Cryptography in a quantum world
Wehner, S.D.C.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE (Digital Academic Repository)

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 03 Jan 2019
Contents

Acknowledgments

xv

I Introduction

1 Quantum cryptography 3

1.1 Introduction 3

1.2 Setting the state 5

1.2.1 Terminology 5

1.2.2 Assumptions 6

1.2.3 Quantum properties 7

1.3 Primitives 9

1.3.1 Bit commitment 9

1.3.2 Secure function evaluation 11

1.3.3 Secret sharing 17

1.3.4 Anonymous transmissions 18

1.3.5 Other protocols 19

1.4 Challenges 19

1.5 Conclusion 20

II Information in quantum states

2 Introduction 25

2.1 Quantum mechanics 25

2.1.1 Quantum states 25

2.1.2 Multipartite systems 27

2.1.3 Quantum operations 29

2.2 Distinguishability 32
3 State discrimination with post-measurement information

3.1 Introduction ... 43
 3.1.1 Outline .. 45
 3.1.2 Related work 46

3.2 Preliminaries ... 47
 3.2.1 Notation and tools 47
 3.2.2 Definitions 47
 3.2.3 A trivial bound: guessing the basis 48

3.3 No post-measurement information 49
 3.3.1 Two simple examples 49
 3.3.2 An upper bound for all Boolean functions 50
 3.3.3 AND function 50
 3.3.4 XOR function 51

3.4 Using post-measurement information 54
 3.4.1 A lower bound for balanced functions 54
 3.4.2 Optimal bounds for the AND and XOR function 57

3.5 Using post-measurement information and quantum memory 63
 3.5.1 An algebraic framework for perfect prediction 63
 3.5.2 Using two bases 66
 3.5.3 Using three bases 70

3.6 Conclusion ... 72

4 Uncertainty relations 75

4.1 Introduction ... 75

4.2 Limitations of mutually unbiased bases 78
 4.2.1 MUBs in square dimensions 79
 4.2.2 MUBs based on Latin squares 80
 4.2.3 Using a full set of MUBs 80

4.3 Good uncertainty relations 83
 4.3.1 Preliminaries 84
 4.3.2 A meta-uncertainty relation 89
 4.3.3 Entropic uncertainty relations 89

4.4 Conclusion ... 91