Attraction between words as a function of frequency and representational distance: words in the bilingual brain

Versloot, A.P.; Hoekstra, E.

DOI 10.1515/ling-2016-0028

Publication date 2016

Document Version Final published version

Published in Linguistics

License Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-we-take-care)

Link to publication

Citation for published version (APA):
Attraction between words as a function of frequency and representational distance: Words in the bilingual brain

Abstract: Bilingual speakers store cognates from related languages close together in their mental lexicon. In the case of minority languages, words from the dominant language often exert influence on their cognates in the minority language. In this article, we present a model describing that influence or force of attraction as a function of frequency and of (dis)similarity (representational distance). More specifically, it is claimed that the strength of the force of attraction of one word upon another is (among others) a function of their frequencies divided by their formal dissimilarity. The model is applied to the distribution of nouns derived from adjectives in Frisian, where the suffix -ens competes with -heid. Of these two suffixes, Frisian -heid is similar to Dutch -heid, whereas Frisian -ens does not have a similar counterpart in Dutch. The model predicts that Frisian derived nouns of which the adjectival bases are similar in form and meaning to Dutch will occur more often with -heid and less often with -ens. It also predicts that this effect will be stronger as the words involved are more frequent. Our findings make it possible to verify the model's quantification of the influence of Dutch words on their cognates.

Keywords: bilingualism, representational convergence, language modeling, word storage, analogy, blocking

1 Introduction to the model

1.1 Psycholinguistics and bilingualism

Psycholinguistic experiments indicate that bilingual speakers store close together words from the two languages which they speak if those words are
similar in form or meaning (Dijkstra 2003, 2008; Smits et al. 2006, 2009). Thus a bilingual English-Dutch speaker stores *carpenter* close to its Dutch equivalent *timmerman* in the mental lexicon, because of the semantic similarity, and the English word *wait* (Dutch ‘wacht’) close to the Dutch word *weet* ‘know’ because of the similarity in form, also referred to as formal similarity. Independent research in language acquisition points to the same conclusion: crosslinguistic influence of one word form upon a similar one has been shown to occur in the language acquisition of bilinguals (Hulk and Müller 2000), in the formation of creole languages (King 2000) and in language contact theory (Van Coetsem 1988; Thomason and Kaufman 1988).

Words which are similar both in form and in meaning are stored even closer together, and this situation regularly obtains in case a dominant language is genetically close to a minority language. It is well-known that speakers of dialects and minority languages are subject to heavy interference from their second language, i.e., the dominant language, which is prominent in the media, in education, and other domains of speech (for example Barbiers et al. 2005, 2008 with primary data for Frisian and Dutch dialects; for Frisian-Dutch language contact, see: Sjölin 1976; Gorter and Jonkman 1995; Haan 1997; Breuker 2001a, 2001b). This regularly causes the dialect or minority language to change in the direction of the dominant language, leading to language erosion or even language death. West Frisian (henceforth Frisian) is an example of such a minority language. It is spoken by ca. 450,000 speakers in Fryslân, a province located in the north of the Netherlands, and about two-thirds of them are native speakers. All speakers of Frisian are at least bilingual. Frisian is genetically very close to the dominant and official language, Dutch, by which it is heavily influenced (see the references above), as will also become clear from the analysis of the Frisian corpus data to be discussed below.

In this article, we wish to explore the quantitative nature of the impact that the two languages exert upon each other at the word level in the bilingual brain. We are particularly interested in the factors frequency and similarity as a psycholinguistic expression of the underlying neural substratum of language processing. These factors are reflected not only in the outcome of psycholinguistic experiments (cf. the literature referred to at the beginning of this section), but also, in the composition of corpora, as we shall see.

1.2 From analogy to similarity to representational distance

The overall term for the association of information in the brain is *analogy* (e.g., Hofstadter and Sander 2013), which we think does not fundamentally vary when
occurring between different languages as within one single language. Analogies between words in two different languages can offer a clearer view of the ongoing process, as the participating components may be more easily detectable by their belonging to the one or the other language. In order to formalize and quantify how analogy-driven association takes place in the bilingual brain, we have to identify contributing factors that can be operationalized as variables in a model of analogy in the bilingual brain.

Several types of analogy may be distinguished, such as analogy derived from the form of a word, analogy derived from the meaning of a word, and so on. The subject of this study is the factor of form. Our data set is based on full synonyms in the two languages Frisian and Dutch. As a consequence, meaning is not a variable in the analysis. We will refer to analogy derived from the form of two words as (their degree of) similarity. Form similarity between Dutch and Frisian may be used to explain specific on-going changes in Frisian. It has been shown that the level of similarity between Dutch and Frisian words influences their morphological behavior with respect to compounding on a deeper level than simple morpheme-to-morpheme translations (Slofstra et al. 2009: 39).

Similarity of words may provide us with information about the distance between (parts of) the neural representations corresponding to words. If two words are similar, then the representational distance between them will be small, that is, they will converge on many points of their representations. The similarity between the phonological shape of words from different languages is a reliable measure of the representational distance between them (e.g., van Heuven et al. 2011: 11). Section 3 explains how representational distance has been operationalized to make it measurable by means of Levenshtein Distances with Pointwise Mutual Information (for more on Levenshtein Distance, see Heeringa [2004]). The representational distance between the neural representations of two words is thus calculated by proxy by means of Levenshtein Distance.

1.3 From frequency to representational strength

Frequency is a reoccurring aspect in language processing and language change in general. A word’s frequency is a reliable measure of the strength of its neural representation (see Bybee 1995: 452). Frequent items are accessed and processed easier and more reliably (see Diessel 2007). In the competition between linguistic variants of any sort, frequency of occurrence adds to competitive strength (e.g., Krott et al. 2001). It has, for example, been shown that words from Dutch dialects with a low frequency are more prone to levelling by Standard Dutch than words of high frequency (Wieling et al. 2011). A node for a Dutch word will
have more influence (or exert more attraction) on its Frisian equivalent as it is more frequently accessed. Section 3 explains how frequency has been operationalized. The strength of a representation in a neural network can thus be measured indirectly (by proxy) by determining the frequency of the corresponding word in a linguistic corpus.

1.4 How frequency and similarity relate to each other

Frequency and similarity are factors contributing to the force of the attraction which, on a neural level, a (word from a) dominant language exerts on a (word from a) minority language. The question arises whether a formula for the force of attraction can be found in which the contribution of frequency and similarity is made precise. The measurement of frequency and similarity will be presented in detail in Sections 3 and 4. It will be argued that the force of attraction (A), which a Dutch word exerts on its Frisian counterpart, can be quantified by the following formula:

\[A \sim \frac{2 \log(\text{frequency})}{\text{Levenshtein Distance}} \]

This formula entails the following two general predictions:

General Predictions

(i) the closer a Frisian and a Dutch word are in form, the more similarly they will behave in the grammar;

(ii) the higher the frequency of two equally similar Frisian and Dutch word forms, the more similarly they will behave in the grammar.

In order to test these general predictions, we will investigate a linguistic phenomenon in Frisian that is sensitive to interference from Dutch, as described in Section 2. In many of the earlier quoted pieces of research, psycholinguistic tests are used to study the interaction between language and the neural substratum of the cognitive processes.

1 A model that incorporates similarity and frequency is Analogical Modeling (AM) proposed by Skousen (1989). It has recently been applied to explain diachronic changes in the distribution of the two rival suffixes -ity and -ness in English and to provide insight into the nature of their synchronic distribution (Arndt-Lappe 2014). Token frequency is abstracted away from AM, since the model is characteristically used to measure morphological productivity of suffixes. However, we are primarily interested in the impact of absolute similarity and in the direct effect of token frequency in a single cause-effect chain. Our model can thus be viewed as an extension of AM, tailored to account for the influence of Dutch items on their Frisian counterparts in the mental lexicon of bilingual speakers.
system. An important difference with this type of research is that we use corpus data from written texts, that is, data that were never intentionally compiled for the purpose of psycholinguistic research. There is evidence that results obtained from corpus data analysis correlate with results obtained from psycholinguistic tests (Krott et al. 2001). Such a convergence of research results strengthens the conclusions arrived at on the basis of the separate data sources and methodologies.

2 Subject and set-up of the investigation and morphological blocking principles

2.1 Subject of the investigation

Frisian has two suffixes, -ens and -heid, which are used to form nouns from adjectives. They often target the same base words and thus exhibit considerable competition (Hoekstra 1990, 1998; van der Meer 1986, 1987; van der Meer 1988; Hoekstra and Hut 2003). Some examples of derivational pairs are given below:

<table>
<thead>
<tr>
<th>Dutch word</th>
<th>English meaning</th>
<th>Dutch word</th>
<th>English meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>důðlik</td>
<td>clear</td>
<td>důðlikens ~ důðlikheid</td>
<td>clarity</td>
</tr>
<tr>
<td>freedsum</td>
<td>peaceful</td>
<td>freedsumens ~ freedsumheid</td>
<td>peacefulness</td>
</tr>
<tr>
<td>warber</td>
<td>industrious</td>
<td>warberens ~ warberheid</td>
<td>industriousness</td>
</tr>
<tr>
<td>stom</td>
<td>stupid</td>
<td>stommens ~ stomheid</td>
<td>stupidity</td>
</tr>
</tbody>
</table>

Some base words take exclusively the suffix -ens, others take exclusively -heid, and many base words are used with both suffixes, but mostly not with the same frequency.

The Frisian suffix -ens does not have a cognate in Dutch that is recognizable to the layman. The Frisian suffix -heid, which is pronounced either as [hit] or...
[heit], is very similar to its Dutch counterpart -heid. The latter pronunciation is identical to the Dutch pronunciation. The two suffixes also differ with respect to stress: -ens is unstressed, whereas -heid bears a secondary stress. Finally, Frisian/Dutch -heid may be pluralized and diminutivized, whereas Frisian -ens may not. The number of pluralized or diminutivized instances of -heid is very small in our corpus. They are excluded from further computations.

2.2 Blocking principles from the theory of morphology

Theories of morphology mostly assume that both words and suffixes with the same meaning and function are subject to a blocking principal (Rainer 1988). Rainer refers to the blocking of possible words by actual words as “token blocking”. An example of token blocking is the blocking of German #Blassheit by Blässe ‘paleness’ (cf. blass ‘pale’), and the blocking of #Mutigkeit ‘litt. courageousness’ by Mut ‘courage’ (cf. mutig ‘courageous’). Token-blocked words are well-formed morphologically, Rainer (1988: 162) argues, since they may occur as slips of the tongue, they may occur in child language even after children have learned the correct word, and they may be used for special effect, for example in poetry. Token blocking is sensitive to the frequency of the blocking word. Type blocking, in contrast, involves a systematic curtailing of the domain of one suffix by another. Such a domain may be phonologically or semantically defined. An example is the relation between two competing suffixes: German -heit and -ität. A word like *Grotteskität is type-blocked by Grotteskheit, since the domain of -heit is limited in its application to adjectives bearing stress on the final syllable, whereas -ität is not subject to that restriction. Type blocking is not sensitive to frequency, according to Rainer. Type-blocked words, it is implied, are not formed as slips of the tongue, in poetic language or in child language.

It is not clear whether or how this distinction applies to the rivalry between Frisian -ens and -heid. The examples discussed by Rainer involve a description of the mental lexicon of monolingual native speakers. The examples that we will discuss are from Frisian, a language that is for almost no speaker the only language spoken fluently: virtually all Frisian speakers are fluent in Dutch. Furthermore, the references to psycholinguistic literature make it clear that accessing words in one language will result in secondary activation of similar words in the other language of bilingual speakers. The simultaneous activation of similar words, regardless of the language to which they belong, indicates that there is only one mental lexicon for bilingual speakers, but it is structured differently from the mental lexicon of monolingual speakers. It will contain
more items at smaller distances from each other, and it is not necessarily clear what the effects of this difference will be.

On the face of it, the rivalry between the two suffixes discussed here has characteristics both of token blocking and of type blocking. This rivalry is like token blocking in that the formation of the rival item is not radically blocked. In fact, there is often no blocking at all. However, the distribution between the two suffixes is regularly bimodal, so that one suffix is preferred with a particular item or the other suffix. The lack of a robust blocking effect might be due to speakers’ uncertainty about their Frisian, so that blocking appears to be a mere tendency of those who have inadequately mastered the language, in fact, a standard itself is absent. Just as in the study by Rainer, we notice a frequency effect for token blocking. On the other hand, the suffix -ens shows a sign of type blocking in the domain of Frisian words with word final stress. Monosyllabic words have a clear preference for -ens, that is, 102 out of the 116 monosyllabic items have this preference. Nevertheless, the morphological distribution of and rivalry between the two suffixes may or may not be different from what is reported in the literature for monolingual speakers, for example, for the rivalry between -ity and -ness in English (see the previously mentioned study of Arndt-Lappe [2014]). An investigation of the morphological distribution of the Frisian suffixes falls outside the scope of this study, which aims at establishing the relation between frequency and similarity in assessing the influence of Dutch -heid formations upon the token frequencies of similar formations with the suffixes -ens and -heid in Frisian, although we include stress position as a controlling factor in further testing.

2.3 Set-up of the investigation

The part of a word to which a suffix is attached will be referred to as a base. A base may itself contain another suffix, as in reason + able + ness. Thus the notion of base is recursive. Every base can theoretically produce two lemmas, for example, the base dūdlik ‘clear’ returns both dūdlikens and dūdlikheid ‘clarity’. As they are synonymous and built on the same base, we consider the total number of tokens of dūdlikens and dūdlikheid as belonging to one ‘item’, dūdlik + suffix.

The distribution of the suffixes -heid and -ens was investigated by means of corpus data from written Frisian. The morphological database of the Frisian Language Corpus was used to identify a large number of nouns, either ending in -ens or in -heid and taking an adjective as a base form. Both derivations, with -ens and with -heid, were constructed from all identified adjectival base forms. Frisian texts written in the period 1980–2000 were then checked for
occurrences of the constructed forms.\(^4\) The raw data thus obtained comprise a list of slightly more than 700 adjectives that appear with either the suffix -\textit{ens}, or the suffix -\textit{heid}, or with both. Adjectives were ignored if they occurred with neither suffix. Furthermore, only items were used having a frequency of more than 3 in order to guarantee a minimal robustness of the data. The chance that an observed distribution of let’s say 4x -\textit{ens} vs. 0x -\textit{heid} differs from an observed distribution of 0x -\textit{ens} vs. 4x -\textit{heid} by mere chance is 0.029 (Fisher’s Exact Test),\(^5\) which falls below the generally accepted level of significance of 0.05. Using the minimum item frequency of 4 (sum of all tokens of an adjective X + -\textit{ens} or -\textit{heid}) keeps distortion by chance within bounds. After the elimination of the low-frequency items, the list shrank to 336 items with 11,167 tokens. All tests and conclusions rely on this dataset.

3 Measuring frequency and similarity and the model’s further predictions

3.1 Predictions from the model about frequency and similarity

Word frequency will be determined by measuring the corpus frequencies of the Frisian words in a late twentieth-century text corpus.\(^6\) We take the Dutch frequencies for granted as being (quite) similar to their Frisian counterparts.

A Frisian base can be similar to a Dutch one with respect to its meaning, its form, or both. We took the most literary translation of the Frisian base word into Dutch, leaving the meaning ‘distance’ constant and close to zero and computed the formal similarity of the phonetic form of the base as Levenshtein Distances (LD) with PMI (Pointwise Mutual Information) segment distances, based on Dutch and Frisian dialects.\(^7\) Examples include:

- F. \textit{trystens} ~ D. \textit{triestheid} ‘sadness’, LD = 0.00000
- F. \textit{strangens} ~ D. \textit{strengheid} ‘strictness’, LD = 0.00478
- F. \textit{meagerens} ~ D. \textit{magerheid} ‘meagreness’, LD = 0.01532
- F. \textit{grutskens} ‘pride’~ D. \textit{trots}, LD = 0.01746 (D. \textit{grootsheid} means ‘grandeur’)
- F. \textit{wurgens} ~ D. \textit{moeheid} ‘tiredness’, LD = 0.02883

\(^5\) The applet can be found at: http://www.langsrud.com/fisher.htm. It is based on Agresti (1992).
\(^6\) http://194.171.192.245:8020/tdbport/; ‘tdb_nij’.
\(^7\) For the meaning of Levenshtein-PMI, see Wieling et al. (2012).
In this way, similarity could be measured. The conceptual model outlined in
Section 1 can now be applied to the distribution of -ens and -heid in Frisian. As
there are no Dutch nominalizations ending in -ens, highly frequent items (in Dutch
with -heid) will favor Frisian nominalizations in -heid, if they are sufficiently
similar in form. Thus the model makes the following two specific predictions:

1. **Prediction about similarity:**
 Frisian nominalizations with bases that are similar or identical in form and
 meaning to their Dutch equivalents will occur less often with -ens (and
 more often with -heid) than Frisian nominalizations with bases different
 from Dutch.

2. **Prediction about frequency:**
 Frisian nominalizations that are frequent will occur less often with -ens
 (and more often with -heid) than Frisian nominalizations that are infre-
 quent, given a certain level of similarity between the Frisian and the Dutch
 form of the base.

In addition, we claimed in the introduction that the attraction a Dutch word
exerts on its Frisian equivalent involves a specific formula, which is paraphrased
informally below.

3. **Prediction about force of attraction**
 The force of attraction is proportional to the measure of frequency divided
 by the measure of representational distance.

Before the results are presented in Section 4, we will explain in the next section,
Section 3.2., how the number of forms was computed.

3.2 Computing amounts of forms

Every attestation in the corpus is either an instance of -ens or of -heid. To give an
example: the corpus contains 2 instances of helderens and 8 of helderheid ‘clarity’.
This implies that the proportion of -ens forms for this item is 20 %. In this way, we
can compute a “%-ens” for every item (and, trivially, “%-heid” = 1 – %-ens) (Table 1).

Figure 1 indicates the proportion of items out of the total items for five
cohorts of percentage tokens per item in -ens. The graph shows that almost 50 %
grey bar) of the items in our dataset has a proportion of 80 % or more of the
tokens in -ens. Of the total of 336 items, 221 show the suffix -ens in 50 % or more
of their tokens, which is a clear majority. To avoid extreme values produced by
items of low frequency – for which purpose we already excluded items with less
than four tokens – the overall figures are compared to the figures for items with
item frequencies over 10. Because a high item frequency correlates with a low
-ens (cf. discussion in Section 4), the bar “≥0.8” is slightly lower for high
frequency items and, vice versa, the bar “≥0.0” somewhat higher. Still, the two
distributions are very similar.

If the individual tokens randomly selected -ens and -heid, the computed
percentages would show a normal or at least centralized distribution. However,
tokens ending in -ens and -heid tend to be clustered per item. Almost every
item, irrespective of the categorical preference on a higher level (cf. the factors
mentioned in Sections 3 and 4) has an individual preference for either of the
two endings. This is illustrated in Figure 1 by the bimodal pattern, with the
peaks on the extreme values ≥0% and ≥80%. Note further that 47% of
all items with an item frequency >10 has exactly either 100% or 0% tokens
with -ens.

In the evaluation of the correlations between the dependent variable of the
proportion of tokens with -ens per item and the independent variables of

Table 1: Four examples from the dataset of 336 items.

<table>
<thead>
<tr>
<th>Frisian</th>
<th>Fr - phonetic</th>
<th>Dutch</th>
<th>D - phonetic</th>
<th>LD-PMI</th>
<th>-ens</th>
<th>-heid</th>
<th>%-ens</th>
</tr>
</thead>
<tbody>
<tr>
<td>goederjousk</td>
<td>gu.adrijz.wsk</td>
<td>goedgeefs</td>
<td>yudyje:fs</td>
<td>‘generous’</td>
<td>0.01848</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>ienlik</td>
<td>i.a*lak</td>
<td>eenzaam</td>
<td>e:nza:m</td>
<td>‘lonely’</td>
<td>0.03061</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>helder</td>
<td>heldr</td>
<td>helder</td>
<td>heldar</td>
<td>‘clear’</td>
<td>0.00407</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>bekend</td>
<td>bakεnt</td>
<td>bekend</td>
<td>bakεnt</td>
<td>‘famous’</td>
<td>0.00000</td>
<td>0</td>
<td>41</td>
</tr>
</tbody>
</table>

Figure 1: Frequency distribution for %-ens per item; note that ‘≥0.0’ means ‘≥0.0 and <0.2’, etc. Read: of all items in the dataset, 19% have a %-ens between 0% and 20%; when only high frequency items (N>10) are included, 24% of the items fall in this class, etc.
frequency and similarity, we wanted to determine their relevance by statistical testing. We applied a correlation and regression analysis to the similarity (LD) as the independent and the proportion of tokens with -ens per item as the dependent variable. However, the residues are not normally distributed, which disqualifies this type of analysis. This is probably due to the bimodal distribution of the dependent variable (the proportions of -ens and -heid). We therefore converted the dependent variable into a binary one by counting every item with a proportion of -ens < 50% as being a “heid-item” and with a proportion of -ens ≥ 50% as being an “ens-item”. Items that have been categorized in this manner will be referred to as bimodally categorized items.

Consecutively, we tested the correlation between the factors of similarity and frequency on the one hand, and the bimodally categorized items on the other, in a logistic regression model. Finally, we checked whether the measure of “attraction” between Frisian and Dutch items in the brain, expressed by the (log of the) frequencies divided by the formal dissimilarity, produced a statistically significant prediction for the choice between -heid and -ens.

It should be mentioned that there is a range of prosodic, semantic, and stylistic factors, the most important being syllable structure, that additionally guide the choice between -heid and -ens. The factor of syllable structure, in particular the place of the stress, was included as an additional independent variable in the logistic regression model. Because the suffix -ens is unstressed, but -heid bears secondary stress, words that have the stress on the final syllable of the base (including monosyllabic words) are expected to show -ens more often. Stress is a binary variable in this study: final yes/no. Our primary interest, however, is the question whether the features mentioned in our hypothesis have a significant impact on the choice between -heid and -ens.

8 There are 9 items with exactly 50% of their tokens in -heid and 50% in -ens. One of the reviewers suggested we use the actual tokens with -ens or -heid as exemplars of the dependent variable in the logistic regression analysis. We feel that this would strongly enlarge the effect of token frequency, as token frequency is one of the independent variables. Using all attestations as exemplars in the regression analysis implies that items with a high token frequency are more often evaluated in the analysis, increasing the impact of token frequency in the final equation (see also Note 14).

9 In the corpus Early Modern Frisian (1550–1800), the suffix -ens is only attested in a small set of 29 nouns with an adjectival root, which is monosyllabic in 24 instances. Remarkably, for 9 out of the 10 words that show both -ens and -heid in this period, the date of attestation of the -heid form is earlier than that of the -ens form. This suggests that the current distribution of -ens and -heid is the result of a nineteenth century innovation in the emerging standard language, which favors the suffix -ens because it is more distinct from Dutch.
4 Results

4.1 Prediction 1 and 2: Similarity of Frisian bases with Dutch and impact of the item’s frequency

Our prediction 1 states that similarity of the Frisian base with the Dutch cognate will facilitate the use of -heid (and disfavor the use of -ens). Our prediction 2 states that high frequency of the Frisian (and Dutch) derivation will disfavor the use of -ens (and facilitate the use of -heid). The LD may be assumed to be normally distributed (Anderson-Darling normality test, $p = 0.201$). To obtain a normally distributed independent variable, we work with the logarithm of the frequency figures (Anderson-Darling normality test, $p = 0.144$) (see DeHaene 2003 for a methodological reason). It is worth noting that the two variables of frequency and similarity are largely independent. Their correlation is only -0.120 ($r^2 = 0.014$, $p = 0.028$), which is basically negligible.

A logistic regression model with LD, log(frequency) and stress position as independent variables and the bimodally categorized items as dependent variable, with $0 = ‘-heid’$ and $1 = ‘-ens’$, shows the following descriptives: 11

115 cases have $Y = 0$; 221 cases have $Y = 1$.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Avg</th>
<th>SD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3217</td>
<td>0.2301</td>
<td>LD</td>
</tr>
<tr>
<td>2</td>
<td>0.3767</td>
<td>0.1602</td>
<td>log(freq)</td>
</tr>
<tr>
<td>3</td>
<td>0.3452</td>
<td>0.4754</td>
<td>stress</td>
</tr>
</tbody>
</table>

Overall Model Fit...
Chi Square = 76.0627; df = 3; $p = 0.0000$

Coefficients and Standard Errors...

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeff.</th>
<th>StdErr</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.9191</td>
<td>0.7002</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>-2.4512</td>
<td>0.8164</td>
<td>0.0027</td>
</tr>
<tr>
<td>3</td>
<td>1.8699</td>
<td>0.3327</td>
<td>0.0000</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.2488</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 The applet can be found at: http://www.xuru.org/st/DS.asp#CopyPaste. The site does not mention any literature on which the applet is based.

11 The applet can be found at: http://statpages.org/logistic.html. It is based on Hosmer and Lemeshow (1989).
Odds Ratios and 95% Confidence Intervals...

<table>
<thead>
<tr>
<th>Variable</th>
<th>O.R</th>
<th>Low – High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.5248</td>
<td>4.6962 – 73.0742</td>
</tr>
<tr>
<td>2</td>
<td>0.0862</td>
<td>0.0174 – 0.4269</td>
</tr>
<tr>
<td>3</td>
<td>6.4874</td>
<td>3.3795 – 12.4535</td>
</tr>
</tbody>
</table>

About the Odds Ratios, the applet website mentions, “The odds ratio for a predictor tells the relative amount by which the odds of the outcome increase (O.R. greater than 1.0) or decrease (O.R. less than 1.0) when the value of the predictor value is increased by 1.0 units.” The LD was scaled to the range from 0 for identical forms in Frisian and Dutch, such as *blau* ‘blue’ to 0.99 for the entirely different word forms Frisian *lilk*, Dutch *boos* ‘angry’. The log(freq) range was rescaled to the range between 0.2 and 1. Because both the value ranges and the averages of the three variables are similar, the coefficients and Odds Ratios in the model are fairly compatible.

The model shows that apart from the stress placement, which indeed makes a significant contribution to the preference for either *-heid* or *-ens*, the LD and the log(freq) have a mirrored effect, as predicted by the hypotheses 1 and 2, with a similar effect size: coefficient values: LD = + 2.9, log(freq) = −2.5.

4.2 Prediction 3: Attraction between words

As both considered variables, frequency and similarity, have a significant impact on the lexical distribution of the suffixes *-ens* and *-heid* in Frisian, in line with the hypotheses formulated, we tested the impact of the combination of both variables on the distribution of forms with *-ens* and *-heid*. For the purpose of this test, we

12 Partially overlapping forms such as Frisian *hoeden*, Dutch *behoedzaam* ‘careful’ have values around 0.6.
13 The word *mooglikheid* ‘possibility’ has the value 1 and represents – at least for this corpus – the most frequent derivation of an adjective on *-heid* or *-ens*.
14 Following a suggestion made by one of the reviewers, we tested the 160 items with a 100% preference in the corpus for either *-heid* or *-ens* separately. All three variables have a statistically significant contribution to the model and the coefficients are: LD: 4.7085, log(freq): −3.6652; stress: 2.8875. For the 176 items with variation, the model as a whole is statistically significant \((p = 0.0149) \). The coefficient values are: LD: 1.6415 \((p = 0.069) \), log(freq): −1.9035 \((p = 0.063) \); stress: 1.1218 \((p = 0.022) \). When using the individual exemplars of the latter group of 176 items, all p-values are smaller than 0.0001 and the coefficient values are: LD: 1.6212, log(freq): −5.1042; stress: 0.6071, with a clear overweighting of the frequency (see Note 8).
constructed a new variable

\[\text{Attraction} = \frac{\log(\text{freq})}{\text{LD} \times 10} \]

The variable gives a linear prediction for the proportion of words in \text{-heid} and \text{-ens} as shown in Figure 2. This relation is also confirmed in a logistic regression model with \text{Attraction} as the independent variable and the bimodally categorized items as dependent variable, with 0 = \text{‘-heid’} and 1 = \text{‘-ens’}. 108 cases have \(Y = 0 \); 205 cases have \(Y = 1 \).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Avg</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attraction (scaled to the range 0–1)</td>
<td>0.1207</td>
<td>0.1381</td>
</tr>
</tbody>
</table>

Overall Model Fit... Chi Square = 28.8369; df = 1; \(p = 0.0000 \)

Coefficients, Standard Errors, Odds Ratios, and 95% Confidence Limits...

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeff.</th>
<th>StdErr</th>
<th>p</th>
<th>O.R.</th>
<th>Low – High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5.1421</td>
<td>1.1046</td>
<td>0.0000</td>
<td>0.0058</td>
<td>0.0007 0.0509 0.0058 = 172.4^{-1}</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.2745</td>
<td>0.1809</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Figure 2: The relation between Attraction (X-axis) and the proportion of bimodally categorized items with a preference for the suffix -heid (Y-axis). The graph shows that higher Attraction leads to more items with the ending -heid.} p = 0.002 \text{ (2-tailed). We used a class width of 20 units of the variable Attraction. Only the last two classes are wider in order to keep a substantial amount of items per class. The figures above the points show the number of items per class. Items with LD = 0 in the denominator had to be eliminated, leaving 313 items.} \text{ Note: The applet can be found at: http://vassarstats.net/corr_big.html. The site contains extensive background documentation at http://vassarstats.net/textbook/index.html.} \]

\[\text{15 The multiplication factor is only to scale the variable to values with not too many digits or decimals.} \]
The freq/LD-space where the Attraction-values are taken from, is not linearly distributed, as illustrated in Figure 3. High levels of Attraction (Z-axis) are only attained for a combination of high values in the numerator (=frequency) and low values in the denominator (=LD).

As outlined in Section 4.1, both the LD-variable and the log(freq)-variable show a normal distribution, which implies that most items have low Attraction-values, while high Attraction-values are relatively rare. This is reflected in Figure 1 with fewer items with 100% -heid than with 100% -ens. This skewness is also reflected in the number of items per class in Figure 2.

Figure 2 shows that an increase of Attraction implies a higher chance for an item to have a preference for -heid. The linear correlation shows that there is not one Attraction-threshold value that divides the set of items into two categories.

5 Concluding remarks

The choice between -ens and -heid in Frisian nominalizations turns out to be sensitive to the degree of their representational convergence with Dutch word forms and the strength of their neural representation. Words’ representational convergence or nearness in the brain was calculated by proxy by Levenshtein Distance. The neural strength was calculated by proxy by determining the
frequency in a corpus. The force of Attraction (A) between Dutch words and their Frisian counterparts is defined by the formula:

$$A \sim \frac{2 \log(\text{frequency})}{\text{LevenshteinDistance}}$$

On this Attraction-scale, the Frisian items that undergo a strong attraction from Dutch, tend to have a preference for the suffix -heid, that also exists in Dutch, while words exposed to little attraction from Dutch prefer the suffix -ens, that is unique to Frisian.

Our research hypothesized on the basis of results reported in the psycholinguistic literature that the linguistic system of a minority language such as Frisian, where speakers have been at least passively bilingual for several centuries, is profoundly shaped by the characteristics of the bilingual mind of its speakers, also as reflected in its standardized and written form. A written corpus, so to speak, bears the fingerprint of the cognitive system of the language users who composed the texts. This allowed us to get a grasp on the question why certain bases are more used with -heid, others with -ens. In addition, it allowed us to represent the influence of Dutch items on their Frisian counterparts in the mental lexicon by means of a formula making explicit the strength of this influence in terms of frequency and similarity.

Finally, if Frisian is not spoken and written more than has been the case till now, the formula we have proposed implies that Frisian is slowly, yet inexorably, changing in the direction of Dutch. It would be interesting to conduct diachronic research in order to establish the speed with which the process of convergence is taking place. Though a task for future research, this could potentially result in a prediction as to whether a given convergence process will be completed and, if so, when.

Acknowledgements: We would like to extend our gratitude to Martijn Wieling and John Nerbonne for making the LD-computations for us, and to Harald Baayen and an anonymous reviewer of Linguistics for their useful comments.

References

