Anti-bacterial efficacy via drug-delivery system from layer-by-layer coating for percutaneous dental implant components

de Avila, E.D.; Castro, A.G.B.; Tagit, O.; Krom, B.P.; Löwik, D.; van Well, A.A.; Bannenberg, L.J.; Vergani, C.E.; van den Beucken, J.J.J.P.

Published in:
Applied Surface Science

DOI:
10.1016/j.apsusc.2019.05.154

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Full length article

Anti-bacterial efficacy via drug-delivery system from layer-by-layer coating for percutaneous dental implant components

Erica D. de Avila, Antonio G.B. Castro, Oya Tagit, Bastiaan P. Krom, Dennis Löwik, Ad A. van Well, Lars J. Bannenberg, Carlos Eduardo Vergani, Jeroen J.P. van den Beucken

ABSTRACT

Percutaneous medical devices are prone to bacterial contamination that causes dramatic clinical conditions. At the percutaneous level of dental implant systems, microbial pathogens induce biofilm formation that may result in bone resorption and dental implant loss. In view of peri-implantitis caused by bacterial inflammation at the percutaneous abutment region, we here establish a novel drug release system based on layer-by-layer (LbL)-deposited poly(acrylic acid) (PAA) and poly-L-lysine (PLL) coatings on titanium (Ti). Detailed multilayer coating characterization was performed by different microscopy and spectroscopy techniques to probe physical and chemical properties. Our data revealed a significant difference in roughness average between ten double layers coated (141 nm ± 30) and uncoated Ti discs (115 nm ± 40). Although roughness of the coatings increased significantly after immersion in water for 24 h at 37 °C, this physical property remained below 200 nm. Coating stability was confirmed under neutral and acidic pH, mimicking healthy and diseased/inflammatory environments, respectively. LbL coatings supported in vitro human keratinocytes growth, demonstrating absence of cytotoxic effects. Tetracycline (TC) showed an initial burst release under neutral and acidic conditions, which further demonstrated robust antibacterial efficacy against Porphyromonas gingivalis. However, a convenient pH-dependent 2-folds increase in TC release was observed for coatings incubated at pH = 4.5. Sustained TC release was observed from coatings up till 15 days of incubation in both pH conditions. These results demonstrate the potential application of this simple surface modification to leverage anti-bacterial efficacy at the percutaneous abutment region.

1. Introduction

Biofilm-based infections arise as the main cause of percutaneous implant loss after medical device implantation [1,2]. Microorganisms in the biofilm form are responsible for a substantial portion of healthcare-related infections. Over 65% of all human infections have been estimated to be biofilm-related [3]. Among several factors involved in infection progression, such as host response, presence of systemic disease and smoking habit [3], bacteria attached to material surfaces act as the major reason that infections are very difficult to eradicate [4]. As such, biofilm is a dreaded and organized biological structure developed by microorganisms growing on a surface and enclosed in an exopolysaccharide matrix [5]. Effective protection against antimicrobial substances provided by this matrix hinders the elimination of microorganisms and allows the infectious disease to diffuse further into tissue [6].

Particularly with percutaneous devices (PDs), the oral mucosa/skin-implant interface (initially) does not totally seal the internal environment, which may facilitate pathogen invasion to the body. For dental implants, a polymicrobial biofilm infection might lead to inflammation of tissues surrounding the implant, eventually resulting in progressive bone resorption [7,8]. Under healthy conditions, oral mucosal cells...
work as a physical barrier against the invasion of microorganisms and only a small number of bacterial species can reach the internal environment [9]. However, once peri-implantitis has established, a high number of bacteria from the infected oral site can gain access into the internal environment and reach vital organs, including as lung, heart and the peripheral blood capillary system [10]. The broad and well-documented knowledge about the dramatic complications involving implant-related infection [11] has awakened clinicians and engineers to search for new strategies to combat biofilm-associated diseases. Since oral microorganisms adhere to generally all types of substrates [12–17], material engineers developing next generation oral care products are progressively developing new materials and material surface modifications that reduce bacterial attachment to titanium (Ti) implants [18]. One of the main engineering challenges in biotechnology and nanomedicine is the development of a surgical drug release system to attain anti-bacterial activity without cytotoxicity concerns [19]. Several metallic nanoparticle films have been developed in an attempt to limit the growth of bacteria [20,21]. However, the main disadvantage related to the clinical application of metallic nanoparticles is the potential health risk owing to toxicity and (nano)particle accumulation [22–24].

Currently, the development of surficial drug-delivery systems for antibacterial agents has attracted attention as an effective approach to prevent and treat implant-related infections [25–27]. Among the explored coating techniques, layer-by-layer (LbL) self-assembly based on polyelectrolyte deposition via electrostatic interactions has shown biological advantages, including precise control of coating properties, low-cost built-up, versatility for coating any available surface, obtainment of homogeneous films with controlled thickness, and incorporation and controlled release of biomolecules/drugs [28–30]. The ability of LbL systems to incorporate drugs in different amounts and the versatile chemical properties within a thin film render the method appealing. In brief, LbL exploits interactions between oppositely charged polyelectrolytes to obtain a layered coating [21]. The intermolecular interaction between moieties within the coating (i.e. polyelectrolytes and drugs) depends on the size and overall charge density [32,33].

With Ti-based dental implant components as a key site for biofilm formation, we here demonstrate a novel drug release system based on LbL-deposited poly(acrylic acid) (PAA) and poly-L-lysine (PLL) coatings as a model for surficial anti-bacterial efficacy using tetracycline as an antibiotic. We characterized LbL-deposited coatings in detail using multiple advanced microscopy and spectroscopy techniques to probe physical and chemical coating properties. Stability assessment of the coatings was evaluated under different pH conditions mimicking healthy and diseased/inflammatory environments [34,35]. Furthermore, tetracycline was incorporated within the LbL coating and bacteriostatic effects were tested on mono-species early biofilm cultures and coated Ti discs. Images were taken at 300 kHz using a Catalyst BioScope (Bruker, Bremen, Germany). LbL coating assembly was carried out at room temperature and coated Ti discs were stored in the dark at room temperature.

2.2. LbL coating assembly

Prior to LbL coating assembly, Ti discs were cleaned with acetone for 15 min in ultrasound, followed by a wash-step with Milli-Q water for 15 min in ultrasound, and 2-propanol for 10 min. Discs were then air-dried at room temperature (RT) for 24 h. To functionalize the surface, Ti discs were plasma-etched in argon using plasma cleaner machine (PDC-002, Harrick Scientific Corp., NY, USA) for 5 min. Immediately after plasma-etching, LbL coatings were assembled using the LbL assembly following method: First, the build-up of the coating was initiated by immersing the Ti disc in a PEI solution (0.5% w/v PEI in 10 mM Tris buffer containing 150 mM sodium chloride; \(\text{pH} = 7.4 \)) for 30 min. Thereafter, alternating PAA (1 mg/mL in a 150 mM sodium chloride solution; \(\text{pH} = 5.5 \)) and PLL (1 mg/mL in 10 mM of Tris buffer containing 150 mM of sodium chloride; \(\text{pH} = 7.4 \)) immersion steps (each 10 min) with intermediate washing steps in Milli-Q water (1 min) were used to reach a [PAA/PLL] \(n \) system (\(n \) ranging from 5 to 10).

2.3. LbL coating characterization

LbL coatings were deposited on Ti discs displaying a standard roughness surface lower than 200 nm. However, to determine the thickness of the multilayer system and evaluate the effect of the temperature and immersion solution on the roughness of the polyelectrolytes coatings, [PAA/PLL] \(n \) coatings were deposited onto silicon wafer with Ti-coating as flat substrates [36].

2.3.1. Fluorescence microscope

The build-up of coatings was monitored by measuring the fluorescence intensity of PLL-FITC from [PAA/PLL] \(n \) and [PAA/PLL] \(10 \) (EL 6000 Fiber Optic Illuminator, Leica Microsystems CMS, Wetzlar, Germany). LbL coating assembly was carried out at room temperature and coated Ti discs were stored in the dark at room temperature.

2.3.2. Atomic force microscopy (AFM)

2.3.2.1. Surface roughness analyze. Atomic force microscopy (AFM) measurement was performed to determine the average roughness (Ra) of coated and uncoated Ti discs. Images were taken at 300 kHz using silicon nitride cantilevers (RTESP-300, Bruker, Bremen, Germany). Surface roughness calculations from scan size of 20 × 20 μm were averaged over five separate areas for coated and uncoated Ti discs.

2.3.2.2. Substrate preparation for atomic force microscopy imaging. AFM imaging was performed to determine the surface profile and thickness of coating. To avoid effects of irregular surface topography of Ti discs, we assembled [PAA/PLL] \(n \) coatings on Ti-coated silicon wafers (12 × 12 mm). This Ti coating was deposited using physical vapor deposition (Auto 500, HHV Ltd., West Sussex, UK) and a high purity Ti target in a static modus for 45 min. The presence of a thin TiO\(_2 \) layer on the silicon wafer was confirmed by field emission scanning electron microscopy (FESEM - JEOL, 6330 Cryo, MA, USA) combined with energy dispersive spectroscopy (EDS), as well as Neutron Reflectometry [37], see below, and X-ray Diffraction (XRD) (Cu-Kα, 40 kV, X’Pert, PANalytical, Almelo, the Netherlands). LbL deposition of coating on this substrate was achieved following the same sequence described above (Section 2.2; Fig. 1).

2.3.2.3. Atomic force microscopy imaging. Atomic force microscopy images were obtained with a Catalyst BioScope (Bruker, Bremen, Germany) coupled to a confocal microscope (TCS SP5II, Leica, Mannheim, Germany). 10 × 10 μm regions of [PAA/PLL] coating Ti discs with 5 and 10 double layers were imaged in tapping mode using silicon nitride cantilevers with nominal resonant frequency of 300 kHz (RTESP-300, Bruker, Bremen, Germany). In order to evaluate the thickness of the coating, two different regions of each disc were scratched with ethanol and the distance from the Ti surface was

2. Material and methods

2.1. Titanium discs, materials and reagents preparation

Commercially pure titanium (Ti; Grade 2), machined discs (12 mm diameter, 1.5 mm thickness) were obtained from Machinemfabriek G Janssen B.V. (Valkenswaard, the Netherlands). Polyethyleneimine (PEI) (M.W. = 25,000), poly-L-lysine FITC Labeled (PLL) (M.W. = 15,000–30,000), tetracycline hydrochloride (TC), UltraPure™ Tris buffer (≥99.9%) and sodium acetate (M.W. = 82.03) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Poly(acrylic acid) (PAA; M.W. = 60,000) and sodium chloride for analysis were obtained from Polysciences (Warrington, PA, USA) and Millipore Corporation (Burlington, MA, USA), respectively.
2.3.3. Confocal laser scanning microscopy (CLSM)

Ti discs with coatings, for which PLL-FITC was used during LbL coating assembly, were subjected to CLSM, acquiring digital images in the green channel of a CLSM (Olympus FV1000, Inverted, Tokyo, Japan) with an excitation wavelength of 488 nm. Three random regions of each coated Ti disc were analyzed and the data plotted as mean of green fluorescence.

2.3.4. X-ray photoelectron spectroscopy (XPS)

Surface elemental composition of coating was determined by quantitative X-ray photoelectron spectroscopy (XPS) on a VG Scientific ESCALAB 200A spectrometer utilizing a non-mono-chromatized Al-Kα radiation (900 kV). A wide survey scans of 300 μm × 700 μm were performed in 2 different areas of two independent discs. Data analysis was processed with commercially available software (CasaXPS, Casa Software, Ltd., Cheshire, UK) and carbon 1s (C), nitrogen 1s (N), oxygen 1s (O), sulfur 2p (S) and titanium 2p (Ti) were quantified by integration of the significant intensity of photoelectron peaks. Uncoated Ti discs served as control.

2.3.5. Neutron reflectometry [37]

In order to complement our previous analyses and gain a more reliable understanding about the coating thickness, the coated and uncoated Ti discs were subjected to NR analyses. With NR, the reactivity of neutrons is measured as a function of momentum transfer \(Q = \frac{4\pi}{\lambda}\sin(\theta) \), with \(\lambda \) and \(\theta \) the incident wavelength and angle of the neutron, respectively. By fitting these data to a scattering length density profile, one obtains estimates for thickness, roughness and scattering length density (SLD) of each layer. The SLD is a material property and equals the sum of the product of the atomic number density \(N_i \) and the isotope-dependent scattering length \(b_i \) product of each isotope in the layer, i.e., \(SLD = \sum_i N_i b_i \). The SLD thus depends on the density of the layer and the (ratio of) isotopes present in the material.

The NR measurements were performed using a time-of-flight ROG reflectometer as described previously [38] using neutrons with an incident wavelength of \(0.17 < \lambda < 0.99 \) nm, an incident angle of \(\theta = 5.5 \) and \(9.1 \) mrad, and a momentum transfer resolution of \(\Delta Q/Q = 0.04 \). The neutron reflectometry measurements were fitted using the software package STAR (see [39] for more details) to obtain estimates for layer thickness, roughness and SLD for each layer.

2.4. In vitro LbL coating stability assessment

The fluorescence intensity, roughness and chemical composition variations of coating were evaluated before and after immersion in solutions with different pH. Discs were gently placed into 15 mL tubes containing 3 mL of PBS (pH 7.4) or acetate buffer (pH 4.5) [40] and incubated at 37 °C in shaking condition (60 rpm/min) for 15 days. The buffer solutions were refreshed daily. At retrieval, coated discs were rinsed once with Milli-Q water, and the integrity of coatings was evaluated by CLSM, AFM and XPS, as described above (see Section 2.3).

2.5. MIC and MBC determination for tetracycline

Porphyromonas gingivalis ATCC W83 was initially grown anaerobically on brain heart infusion (BHI) blood agar with hemin and menadione for 5 days at 37 °C. Bacterial colonies were transferred to BHI broth medium supplemented with hemin and menadione (BHI-HM) and incubated at 37 °C under anaerobic conditions. \(P. \) gingivalis was used to inoculate 96-well microtiter plates (Corning Costar cell culture plates; Fisher Scientific, NY, USA) to a final bacterial density of \(10^8 \) CFU/mL containing two-fold serial dilution of TC in BHI-HM. The cultures were incubated at 37 °C under anaerobic conditions and the absorbance at OD600nm was read after 48 h. The lowest concentrations of TC that inhibited \(P. \) gingivalis growth were plated and the number of viable bacteria determined the minimal bactericidal concentration (MBC). MBC represented our reference concentration to calculate the amount of antibiotic to be incorporated into coating.
2.6. Preparation of tetracycline-loaded coatings

Due to instability in air and light-sensitivity, TC was prepared immediately before each experiment. Drug incorporation method was outlined considering its dissociation constant (pKa) as a strategic physicochemical parameter to improve the electrostatic interaction between TC and polyelectrolytes. Briefly, 5 mg/mL of TC solution was prepared in Milli-Q water at room temperature. Then, 100 μL of this cationic drug was gently dropped on the last layer, after PLL deposition being completed, and discs were statically incubated at 37 °C for 4 days, in dark environment ([PAA/PLL]10/TC). In an attempt to validate LbL assembly role on TC incorporation, 100 μL of TC at 5 mg/mL was pipetted on Ti discs that had not undergone coating for comparison. Concurrently, to confirm the effect of temperature on TC yield under multilayers, we dropped the same drug concentration after PLL deposition in ninth multilayer and followed with the last double layer construction ([PAA/PLL]9/TC + [PAA/PLL]1) after incubation for 24 h at 37 °C.

2.7. Tetracycline release

TC release from the coating was monitored in two different pH conditions. Three [PAA/PLL]10/TC coating Ti discs were placed into a 24-well plate containing 1 mL of PBS (pH = 7.4) and acetate buffer (pH = 4.5) and kept at 37 °C in shaking (60 rpm/min) for 1, 3, 7 and 15 days. At different sampling intervals, 1 mL of supernatant was collected for analysis and a fresh solution was added into each experimental well. Coated and uncoated Ti discs were used as controls. To determine the method detection limit, TC standard solutions were prepared in both PBS and acetate buffers, in the concentration range between 0.5 and 250 μg/mL. The PBS and acetate supernatant containing released tetracycline were analyzed by High-performance liquid chromatography machine (HPLC - Hitachi, Mannheim, Germany) consisting of a pump (Hitachi L-2130), a UV detector (Hitachi L-2400), an autosampler (Hitachi L-2200) and a LiChropar RP-18 endcapped HPLC column (125 × 4 mm, particle size 5 μm). The flow rate of mobile phase (ammonium phosphate buffer 50 mM, pH 3, and acetonitrile 90/10 volume ratio) was fixed at 1 mL/min with an injection volume of 30 μL.

2.8. Biological assays

Before proceeding with biological experiments, Ti discs were sterilized in autoclave at 121 °C for 15 min. For Lbl assembly preparation, all experimental solutions were filtered with a Millipore® membrane 0.22-μm-pore size filters and the complete Lbl assembly was performed under aseptic conditions, inside a biosafety cabinet.

2.8.1. Antibacterial assay

[PAA/PLL]10/TC coating Ti discs were placed in a 24-well culture plate (Corning Costar cell culture plates; Fisher Scientific, NY, USA) and incubated with 1 mL of *P. gingivalis* W83 in BHI-HM (supplemented with 25% filtered saliva), in the working density of approximately 10⁶ CFU/mL under anaerobic conditions. After 48 h [41], PBS-washed coated and uncoated Ti discs were transferred to a new plate containing BHI broth medium and bacterial cells were harvested from the discs by scraping with a pipette tip. Two hundred μL of bacterial culture was transferred to a 96-well plate to serial dilution procedure. Ten μL of each sampling well was dropped on a fresh BHI blood agar plate and kept at 37 °C under anaerobic conditions. Viable colonies were counted after 5 days. Coated and uncoated Ti discs were used as controls. Concomitantly, *P. gingivalis* at the same sampling concentration were inoculated directly into the polystyrene well plate to serve as our positive control.

2.8.2. Cytotoxicity assay and cell viability experiments

HaCaT immortalized human keratinocytes were cultured in Dulbecco’s Modified Eagle’s Medium High Glucose (DMEM, Sigma Chemical Co., St. Louis, MO, USA) medium, supplemented with 10% fetal bovine serum (FBS, Gibco, Grand Island, NY, USA), 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA), in a humidified atmosphere containing 5% CO₂ at 37 °C. The medium was refreshed every 48 h. Assessment of coating effects on metabolic mitochondrial activity of cells was performed by alamar blue assay. HaCat cells were seeded on the coated and uncoated Ti discs in 24-well culture plate (Greiner Bio-One, Kremsmünster, Austria) at 2 × 10⁵ cells/well for monolayer cell culture. Coated and uncoated Ti discs were statically incubated at 37 °C under 5% CO₂ conditions for 24 h. After the incubation period, the medium was refreshed with 0.1 g/mL of alamar blue (Invitrogen, CA, USA) and the reduction of the non-fluorescent reagent (resazurin) to a fluorescent compound (resarufin) was read using a spectrophotometer (Synergy™ HTX Multi-Mode Microplate Reader, BioTek, Baden-Württemberg, Germany) at 570 nm and 600 nm wavelength. Cells from the same original culture growth on a 24-well polystyrene and DMEM medium served as positive and negative control respectively. The experiment was performed in triplicate and with two independent biological repetitions.

Cell viability was confirmed via a Calcein AM/ethidium homodimer-1 live/dead kit (Invitrogen, CA, USA), following manufacturer’s instructions. The experiment was carried out 3 days post-seeding. Images from adhered cells on coated and uncoated Ti discs were acquired using a 20 × dry objective on an inverted confocal microscope (Olympus FV1000, Japan). Excitation wavelengths of 488 and 543 nm lasers were employed in combination with bandpass filters of 505e530 nm and long-pass filter of 560 nm to demonstrate the live dead cells distribution.

Assessment of TC released from the [PAA/PLL]10 coating Ti discs effects on metabolic mitochondrial activity of cells was also performed by alamar blue assay. For this, HaCat cells were seeded onto 24-well polystyrene plates at 2 × 10⁵ cells/well and then the plates were incubated at 37 °C under 5% CO₂ conditions for 24 h, for monolayer cell culture formation. At the end of incubation period, TC was added into each correspondent well in different concentrations of 50 μg/mL, 100 μg/mL and 500 μg/mL with 10% alamarBlue (Invitrogen, Carlsbad, CA, USA). Longer incubation times at 24 and 72 h were established for greater cytotoxicity analyses.

2.9. Statistical data analysis

The normal and homoscedastic distribution of the data outlined parametric tests. Statistical comparisons were performed by one-way analysis of variance (ANOVA) with a Tukey's Post hoc test. For evaluation of roughness between coated and uncoated Ti discs and liquid immersion and temperature on multilayer roughness, D’Agostino & Pearson was applied to test data distributions for normality and a paired Student’s t-test (two-tailed) was employed using GraphPad Prism version 5.0c (GraphPad Software, CA, USA). All data were plotted as the mean ± standard deviation (SD) and p < 0.05 was considered statistically significant.

3. Results and discussion

3.1. Development and characterization of [PAA/PLL]ₙ coatings on Ti surfaces

In this study, we demonstrated the successful implementation of an Lbl system on Ti surfaces by alternate electrostatic interactions of alternating polyanions and polycations to fight *P. gingivalis* as a potential pathogen involved in oral diseases. The engineered Lbl construction was generated after initial pre-treatment of Ti with ionized argon gas. This is an important step to improve electrostatic interaction between Ti substrate and PEI, a hydrophilic polyelectrolyte material. Ti discloses hydrophobic properties conferred by a natural and constant...
polycarbonyls and hydrocarbons deposition. This phenomenon affects the wettability of the surface with the increased hydrophobicity [42,43]. Our data confirmed the previous findings showing average contact angle values of 90 ± 2 degrees. Non-thermal plasma activation [37] modified Ti physical chemical properties from hydrophobic to superhydrophilic (2.1 ± 0.3).

Subsequent PEI immersion promoted cationic polyelectrolyte adherence, which was the basis for interaction with negatively charged PAA [44]. First [PAA/PLL] double layers were completed by a strong electrostatic interaction between dissociated carboxyl groups from PAA and extend primary amine groups of lysine residues in PLL. Since PAA and PLL are considered weak polyelectrolytes, the pH of the polyelectrolyte solutions is important [45]; this parameter was fixed at pH 5.5 for NaCl solution and pH 7.4 for Tris/NaCl buffer during deposition of stable double layer coatings. Five ([PAA/PLL]5 - Fig. 2A) and ten double layers ([PAA/PLL]10 - Fig. 2B) coating Ti discs were prepared and the fluorescence intensity originating from PLL-FITC layers revealed that [PAA/PLL]10 was sufficient to homogeneously cover the surface of Ti discs.

In order to gain a better understanding on multilayer thickness, we measured the distance from Ti substrate to outer coating by AFM. Cross-section analysis of [PAA/PLL]5 (Fig. 2C) and [PAA/PLL]10 (Fig. 2D) on Ti-coated Si showed an average thickness of 20 nm and 40 nm, respectively.

A high density of irregularities, as well as the presence of considerable roughness, can facilitate bacterial accumulation on materials [46–48]. It has been reported that a threshold roughness value lower than 200 nm does not further affect the number of microorganisms adhered onto a material substrate [46–48]. Although our data revealed a significant difference in Ra between coated (Ra = 141 nm ± 30) and uncoated Ti discs (Ra = 115 nm ± 40; Fig. 2E), the overall peak-to-valley height obtained from both coated and uncoated Ti discs were fabricated according to the roughness standards indicated to implant confection, around 200 nm [46,47].

We further acquired CLSM images to estimate the fluorescence intensity scales with the thickness/amount of PLL-FITC labeled. In addition, we obtained information about the homogeneity and stability of the polymeric layers. [PAA/PLL]10 revealed a homogeneous multilayer deposition on the Ti discs, with a consistent fluorescence intensity to all discs analyzed (Fig. 2F).

The wide scan spectrum of XPS (Fig. 1G) showed predominance of carbon (C) and nitrogen (N), and a small percentage of sulfur (S) at the surface of coatings. C content was increased on multilayer coating Ti discs due to the more C on molecular structure composition of polyelectrolytes used on LbL construction. The presence of N and S was directly attributed to the PLL-FITC.

Coating thickness is critical in the controlled processing and quality assessment for drug delivery [49,50]. Consequently, we used NR to further validate the previous findings and provide accurate information about [PAA/PLL]5 thickness. In addition, we measured a separate silicon wafer and a silicon wafer with a TiO2 layer (Fig. 3A). From the fits of these measurements, we deduce a TiO2 layer thickness of 32.6 ± 0.9 nm and for the 5 double layers of the LbL coatings of 20.5 ± 0.8 nm (Fig. 3B). Assuming a constant layer thickness per
double layer, this would translate to a double layer thickness of 40.8 nm for a 10 double layer system, which is in excellent agreement with AFM measurement that show a layer thickness of around 40 nm. The fitted scattering length density of the TiO2 (2.6 · 10\(^{-4}\) \(\text{nm}^2\)) matches the literature value (2.6 · 10\(^{-4}\) \(\text{nm}^2\)), while the SLD of the [PAA/PLL]5 coating was slightly lower than expected based on an equal ratio of PAA and PLL, possibly due to the inclusion of H2O and/or HBr, which have a strong, negative effect on the scattering length density due to the negative scattering length of hydrogen. The atomic (local) roughness of the [PAA/PLL]5 layer is approximately 2 nm.

3.2. Coating stability test in different pH conditions

Since coating stability is important for clinical applications, we examined if different pH conditions affect the coating surface properties over time. Fresh PBS (pH = 7.4) and acetate buffer (pH = 4.5) were prepared to simulate a normal and inflammatory environment, respectively. Sodium acetate is considered a stable buffer routinely used in biochemical studies to prevent pH changes of compounds involved in the biochemical activity [40]. CLSM analyses were performed to compare the homogeneity stability of the coating before and after immersion in different pH conditions. The results showed that neutral pH did not affect the green fluorescent signal after 15 days of incubations (Fig. 4B) compared to non-immersed coating Ti discs (Fig. 4A). In contrast, a notable difference in overall fluorescence intensity after coatings incubation for 15 days at acidic pH (Fig. 4C) was observed. Since it has been reported that fluorescein derivate from PLL-FITC is very sensitive to changes in pH and not very stable to elevated temperatures [51], photobleaching is expected after coatings incubated under acidic pH at 37 °C. Therefore, a possible interference of pH on PLL-FITC required additional investigation to improve understanding of the true effect of acidic environment on LbL coating stability.

XPS analyses indicated that exposure of the coatings to neutral and acidic pH hardly affected the amount of carbon (C), nitrogen (N), oxygen (O) and sulfur (S) compared to non-immersed coatings (Fig. 4D). Not measuring Ti (i.e. the underlying substrate) upon immersion in either pH conditions further confirms negligible coating degradation. Because PAA is known to have a very high liquid retention capacity [52], we assumed that molecular conformation change upon immersion caused a subsequent swelling behavior of the polyelectrolyte matrices. The swelling response is a consequence of liquid adsorption and ionic strength among polyelectrolyte layers and liquid, which can contribute to increased surface irregularity, and hence roughness of the coating. LbL coating showed significantly decreased values of roughness upon immersion (Fig. 4E), suggesting a deswelling response in dry environment [53].

We also found that the swelling property was maintained when roughness analyses were performed with coating Ti discs in an aqueous environment. This assumption was confirmed by AFM analyses. Roughness of the coatings on Ti-coated Si increased significantly after immersion in water (W) for 24 h at 37 °C (Fig. 5). Importantly, roughness values always remained below 200 nm, independent of
3.3. Temperature facilitates TC incorporation within coatings

Altering polyelectrolytes structure can largely affect the hydrophilic/hydrophobic balance and hence polyelectrolyte/drug interactions [54]. Fig. 6A schematically illustrates coating conformation changes and the drug diffusion process through the multilayered LbL coating. To facilitate TC loading into the polyelectrolyte matrices, we placed a droplet of TC solution onto the coating at 37 °C for 4 days to produce [PAA/PLL]_{10}/TC with TC penetrating into the LbL-system. To validate the carrier role of coating, we also placed a droplet of TC on uncoated Ti discs and compared TC fluorescent intensity after 24 h of coating immersion in PBS. Fig. 6B and C show similarity in detection of the fluorescent signal from both pristine [PAA/PLL]_{10}/TC and Ti/TC. However, TC was easily released from Ti/TC after immersion in PBS (Fig. 6D), indicating limited interactions between the Ti substrate and TC. Interactions of coating with TC incorporation were confirmed by fluorescent signal emitted from TC after 24 h under different pH conditions (Figs. 6E-F). As drug loading often relies on diffusive processes controlled by LbL internal structure properties [30,55], our stability data suggests clear interactions at room temperature between both polyelectrolytes used for LbL-coating build-up. Then, a last experiment was performed in an attempt to ensure temperature as a crucial property to improve drug loading through the layers. Here, TC was dropped on the ninth multilayer constructed and kept at 37 °C for 24 h before

Fig. 5. Effect of immersion solution on roughness of [PAA/PLL]_{10} on Ti coated Si (gray bar, [PAA/PLL]_{10}/37 °C-W) in comparison to [PAA/PLL]_{10} (white bar, [PAA/PLL]_{10}/RT). Data are shown as mean ± SD. Statistically significant differences are indicated as: p < 0.05 (*p < 0.0001).

Fig. 6. (A) Schematic illustrating electrolyte conformation change under effect of temperature to drug incorporation. Effect of temperature on TC incorporation into [PAA/PLL]_{10}. (B) TC/Ti after 4 days at 37 °C. (C) [PAA/PLL]_{10}/TC after 4 days at 37 °C. (D) TC/Ti after 24 h in PBS at 37 °C. (E) [PAA/PLL]_{10}/TC after 24 h in PBS at 37 °C. (F) [PAA/PLL]_{10}/TC after 24 h in acetate buffer at 37 °C. (G) [PAA/PLL]_{10}/TC + [PAA/PLL]_{1}, after 24 h in PBS at 37 °C. (H) Effect of temperature on roughness of [PAA/PLL]_{10} on Ti coated Si (gray bar, [PAA/PLL]_{10}/37 °C) in comparison to [PAA/PLL]_{10} (white bar, [PAA/PLL]_{10}/RT). Data are shown as mean ± SD. Statistically significant differences are indicated as: p < 0.05 (*p = 0.48).
PLL]10/TC coating Ti discs were then evaluated after 24 h immersed in 50 μg/mL (pH = 7.4) and acetate buffer (pH 4.5). On the other hand, temperature did not affect coating surface topography. The same coatings kept at 37 °C (Fig. 6H). In contrast to the potential microbial resistance provoked by systemic administration of antibiotics, local administration minimizes systemic uptake maintaining high levels in the crevicular fluid for periodontal infections [60]. Hence, we investigated if TC released over time would affect P. gingivalis accumulation on [PAA/PLL]10/TC coated Ti discs. Among a wide-ranging of antimicrobial agents, TC has been clinically used to disinfect contaminated implant surfaces [61,62] due to its activity against a wide range of bacteria in the oral cavity [63,64]. Interestingly, coatings without TC already negatively influenced bacterial adhesion. A significant decrease in bacterial viability on coated versus uncoated Ti discs was observed, with a further reduction of P. gingivalis colonies to 2.1 10^Log compared to Ti controls and 4.3 10^Log to positive controls (polystyrene well surface), respectively. The anti-

![Fig. 7. Cumulative release of TC profile in PBS (pH 7.4) and acetate buffer (pH 4.5). Data represent the mean ± SD (n = 3).](image)

last double layers construction ([PAA/PLL]10/TC [PAA/PLL]9/TC [PAA/PLL]1). [PAA/PLL]10/TC coating Ti discs were then evaluated after 24 h immersed in PBS and consistent images revealed the presence of abundant TC fluorescence (Fig. 6G).

Polyelectrolyte multilayers can dehydrate under high temperature and change their conformation [56,57]. This effect seems clear when we compared the pristine coating profile and thickness at room temperature to that after incubation at 37 °C for 24 h. Coatings prepared at room temperature revealed more spread out domains (black circle) than the same coatings kept at 37 °C (Fig. 6H). On the other hand, temperature did not affect coating surface topography.

3.4. TC release in different pH conditions

We determined the release of TC loaded into the coatings over time by HPLC in the supernatant after [PAA/PLL]10/TC incubation in PBS (pH = 7.4) and acetate buffer (pH = 4.5), at 37 °C. A concentration of 50 μg/mL served as our limit value to establish the MBC of TC able toward P. gingivalis. A burst release of TC from coating was observed under both pH conditions in the first 24 h (Fig. 7). However, a pH-dependent 2-folds increase in TC release was observed for [PAA/PLL]10/TC coatings incubated at pH = 4.5 (Fig. 7).

LbL-coatings are temperature and pH sensitive, which means that the polyelectrolytes may adopt some degree of secondary conformational order upon changes in the local pH and ionic strength environment that affect drug release [54,58]. In addition, the ionization degree of polyelectrolytes used for LbL build-up interferes with the stability of the coating due to secondary interactions (hydrogen bonds) and intermolecular associations. As mentioned above, a PLL-terminated coating was defined due to its higher stability under physiologic conditions (pH = 7.4) compared to PAA [58]. However, the pH decrease from 7.4 to 4.5 may affect the molecular arrangement and increase the degree of conformational order due to adsorption [58,59]. At acidic conditions, PLL in the multilayered coating has been found fully protonated, whereas at neutral pH PLL is only partially protonated [58]. In concordance with Prokopovic et al., we assume that the TC release mechanism is related to PLL chain mobility after ionization [49]. Indeed, TC diffusion seems to depend on diffusion of PLL and this supports our assumption that the overall decrease in TC release at pH = 7.4 was affected by stable conformation of PLL. This chemical property may have contributed to rather fast TC release out of the LbL coatings, a convenient perspective to clinical cases where disease is already has been established. In spite of a significant reduction of TC burst release, sustained TC release was observed from coatings up till 15 days of incubation in both pH conditions.

For cytotoxic evaluation, we measured cell viability in different TC concentrations. Since our HPLC data revealed a TC burst release of approximately 400 μg/mL in acidic medium, we investigated whether a concentration up to 500 μg/mL could affect the mammalian cell metabolism. Our data demonstrated that no TC concentration evaluated affected the mammalian cell metabolism. Our data demonstrated that no TC concentration evaluated was capable of interfering in HaCat cell viability even after 72 h of incubation (Fig. 8).

![Fig. 8. Effect of TC on HaCat cell viability at 24 and 72 h culture via quantitative measurement of alamar blue staining as indicator of cell viability on tissue culture polystyrene (white bar, C+). Data are shown as mean ± SD; Statistically significant differences are indicated as: p < 0.05 (24 h p = 0.1992; 72 h p = 0.0273).](image)
bacterial effect of the coatings suggests a toxic effect by the presence of acidic functional groups from PAA after PAA dissociation under temperature and pH change [65]. Antimicrobial activity was evaluated after coated and uncoated Ti discs incubation at 37 °C for 48 h. As demonstrated above (see Sections 3.3–3.4), temperature at 37 °C can interfere with the conformation of polyelectrolytes, which means that deprotonated carboxyl groups would lead to a repulsive effect on negative charge from P. gingivalis cell wall [66,67]. Since release amounts of TC were higher than the MBC, a strong antibacterial effect was expected. The number of viable bacteria cells was estimated and CFU/mL method recorded no P. gingivalis colony on [PAA/PLL]_{10}/TC coating Ti discs (Fig. 9). This result points toward an applicable coating capable to release an appropriate dose of TC to diminish P. gingivalis colonies.

3.6. Coating as a biomaterial

Our next goal was to evaluate whether coatings had any influence on mammalian cell viability. Alamar Blue testing among coated and uncoated Ti discs, and positive control (cells cultured on polystyrene well surface) showed comparable cell viability of human keratinocytes up to 72 h of culture (Fig. 10A). Similarly, a live/dead assay (Fig. 10B) confirmed retained cell membrane integrity and illustrates morphologically similar cell growth on both coated and uncoated Ti discs. As such, our data corroborate the confirmed biocompatibility of PAA and PLL as polyelectrolyte multilayers used as drug release matrices for biomedical applications [30,68]. However, to the best of our knowledge, this study reports for the first time a successful antibacterial drug delivery approach using PAA and PLL as key components for releasing matrices construction.

4. Conclusion

An effective surgical antibacterial coating was developed by LbL assembly on Ti using tetracycline as an antibiotic drug. Alternating
polyelectrolyte layers of PAA and PLL showed a stable LbL build-up on Ti, with no cytotoxic effects against human keratinocytes. [PAA/PLL]10/TC showed a large tetracycline burst release within 24 h of incubation in both acidic and neutral conditions, with a significantly higher release under acidic conditions. Antibacterial effect of [PAA/PLL]10/TC was confirmed against P. gingivalis, with no viable bacterial remaining after 5 days. This novel drug-delivery system approach holds promise as a facile antibacterial surface modification for metallic percutaneous medical devices.

Declaration of Competing Interest

The authors declare no competing financial interest.

Acknowledgements

Erica Dorigatti de Avila was supported by The São Paulo Research Foundation (FAPESP) grant # 2016/19650-3 and 2015/03567-7. Work at ACTA was supported in part by the UvA Focal Point on Oral Infection and Inflammation. The authors acknowledge the practical assistance of Mrs. CJ Bosch-Tijhof.

References

