.

[11] R. J. Meeuws, Y. D. Yankova, K. Bertels, G. N. Gaydad-
jiev, and S. Vassiliadis, “A quantitative prediction model for
hardware/software partitioning,” in Proceedings of 17th In-
ternational Conference on Field Programmable Logic and
Applications (FPL07), August 2007, pp. 735–739.

107


	Introduction and Background
	System Context
	The Reconfigurable Architecture
	Sesame Framework
	System Framework
	Summary and Future Work

