Effects of stress and corticosterone on the hippocampus: linking gene transcription to physiology
Peters, N.G.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
References

References

Barthels D, Voppler G, Willie W (1988) NCAM-180, the large isoform of the neuronal cell adhesion molecule of the mouse, is encoded by an alternatively spliced transcript. Nucl Acids Res 16: 4217-4225

References

8-OH-DPAT in rat CA1 hippocampal neurons. Naunyn-Schmiedeberg's Arch Pharmacol 366: 357-367

Davare MA, Hell JW (2003) Increased phosphorylation of the neuronal L-type Ca$^{2+}$ channel Ca,1.2 during aging. Proc Natl Acad Sci USA 100: 16018-16023

Freedman LP (1999) Increasing the complexity of coactivation in nuclear receptor signaling. Cell 97: 5-8

References

Hell JW, Yokoyama CT, Breeze LJ, Chavkin C, Catterall WA (1995) Phosphorylation of presynaptic and postsynaptic calcium channels by cAMP-dependent protein kinase in hippocampal neurons. EMBO J 14: 3036-3044
Hensler JG (2003) Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci 72: 1665-1682
References

References

Karssen AM, Meijer OC, Pons D, de Kloet ER (2004) Localization of mRNA expression of P-glycoprotein at the blood-brain barrier and in the hippocampus. Ann NY Acad Sci 1032: 308-311

Karst H, de Kloet ER, Joels M (1997a) Effect of ORG 34116, a corticosteroid receptor antagonist, on hippocampal Ca²⁺ currents. Eur J Pharmacol 339: 17-26
Karst H, Joels M (2001) Calcium currents in rat dentate granule cells are altered after adrenalectomy. Eur J Neurosci 14: 503-512
References

References

References

Marin MT, Cruz FC, Planeta CS (2007) Chronic restraint or variable stresses differently affect the behavior, corticosterone secretion and body weight in rats. Physiol Behav 90: 29-35

McKay LI, Cidlowski JA (2005) CBP (CREB binding protein) integrates NF-κB (nuclear factor-κB) and glucocorticoid receptor physical interactions and antagonism. Mol Endocrinol 14: 1222-1234

Meijer OC, de Kloet ER (1994) Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. Eur J Pharmacol 266: 255-261
Meijer OC, de Kloet ER (1995) A role for the mineralocorticoid receptor in a rapid and transient suppression of hippocampal 5-HT_{1A} receptor mRNA by corticosterone. J Neuroendocrinol 7: 653-657

Mendelson SD, McEwen BS (1991) Autoradiographic analyses of the effects of restraint-induced stress on 5-HT_{1A}, 5-HT_{1C} and 5-HT_{2} receptors in the dorsal hippocampus of male and female rats. Neuroendocrinology 54: 454-461

Mendelson SD, McEwen BS (1992) Autoradiographic analyses of the effects of adrenalectomy and corticosterone on 5-HT_{1A} and 5-HT_{1B} receptors in the dorsal hippocampus and cortex of the rat. Neuroendocrinology 55: 444-450

Mueller NK, Beck SG (2000) Corticosteroids alter the 5-HT_{1A} receptor-mediated response in CA1 hippocampal pyramidal cells. Neuropsychopharmacology 23: 419-427

References

Pusch M, Neher E (1988) Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch 411: 204-211

References

Quan ZY, Walser M (1991) Effect of corticosterone administration at varying levels on leucine oxidation and whole body protein synthesis and breakdown in adrenalectomized rats. Metabolism 40: 1263-1267

Sandi C, Loscertales M (1999) Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs. chronic corticosterone treatments. Brain Res 828: 127-134

Uhr M, Holsboer F, Muller MB (2002) Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol 14: 753-759

References

Wang D, Simons SS, Jr. (2005) Corepressor binding to progesterone and glucocorticoid receptors involves the activation function-1 domain and is inhibited by molybdate. Mol Endocrinol 19: 1483-1500

Watanabe Y, Sakai RR, McEwen BS, Mendelson SD (1993) Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin. Brain Res 615: 87-94

Werkman TR, van der Linden S, Joëls M (1997) Corticosteroid effects on sodium and calcium currents in acutely dissociated rat CA1 hippocampal neurons. Neuroscience 78: 663-672

Wolf DC, Horwitz SB (1992) P-glycoprotein transports corticosterone and is photoaffinity-labeled by the steroid. Int J Cancer 52: 141-146

References

Yue DT, Herzig S, Marban E (1990) β-Adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc Natl Acad Sci USA 87: 753-757
Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6: 2950-2967