Perioperative quality of care and patient safety

Koers, L.

Citation for published version (APA):
Chapter 4

Guidelines and best practice management; European implementation of the 2014 ESC/ESA guideline on non-cardiac surgery: cardiovascular assessment and management.

"Moreover, a more fundamental problem is that guidelines may do little to change practice behaviour."

BMJ. Steven H Woolf, Jeremy Grimshaw 1999

In October 2014 The Joint Task Force on non-cardiac surgery from the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA) published an update of the ESC/ESA guideline on non-cardiac surgery: cardiovascular assessment and management.1,2 Cardiovascular comorbidity is a frequently encountered problem in the surgical population and carries a significant risk of increased complications. Its incidence is furthermore expected to rise in the coming years.1 In order to reduce perioperative complications from cardiovascular comorbidities, it is important that patients receive standardised care according to best practice, and guidelines are key in this. Although adherence to guidelines improves outcomes, both knowledge of, as well as compliance with the guidelines is often suboptimal in clinical practice.3 Recent studies showed that fewer than half of the anaesthetic consultants and trainees correctly apply the standard of care for the perioperative cardiac evaluation in the United States.4,5 Good implementation of a guideline can augment compliance. It is therefore a key challenge for policymakers and health-care professionals to ensure sound implementation of critical guidance. Faced with the task of implementing the revised guideline,1 the ESA/ESC taskforce published the guideline in well-read scientific journals of the target specialties1,2 and as an open access online version. They also created a number of implementation tools such as condensed pocket versions, booklets, summary cards and slides to further disseminate and promote knowledge of the guideline. National societies for cardiology and anaesthesiology from all European countries were encouraged to endorse, translate and implement the guideline in their respective countries. However, no data are currently available regarding the implementation of this guideline in clinical practice.
Based on previous studies \(^3-^5\) we hypothesised that – despite all effort taken to improve implementation - the current implementation of the ESC/ESA guideline on non-cardiac surgery: cardiovascular assessment and management\(^1^2\) by anaesthesiologists throughout Europe is still suboptimal. The aim of this study is to quantify the current uptake of this guideline by European anaesthesiologists.

Methods

The institutional ethical review board waived the requirement for informed consent. A two-part questionnaire was developed and validated to describe the implementation practices of the ESC/ESA guideline on non-cardiac surgery in Europe. The first part of the questionnaire focused on the implementation strategies used in departments to implement the guideline. The National Institute for Health and Care Excellence (NICE) has a proven track record of successful implementation of guidance. Based on their experience, the NICE emphasises that there are several elements to successful implementation of guidelines.\(^6\) The implementation part of the questionnaire was based on these items: whether there were any notifications in the department regarding the guideline, whether there is board support and clear leadership regarding the implementation of new guidelines in general, whether there is a designated person who drives the implementation of this guideline in the department, whether any multidisciplinary meetings or lectures were held regarding the changes in this guideline and finally, whether any existing protocols regarding the pre-operative assessment of patients with cardiovascular morbidity, i.e. the management of patients with non-vitamin K antagonist oral anticoagulants (NOACs) or new generation drug-eluted stents (DES), were drafted. The second part of the questionnaire focused on knowledge of the content of the guideline by European anaesthetists. Twenty-four statements were formulated based on the guideline.\(^1\) For 12 questions, recommendations regarding the clinical management had changed from the previous version of the guideline and for the other 12 questions the recommendations had remained the same as in the previous guideline published in 2009.\(^7,^8\) A score was generated for both the implementation and knowledge part of the questionnaire. For the implementation part, there were 9 items that could be scored with yes (1 point), no (0 points) or don’t know (0 points). The total implementation score was categorised into 5 categories excellent (8-9 points), good (6-7 points), average (4-5 points), poor (2-3 points) and very poor (0-1 points). The knowledge part consisted of twenty-four questions that could be answered with true, false or don’t know. One point was awarded for a correct answer and no points for an incorrect or unknowing answer. This score was categorised into excellent (20-24 points), good (15-19 points), average (10-14 points), poor (5-9 points) and very poor (0-4 points).
Content validity of the questionnaire was established by expert review. A member of the ESA Joint taskforce on non-cardiac surgery and ESA Clinical Guideline Committee reviewed the questionnaire. A further 13 independent consultant anaesthetist from different nationalities and 4 trainees with a background in research and questionnaires also reviewed the questionnaire to determine whether the questions were clear. The questionnaire was finalised after this review process. Anaesthetists attending the 2015 Congress of the Dutch Society of Anaesthesiology, Euroanesthesia 2015, the annual meeting of the European Association of Cardiothoracic Anaesthesiologists (EACTA) 2015 and of the European Society for Regional Anaesthesia and Pain Therapy (ESRA) 2015 were asked to voluntarily and anonymously complete the questionnaire without consulting the guideline.

Statistical analysis was performed with IBM SPSS Statistics for Macintosh, Version 22.0. Armonk, NY: IBM Corp 2013. A Principal Components Analysis and Cronbach’s Alpha were performed on the questionnaire to test internal validity of the questionnaire on the first sample of 107 questionnaires, collected at the 2015 Congress of the Dutch Society of Anaesthesiology. Cronbach’s alpha was 0.8 indicating a good level of internal consistency for both the implementation scale and the knowledge part. Therefore, the decision was made to continue with this questionnaire and to include the data of this pilot sample in the overall study data. Data were assessed for normal distribution with histograms. Data are reported as mean (M) and standard deviation (SD) or median and interquartile range (IQR). Chi square test for trend was used to test categorical data. Linear regression analysis was performed to test the relationship between the implementation and knowledge score. The Wilcoxon signed rank test was used to test the differences between new and continued recommendations. A P-value of < 0.05 was considered statistically significant.

Results

A total of 504 questionnaires were collected. After exclusion of partly filled in questionnaires and questionnaires filled in by doctors practicing in countries beyond the scope of application of ESA guidelines such as America, Australia or China, 488 questionnaires remained for analysis. Cronbach’s alpha for all 488 questionnaires was again 0.8 for both the implementation scale and the knowledge part indicating a good level of internal consistency.

Three hundred twenty-six (68%) respondents were anaesthetic consultants and 155 (32%) respondents were residents. Hospital backgrounds of the participants were an academic hospital in 230 cases (47%), a teaching hospital in 149 cases (30%), a district general hospital (DGH) in 101 (21%) and other, mainly private, in 8 cases (2%). Amongst the respondents 44 (9%) had not heard of the guideline before. Most anaesthesiologists had found out about the guideline through the internet (35%), by the European Journal of Anaesthesiology (30%) or through colleagues (16%).
Implementation

The implementation score was excellent in 4% (n=19), good in 14% (n=69), average in 22% (n=109), poor in 32% (n=154) and very poor in 28% (n=137) of the cases (figure 1). Overall scores for specific implementation items can be found in table 4.1. Categorised scores of participants can be found in figure 4.1. There was a significant difference in implementation scores between the different hospital settings. In a trend wise manner, academic hospitals scored the highest with a median of 3 (IQR 2-5[0-9]); followed by teaching hospitals with a median of 3 (IQR 1-4) followed by DGHs with a median of 3 (IQR 1-4) followed by private hospitals with the lowest implementation score with a median of 2 (IQR 1-2) \(p < 0.001 \). Because of the variation in number of questionnaires from each country, country-by-country comparison was not possible. Russia and the Netherlands had the highest implementation scores of a median of 5 (IQR 5-7) and 4 (IQR 2-6), respectively. The United Kingdom had the lowest implementation score with a median of 1 (IQR 0-3) followed by Switzerland with a median of 1,5 (IQR 1-4). Countries that had the highest scores for knowledge were France (M 15 ± SD 2) and Poland (M 15 ± SD 4). The lowest knowledge score was observed for the United Kingdom (M 11 ± SD 5).

![Figure 4.1 Implementation score for all respondent (n=488). Excellent = 8-9 points; good = 6-7 points; average 4-5 points; poor= 2-3 points and very poor = 0-1 points.](attachment:implementation_score.png)
The mean overall score for correct answers was 15 with a SD of 5. Categorised scores of participants can be found in figure 4.2. The questions regarding anticoagulant management had the highest percentage of incorrect answers. When comparing knowledge from the guideline regarding new management and continued recommendations, respondents scored significantly higher on the questions that referred to clinical management continued from the previous guideline (figure 4.3) \(p < 0.0001 \). Again, in a trend wise manner there was a significant difference in knowledge scores between the different hospital settings; academic hospital had the highest scores of (M 15.4 ± SD 4); followed by teaching hospitals (M 15 ± SD 5) and private hospitals (M 14.4 ± SD 4). DGHs scored the lowest with (M 13.9 ± SD 5). \(p = 0.02 \). There was no significant difference in the knowledge score between anaesthetists attending the different conferences: Euroanesthesia (M 16 ± SD 5); EACTA (M 16 ± SD 5); ESRA (M 14 ± SD 5) and the annual conference for the Dutch Society for Anaesthesiology 2015 (M 15 ± SD 5) \(p = 0.2 \). There was also no significant difference in knowledge of the content of the guideline between consultants or residents (both M 15 ± SD 5) \(p = 0.13 \). Regression analysis revealed a significant relation between the implementation score and the knowledge score, as an increase of 1 point in implementation score will improve the knowledge score with 0.45 points, Odds ratio 1.6 (CI95% 0.27-0.64), \(p < 0.0001 \).

Discussion

This study investigated the implementation of the ESC/ESA guidelines on non-cardiac surgery in Europe. Only 18% of the questionnaires amounted to a good implementation score and a distressing 60% to a poor implementation score. In view of the risks of additional morbidity and mortality in the perioperative trajectory for (the growing proportion of) patients with

Table 4.1 Implementation items

<table>
<thead>
<tr>
<th>Implementation Item</th>
<th>Yes</th>
<th>No</th>
<th>Don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notifications in the department</td>
<td>126 (26%)</td>
<td>284 (58%)</td>
<td>78 (16%)</td>
</tr>
<tr>
<td>Board support and Clear leadership</td>
<td>173 (35%)</td>
<td>239 (49%)</td>
<td>76 (16%)</td>
</tr>
<tr>
<td>Designated person driving implementation</td>
<td>127 (26%)</td>
<td>284 (58%)</td>
<td>77 (16%)</td>
</tr>
<tr>
<td>Plenary meeting</td>
<td>153 (31%)</td>
<td>281 (58%)</td>
<td>54 (11%)</td>
</tr>
<tr>
<td>Multidisciplinary meeting</td>
<td>75 (15%)</td>
<td>339 (70%)</td>
<td>74 (15%)</td>
</tr>
<tr>
<td>Change protocol preoperative assessment</td>
<td>169 (35%)</td>
<td>236 (48%)</td>
<td>83 (17%)</td>
</tr>
<tr>
<td>Change protocol non-vitamin-K-antagonist oral anticoagulants</td>
<td>223 (46%)</td>
<td>197 (40%)</td>
<td>68 (14%)</td>
</tr>
<tr>
<td>Change protocol Drug Eluting Stent</td>
<td>170 (35%)</td>
<td>230 (47%)</td>
<td>88 (18%)</td>
</tr>
<tr>
<td>Availability guideline at outpatient clinic</td>
<td>339 (70%)</td>
<td>65 (13%)</td>
<td>84 (17%)</td>
</tr>
</tbody>
</table>

Values are number (proportion) of participants.

Knowledge

The mean overall score for correct answers was 15 with a SD of 5. Categorised scores of participants can be found in figure 4.2. The questions regarding anticoagulant management had the highest percentage of incorrect answers. When comparing knowledge from the guideline regarding new management and continued recommendations, respondents scored significantly higher on the questions that referred to clinical management continued from the previous guideline (figure 4.3) \(p < 0.0001 \). Again, in a trend wise manner there was a significant difference in knowledge scores between the different hospital settings; academic hospital had the highest scores of (M 15.4 ± SD 4); followed by teaching hospitals (M 15 ± SD 5) and private hospitals (M 14.4 ± SD 4). DGHs scored the lowest with (M 13.9 ± SD 5). \(p = 0.02 \). There was no significant difference in the knowledge score between anaesthetists attending the different conferences: Euroanesthesia (M 16 ± SD 5); EACTA (M 16 ± SD 5); ESRA (M 14 ± SD 5) and the annual conference for the Dutch Society for Anaesthesiology 2015 (M 15 ± SD 5) \(p = 0.2 \). There was also no significant difference in knowledge of the content of the guideline between consultants or residents (both M 15 ± SD 5) \(p = 0.13 \). Regression analysis revealed a significant relation between the implementation score and the knowledge score, as an increase of 1 point in implementation score will improve the knowledge score with 0.45 points, Odds ratio 1.6 (CI95% 0.27-0.64), \(p < 0.0001 \).
Figure 4.2 Knowledge score for all respondent (n=488). Excellent = 20-24 points; good = 15-19 points; average 10-14 points; poor = 5-9 points and very poor = 0-4 points.

Figure 4.3 Differences in knowledge score (n=488) between new (2014) and continued (2009) recommendations in the guideline. Box plots indicate the median and 25th and 75th percentiles. Whiskers indicate 5th and 95th percentiles.
cardiovascular comorbidity implementation of this guideline needs to be improved. This study also shows that academic hospitals have taken significantly more steps to implement this guideline. This is likely due to a greater incentive for the implementation of this guideline as a higher proportion of complex patients is treated in academic centres. Almost 1 in 5 anaesthesiologists indicated that they did not know whether their departments had taken steps to implement the guideline. This means either a lack of clear communication from policy makers and, or a lack of engagement of staff with implementation policies of their department. Consequently, policy makers need to convey a very clear implementation strategy and actively engage staff in this process in order to improve implementation. However, as much as it is the responsibility of the ESC/ESA taskforce, anaesthetic scientific organisations and departments to improve their implementation strategy, it is also the responsibility of individual anaesthetists to improve the implementation of this guideline in their departments in order to ensure best practice management, and therefore better outcomes, for their patients.

This study also emphasises a lack of multidisciplinary engagement, as this item had the lowest score on the implementation scale. Within the current complex clinical environment, a multidisciplinary approach to patients with cardiovascular comorbidity is vital to prevent perioperative complications. All disciplines involved, i.e. surgery, anaesthesiology, cardiology and haematology, should agree on how to incorporate this guidance into local protocols in their hospital. Anaesthesiologists, as perioperative physicians, should take the lead in coordinating these efforts to ensure uniform operating procedures within the hospital. Patients scheduled for non-cardiac surgery are admitted under the surgical service of a hospital. Taking this into account, it is surprising that no non-cardiac surgeon contributed to development of this guideline. This can probably partly be attributed to the absence of a representative common European surgical scientific society. The fact that the guideline also wasn’t published in a surgical journal could further contribute to a lack of knowledge of the guideline by surgeons. This could result in a decreased adherence rate to best practice perioperative management and subsequent potential patient harm, as surgical doctors will have overall responsibility for these patients. It is advisable to include representatives from non-cardiac surgical scientific societies in the Task Force for future revisions of this guideline and additionally, to publish the guideline in a surgical journal. Finally, another problem with the implementation of this guideline is that there are at least 3 international guidelines1,9,10 for the perioperative assessment and management of the cardiovascular compromised patient. Having several guidelines promotes ambiguity and confusion. Since every guideline has to be made applicable to the national situation anyway, it might be preferable to have only one international guideline with coordinators on a national level to translate and apply the guideline to the local situation.

The second part of the questionnaire focused on knowledge that European anaesthetists had of the content of the guideline from the top of their head. European anaesthetists were
significantly less familiar with new recommendations of the 2014 guidelines compared with recommendations that had remained the same from the previous version of the guideline.7,8 This study shows that in 72% (figure 4.2) of the cases, European anaesthetist scored moderate to very poor for their knowledge of the content of the guideline from the top of their head. Knowledge scores were significantly better with increasing implementation scores, i.e. when implementation of the guideline was done better. Numerous studies report that healthcare professionals forget steps in the management of patients if they treat patients from memory alone.11-13 It is therefore vital to be able to consult the guideline at times when arrangements for patients need to be made, for example in the outpatient clinic. From this sample however, 30% of doctors stated that they were not able to consult the guideline during outpatient clinic. Although it is questionable whether this is actually true as any device with an Internet connection will be able to provide access to the freely available publication of the guideline. It could hint to suboptimal implementation again, as a significant proportion of doctors apparently seem unaware how to find these guidelines, when they are in fact easily and freely accessible. Still, even if the full version of the guideline could be found during clinical consultations, it is unlikely that time pressure will allow comprehensive examination of this 49-page guideline.1,2 The combination of inadequate knowledge of the guideline and the difficulty in consulting the guideline when under time pressure in a busy preoperative clinic for example, is likely to cause decreased adherence to best practice management and subsequent preventable patient harm14 and is, therefore, extremely undesirable. This study identified a particular risk for perioperative anticoagulant mismanagement as questions regarding the anticoagulant management had the highest percentage of incorrect answers. Local protocols, cognitive aids and, or electronic decision support tools could make a significant difference in ease to consult and correctly apply the guidelines in the outpatient clinic and hereby improve adherence to best practice and reduce costs.14 These tools should therefore be integrated in clinical practice.

One of the limitations of this study is that selection bias might have occurred. Participants that filled out the questionnaires were attendees of scientific conferences and participation was voluntary. This could have led to overrepresentation of more implementation-engaged and scientific up-to-date anaesthetists, probably leading to higher scores in the knowledge part. To correctly interpret the knowledge score, it is important to mention that, apart from not knowing the correct answer, participants could also have answered questions incorrect because they misinterpreted the question, either due to poor attention or because of the phrasing of the question. However, during validation of the questionnaire, doctors from several nationalities reviewed the questions to prevent misinterpretation because of phrasing. In addition, one member of our research team was always available to answer questions while participants completed the questionnaire. Furthermore, most questions were statements directly taken from the guideline. If questions were misinterpreted because of the phrasing, then it is likely that these doctors would also misinterpret the guideline. Finally,
it is important to recognise that the results of this questionnaire do not necessarily reflect true implementation practice of hospitals across Europe; rather it reflects the perception of implementation of this guideline by anaesthesiologists. However, these anaesthesiologists are the ones involved in the practical conduct of anaesthesia on a daily basis. This means that, even if proper implementation steps are taken by their department, the lack of knowledge of these anaesthetists still indicates suboptimal implementation.

Conclusion

Implementation of the ESC/ESA guideline for non-cardiac surgery needs to be improved. In a synergistic way, policy makers and head of departments should improve participation of staff in the implementation process of guidelines and anaesthetist should take more responsibility themselves for better implementation of guidelines. Knowledge of the content of the guideline with particular regard to the perioperative anticoagulant management in these cardiac patients is poor amongst anaesthetist. To ensure adherence to best practice perioperative anticoagulant management, and adherence to this guideline in general, local protocols, cognitive aids and, or decision support should be integrated in clinical practice.
References

