A virtual reactor for simulation of plasma enhanced chemical vapor deposition

Krzhizhanovskaya, V.V.

Publication date
2008

Citation for published version (APA):
Krzhizhanovskaya, V. V. (2008). A virtual reactor for simulation of plasma enhanced chemical vapor deposition. [Thesis, fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Chapter 1. Introduction .. 1
 1.1. Motivation and scientific challenges ... 1
 1.2. Background ... 2
 1.2.1. Modeling and Simulation of PECVD processes 2
 1.2.2. Computational environment .. 4
 1.3. Overview of the thesis ... 4
 1.4. References ... 5

Chapter 2. Modeling and Simulation Part I: 1D Flow and 1D Plasma Discharge 7
 2.1. Introduction ... 7
 2.2. 1D plasma model ... 9
 2.3. 1D reactive flow dynamics model ... 12
 2.4. Modeling chemical processes and deposition 13
 2.4.1. Model of the deposition process ... 13
 2.4.2. Chemical components and reactions 14
 2.4.3. Electron impact reaction rate constants 15
 2.5. Numerical methods, implementation and computational environment 16
 2.5.1. Numerical methods and algorithms ... 16
 2.5.2. Implementation and computational environment components 17
 2.6. Analytical results ... 17
 2.7. Simulation results ... 18
 2.7.1. Comparison with experiment .. 19
 2.7.2. Specific features of chemical kinetics at low pressures 20
 2.7.3. Influence of diffusion coefficients ... 22
 2.7.4. Effect of the flow rate .. 23
 2.7.5. Effect of chamber volume .. 24
 2.7.6. Effect of diluting silane with molecular hydrogen 26
 2.7.7. Specific features of a triode system .. 27
 2.7.8. Analysis of the diffusion-reaction lengths 28
 2.8. Conclusions .. 32
 2.9. References .. 32

Chapter 3. Modeling and Simulation Part II: 2D and 3D Flow and 1D Plasma Discharge 35
 3.1. Introduction .. 35
 3.2. 2D and 3D flow models ... 35
 3.2.1. Governing equations for reactive flow 35
 3.2.2. Boundary conditions for the reactive flow model 36
 3.3. Numerical methods and algorithms .. 37
 3.3.1. Numerical scheme ... 37
 3.3.2. Multi-block mesh generation .. 38
 3.3.3. Parallelization ... 38
3.4. Implementation and Problem Solving Environment components38
3.5. 2D Simulation Results ..39
 3.5.1. Comparison with experiment and investigating possible causes of mismatch ... 39
 3.5.2. Influence of the flow rate, temperature and discharge power 40
 3.5.3. Influence of reactor geometry .. 43
 3.5.4. Deposition dynamics in the final stages of the PECVD cycle 45
3.6. 3D Simulation Results: Flow in Complex Reactor Configurations 47
 3.6.1. Comparison of 3D and 2D Simulation of Gas Flow 52
3.7. Conclusions .. 54
3.8. References .. 55

Chapter 4. Modeling and Simulation Part III: 3D Flow and 2/3D Plasma Discharge 57
 4.1. Introduction ... 57
 4.2. 2D Plasma Model .. 57
 4.3. Simulation Results .. 57
 4.4. Conclusions .. 60
 4.5. References .. 60

Chapter 5. Parallelization and Adaptive Load Balancing on the Grid 63
 5.1. Introduction ... 63
 5.2. Parallelization .. 64
 5.2.1. Job-level parallelism .. 64
 5.2.2. Task-level parallelism ... 65
 5.3. The simulation components of the Virtual Reactor 67
 5.4. The Russian-Dutch Grid testbed infrastructure 68
 5.5. Performance analysis on homogeneous resources 69
 5.5.1. Benchmark approach .. 69
 5.5.2. Benchmark setup ... 69
 5.5.3. Influence of the number of time steps and reactor topology 70
 5.5.4. Speedup of the chemistry-disabled and chemistry-enabled simulations71
 5.5.5. Communication time trends ... 72
 5.5.6. Computation to communication ratio 73
 5.5.7. Discussion of the results for homogeneous resources 74
 5.6. Application performance on heterogeneous resources 75
 5.7. A new methodology for resource-adaptive load balancing on heterogeneous resources... 75
 5.8. Experimental results of the workload balancing algorithm 80
 5.9. Discussion and suggestions for generalized automated load balancing 82
 5.10. Conclusions ... 83
 5.11. References .. 84

Chapter 6. Problem Solving Environment 87
 6.1. Introduction .. 87
 6.2. Virtual Reactor Architecture ... 87
 6.2.1. General description of the application components 88
 6.2.2. User interface components .. 90
6.2.3. Chemistry and gas editors components .. 91
6.2.4. Visualization components ... 91
6.2.5. Grid middleware components ... 93
6.3. Conclusions .. 95
6.4. References ... 96

Chapter 7. Summary and Conclusions .. 99
Chapter 8. Nederlandse Samenvatting ... 103
Chapter 9. Acknowledgements .. 107
Chapter 10. Publications .. 111