A virtual reactor for simulation of plasma enhanced chemical vapor deposition

Krzhizhanovskaya, V.V.

Citation for published version (APA):
Krzhizhanovskaya, V. V. (2008). A virtual reactor for simulation of plasma enhanced chemical vapor deposition.
Contents

<table>
<thead>
<tr>
<th>Chapter 1.</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Motivation and scientific challenges</td>
</tr>
<tr>
<td>1.2.</td>
<td>Background</td>
</tr>
<tr>
<td>1.2.1.</td>
<td>Modeling and Simulation of PECVD processes</td>
</tr>
<tr>
<td>1.2.2.</td>
<td>Computational environment</td>
</tr>
<tr>
<td>1.3.</td>
<td>Overview of the thesis</td>
</tr>
<tr>
<td>1.4.</td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2.</th>
<th>Modeling and Simulation Part I: 1D Flow and 1D Plasma Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.2.</td>
<td>1D plasma model</td>
</tr>
<tr>
<td>2.3.</td>
<td>1D reactive flow dynamics model</td>
</tr>
<tr>
<td>2.4.</td>
<td>Modeling chemical processes and deposition</td>
</tr>
<tr>
<td>2.4.1.</td>
<td>Model of the deposition process</td>
</tr>
<tr>
<td>2.4.2.</td>
<td>Chemical components and reactions</td>
</tr>
<tr>
<td>2.4.3.</td>
<td>Electron impact reaction rate constants</td>
</tr>
<tr>
<td>2.5.</td>
<td>Numerical methods, implementation and computational environment</td>
</tr>
<tr>
<td>2.5.1.</td>
<td>Numerical methods and algorithms</td>
</tr>
<tr>
<td>2.5.2.</td>
<td>Implementation and computational environment components</td>
</tr>
<tr>
<td>2.6.</td>
<td>Analytical results</td>
</tr>
<tr>
<td>2.7.</td>
<td>Simulation results</td>
</tr>
<tr>
<td>2.7.1.</td>
<td>Comparison with experiment</td>
</tr>
<tr>
<td>2.7.2.</td>
<td>Specific features of chemical kinetics at low pressures</td>
</tr>
<tr>
<td>2.7.3.</td>
<td>Influence of diffusion coefficients</td>
</tr>
<tr>
<td>2.7.4.</td>
<td>Effect of the flow rate</td>
</tr>
<tr>
<td>2.7.5.</td>
<td>Effect of chamber volume</td>
</tr>
<tr>
<td>2.7.6.</td>
<td>Effect of diluting silane with molecular hydrogen</td>
</tr>
<tr>
<td>2.7.7.</td>
<td>Specific features of a triode system</td>
</tr>
<tr>
<td>2.7.8.</td>
<td>Analysis of the diffusion-reaction lengths</td>
</tr>
<tr>
<td>2.8.</td>
<td>Conclusions</td>
</tr>
<tr>
<td>2.9.</td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3.</th>
<th>Modeling and Simulation Part II: 2D and 3D Flow and 1D Plasma Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.2.</td>
<td>2D and 3D flow models</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Governing equations for reactive flow</td>
</tr>
<tr>
<td>3.2.2.</td>
<td>Boundary conditions for the reactive flow model</td>
</tr>
<tr>
<td>3.3.</td>
<td>Numerical methods and algorithms</td>
</tr>
<tr>
<td>3.3.1.</td>
<td>Numerical scheme</td>
</tr>
<tr>
<td>3.3.2.</td>
<td>Multi-block mesh generation</td>
</tr>
<tr>
<td>3.3.3.</td>
<td>Parallelization</td>
</tr>
</tbody>
</table>
3.4. Implementation and Problem Solving Environment components38
3.5. 2D Simulation Results ...39
 3.5.1. Comparison with experiment and investigating possible causes of mismatch..39
 3.5.2. Influence of the flow rate, temperature and discharge power ...40
 3.5.3. Influence of reactor geometry ...43
 3.5.4. Deposition dynamics in the final stages of the PECVD cycle ..45
3.6. 3D Simulation Results: Flow in Complex Reactor Configurations ...47
 3.6.1. Comparison of 3D and 2D Simulation of Gas Flow ...52
3.7. Conclusions ..54
3.8. References ..55

Chapter 4. Modeling and Simulation Part III: 3D Flow and 2/3D Plasma Discharge57
 4.1. Introduction ..57
 4.2. 2D Plasma Model ..57
 4.3. Simulation Results ...57
 4.4. Conclusions ..60
 4.5. References ..60

Chapter 5. Parallelization and Adaptive Load Balancing on the Grid ...63
 5.1. Introduction ..63
 5.2. Parallelization ...64
 5.2.1. Job-level parallelism ...64
 5.2.2. Task-level parallelism ...65
 5.3. The simulation components of the Virtual Reactor ...67
 5.4. The Russian-Dutch Grid testbed infrastructure ..68
 5.5. Performance analysis on homogeneous resources ..69
 5.5.1. Benchmark approach ...69
 5.5.2. Benchmark setup ..69
 5.5.3. Influence of the number of time steps and reactor topology ...70
 5.5.4. Speedup of the chemistry-disabled and chemistry-enabled simulations71
 5.5.5. Communication time trends ..72
 5.5.6. Computation to communication ratio ..73
 5.5.7. Discussion of the results for homogeneous resources ...74
 5.6. Application performance on heterogeneous resources ...75
 5.7. A new methodology for resource-adaptive load balancing on heterogeneous resources75
 5.8. Experimental results of the workload balancing algorithm ...80
 5.9. Discussion and suggestions for generalized automated load balancing ...82
 5.10. Conclusions ...83
 5.11. References ...84

Chapter 6. Problem Solving Environment ...87
 6.1. Introduction ..87
 6.2. Virtual Reactor Architecture ...87
 6.2.1. General description of the application components ..88
 6.2.2. User interface components ..90
6.2.3. Chemistry and gas editors components .. 91
6.2.4. Visualization components ... 91
6.2.5. Grid middleware components .. 93
6.3. Conclusions ... 95
6.4. References ... 96

Chapter 7. Summary and Conclusions ... 99
Chapter 8. Nederlandse Samenvatting ... 103
Chapter 9. Acknowledgements ... 107
Chapter 10. Publications ... 111