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Abstract

Our capacity to jointly represent information about the world underpins our social experience. By leveraging one
individual’s brain activity to model another’s, we can measure shared information across brains—even in dynamic,
naturalistic scenarios where an explicit response model may be unobtainable. Introducing experimental manipulations
allows us to measure, for example, shared responses between speakers and listeners or between perception and recall. In
this tutorial, we develop the logic of intersubject correlation (ISC) analysis and discuss the family of neuroscientific
questions that stem from this approach. We also extend this logic to spatially distributed response patterns and functional
network estimation. We provide a thorough and accessible treatment of methodological considerations specific to ISC
analysis and outline best practices.
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Introduction
Traditional methods for fMRI data analysis are not conducive
to studying the multidimensional dynamics that characterize
social interaction in real-life contexts. Methodological con-
straints require relatively brief, isolated stimulus events or
tasks, accompanied by a pre-defined model of the expected
neural response. Brain areas involved in a particular function are
localized by contrasting neural responses to tightly controlled
stimuli varying along a few isolated parameters of experimental
interest. As a result, many of the core questions of social and
affective neuroscience have proven difficult to study (Zaki and
Ochsner, 2009; Hasson and Honey, 2012; Adolphs et al., 2016).
For instance, narrative comprehension is triggered by complex
situations that unfold over minutes and cannot be captured in
brief epochs, while face-to-face social interactions additionally

involve a multitude of communication channels such as words,
sentences, intonation, facial expressions and gestures (Hasson
et al., 2012). Predicting fluctuations in brain activity during these
dynamic, continuous episodes is difficult. Finally, the social
and affective symptoms of patients with psychiatric disorders
may only be revealed in open, complex situations that cannot
be boiled down to experimental paradigms with brief, disjoint
events (Klin et al., 2002).

Intersubject correlation (ISC) analysis provides complemen-
tary insights to traditional analyses by circumventing the need
for a pre-defined response model and allowing experimenters
to measure the consistency of neural responses to complex,
naturalistic stimuli across individuals (Hasson et al., 2004, 2010).
Beyond simply measuring response reliability, ISC analyses allow
us to measure shared content across experimental conditions.
By capitalizing on the richness of naturalistic experimental
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paradigms, ISC has the potential to empower the investigation
of social interactions. This tutorial situates ISC among related
methods and extends the logic of ISC to spatially distributed
response patterns and functional connectivity. We provide
illustrative examples of how ISC analyses can be used to address
novel questions and put special emphasis on methodological
and interpretational considerations.

Situating ISC among traditional methods
Traditional analyses of functional magnetic resonance imaging
(fMRI) data follow a simple conceptual framework. During
experimental design, we generate at least two conditions that
differ according to some variable of experimental interest: one
may be thought to trigger a particular function while the other
is as similar as possible without triggering that function, or
the conditions may vary parametrically along a single variable
such as retinotopic eccentricity. In fMRI, noise dominates signals
at frequencies lower than 0.04 Hz, so when presenting stimuli
intended to evoke a particular function, instances of each con-
dition typically range from brief ‘events’ (tens of milliseconds to
several seconds) to ‘blocks’ about 20 s in duration (Boynton et al.,
1996; Chen and Tyler, 2008). We assume that neural activity
is roughly constant within each instance of a condition and
that a brain region is involved in a function, or tuned to an
experimental variable, if its activity increases in response to the
condition where the variable of interest is present or increased in
magnitude, relative to a condition where the variable of interest
is not present (i.e. the control condition) or lesser in magnitude.
These are typically referred to as subtraction (Friston et al.,
1996) and parametric (Büchel et al., 1998) designs, respectively.
These designs lend themselves to generating predictions
about the hypothesized time courses of neural activation. The
hypothesized time courses serve as predictors in a general linear
model (GLM) that quantifies how well the expected time course
predicts activity observed in each voxel, thereby localizing the
function of interest (Friston et al., 1994). Fluctuations in brain
activity over time within a condition or across repetition are
considered noise, while the difference across conditions is the
signal. Because each predictor typically comprises multiple trials
of the same condition and we assume that neural activity is
identical across trials of the same condition, this approach
effectively collapses across trials (i.e. trial averaging; Dale and
Buckner, 1997). This approach is powerful whenever (i) the func-
tion can be recruited in short epochs, (ii) tightly controlled stim-
uli can be generated to isolate and manipulate the parameter of
experimental interest and (iii) we have detailed and exhaustive
hypotheses about the time course of relevant brain activity.
Cutting edge modeling efforts (e.g. Huth et al., 2016) suffer from
similar constraints. For example, when using word embeddings
to predict brain activity during narrative comprehension, each
occurrence of a word receives the same embedding regardless
of the overarching narrative. In real-life scenarios, where the
response to each token changes as a function of an evolving
narrative context, such trial-averaging methods will fall short
(Ben-Yakov et al., 2012).

ISC analyses provide a complementary, data-driven alterna-
tive for identifying brain regions with activity driven by the
stimuli or paradigm. The core idea is best illustrated for subjects
listening to a spoken story. If multiple subjects listen to the same
story, brain regions that are systematically driven by the story
will fluctuate synchronously across viewers, while brain regions
that do not process the story in the same way across subjects,
or are not responsive to the story at all, will not. For example,

a voxel in early auditory cortex will consistently track the low-
level auditory features of the spoken words across all viewers.
The response time course of this voxel will be highly correlated
across subjects. On the other hand, a region of the brain that is
not entrained by the story (e.g. one involved in low-level visual
or motor processing) will not yield a consistent response time
course across subjects. Finally, regions that respond to the story
in a way that varies temporally to some extent across subjects,
for instance because they are involved in emotional reactions to
the story that evolve somewhat idiosyncratically from subject
to subject, will show intermediate correlations, particularly in
the lower frequency range (see Box 1). In summary, correlating
brain activity across subjects while they are exposed to a com-
plex stimulus reveals brain areas that process the stimulus in
a consistent, time-locked manner. Correlations approaching 1
indicate that the region encodes information about the stim-
ulus and that this information is processed in a stereotyped
way across individuals, while correlations approaching 0 reflect
regions with idiosyncratic processing or encoding little informa-
tion about the stimulus.

This logic can be meaningfully applied to specific frequency
bands of the signal (Box 1). If we study the processing of features
of the soundtrack that fluctuate rapidly, we would look for cor-
relation across viewers in higher frequency ranges. If we study
emotional responses that fluctuate slowly, we would look for
correlations in slower frequency ranges that also allow for more
leeway across viewers in the precise timing of the reaction. Our
dependence on the hemodynamic response in fMRI constrains
the frequency bands that can be studied with that measurement
modality (Box 1). Some of these limitations can be overcome by
using other measurement modalities, e.g. electrocorticography
(ECoG) (Mukamel et al., 2005; Honey et al., 2012a), but here we
concentrate on fMRI analyses.

Unlike traditional designs where the order of trials may be
counterbalanced or randomized across subjects, ISC analysis
critically relies on subjects receiving the same time-locked
stimulus. Similar to functional connectivity analyses (Friston,
1994), typical ISC analyses summarize the relatedness of two
response time series; however, rather than correlating time
series across different voxels within a subject, ISC analyses
typically correlate time series across subjects (Figure 1). By
computing correlations across subjects rather than across
voxels within a subject, ISC analyses are less susceptible
to idiosyncratic physiological noise and head motion than
functional connectivity analyses (Simony et al., 2016). In another
sense, ISC can be understood as specific case of the traditional
GLM where the predictor of interest is not generated a priori
based on the stimulus or experimental design, but is instead
the response time course from the corresponding region in
another subject (or the average time course across other
subjects). In a traditional GLM, we typically convolve the hypoth-
esized time course of neural activity with a hemodynamic
response function (HRF; e.g. Cohen, 1997; Friston et al., 1998)
reflecting the lag and temporal smoothness of the blood-
oxygen-level-dependent (BOLD) response. The same HRF is
typically used across brain regions, tasks and subjects, despite
evidence for considerable inhomogeneity (Birn et al., 2001;
Handwerker et al., 2004). In ISC analyses, there is no need
to convolve the hypothesized time course with an HRF, as
the hemodynamic responses in one brain are used to predict
responses in another brain. Using responses in one brain
area to predict responses in the same brain area in another
subject mitigates situations in which different brain areas have
systematically different HRFs.
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Fig. 1. The logic of ISC analysis. The response time course of a specific voxel in a given subject, xA(t), can be considered a mixture of three components: a consistent

stimulus-evoked component (green), an idiosyncratic stimulus-evoked component (blue) and stimulus-unrelated idiosyncratic or noise component (red). If brain activity

is correlated over time across subjects, the green component has a correlation of 1, and the other two components zero. The relative proportion of these components

determines the observed ISC.

Formal definition of ISC
Although we focus on the most commonly used ISC analysis
in this tutorial, this is only one member of a larger family of
conceptually related analyses. We first quantitatively consider a
typical ISC analysis, then extend this logic to related methods. At
the individual subject level of analysis we can decompose brain
activity in a single voxel into several variables (Figure 1). When a
given subject A listens to a story, the brain activity in a particular
voxel over time can be interpreted as a mixture of three signals.
The first, which we call c(t), reflects processing that is triggered
by the stimulus and is consistent across subjects. For example,
brain areas supporting low-level sensory processing closely track
stimulus features and respond consistently across individuals.
However, stimuli such as stories or movies can also synchronize
higher-level brain functions, such as semantic, emotional and
social processing, across subjects in regions beyond sensory
cortex (Hasson et al., 2004; Lerner et al., 2011; Thomas et al., 2018).
The synchronized component of such higher brain functions is
included in c(t). The second variable, which we call idA(t), cap-
tures idiosyncratic responses for subject A that are nonetheless
induced by the stimulus, but with timing and intensity specific
to that subject. For example, the same story may be interpreted
differently by different subjects if it triggers subject-specific
memories or emotions, or the story may evoke similar processes
at different times across subjects. The third variable, which we
call �A(t), reflects spontaneous activity unrelated to the stimulus
(e.g. thinking about your grocery list during the experiment) and
noise (e.g. respiration, head motion). The standardized signal in
a voxel xA(t) is then a linear combination of these standardized
components:

xA (t) = �Ac (t) + �AidA (t) + �A (t)

To map all brain regions processing the story, the analy-
sis should quantify how much of the neural activity in each
brain region is related to shared and idiosyncratic responses, i.e.
� + � > 0. The larger � + �, the more the voxel is processing
the stimulus. The logic of ISC is that if a second subject B views
the same movie, her brain activity will also be a mixture of
c, idB and �B. By definition, c(t) will be perfectly correlated for
subjects A and B (which is why we do not label c(t) with a
subscript subject variable A or B), while id(t) and �(t) will not
be systematically correlated across subjects. By modeling one
subject with another subject’s time course, we are effectively
filtering out both id(t) and �(t). The actual correlation between
the response time course of the two subjects A and B at voxel x,
rAB = r(xA, xB), will thus increase monotonically with � (Figure 2),
with rAB

2 � �A � �B; and with a larger number of subjects, the
average r becomes a proxy for the average �. Importantly, ISC is
therefore a tool to detect and quantify shared, stimulus-locked
responses and is insensitive to id(t)—a fact that needs to be
considered carefully when interpreting results.

Interestingly, although we do not need to know a priori the
time course of the consistent, stimulus-evoked component c(t)
as we must in a conventional the GLM, we can estimate c(t) for
each voxel from the data, because for large numbers of subjects
N, lim

N��
(x(t)) = c(t); that is, simply averaging the x(t) across

many subjects provides an estimate �c(t) because the inconsistent
components id(t) and �(t) will average out to small values close
to zero. The main difference between a traditional hypothesis-
driven GLM and an ISC analysis is that in the GLM we must have
an a priori hypothesis about the time course of activity that is
triggered by the experimental design and then search for regions
with this response profile. The stimulus or task is designed
so as to generate a specific expected time course. Instead, in
ISC analyses we use the shared variance across subjects as a
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