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JOHAN VAN BENTHEM 

D A G  WESTERST.~HL 

Directions in Generalized 
Quantifier Theory* 

A b s t r a c t .  We give a condensed survey of recent research on generalized quantifiers in 

logic, hnguistics and computer science, under the following headings: Logical definabihty 

and expressive power, Polyadic quantifiers and linguistic definability, Weak semantics and 

axiomatizability, Computat ional  semantics, Quantifiers in dynamic settings, Quantifiers 

and modal  logic, Proof theory of generalized quantifiers. 

1. I n t r o d u c t i o n  

The study of generalized quantifiers is by now an old and respectable field 
of logic. With  the pioneering work of Mostowski and LindstrSm in the fifties 
and sixties, quantifiers became a major tool in the model theory for logics 
extending first-order logic - -  many of these being representable as first- 
order logic with added quantifiers. Apart from general structure theorems 
on how various general properties are distributed in this class of logics (most 
famous of these is still LindstrSm's theorem on the properties which charac- 
terize first-order logic), particular logics were examined in detail w.r.t, their 
model theoretic properties and their comparative expressive power, as well 
as the behaviour of theories expressed within these logics. Though some 
of the extensions transcend first-order models (e.g. logics with measure- 
theoretic or probabilistic quantifiers), this work, which reached its peak in 
the late seventies and early eighties - -  witness the book Model-Theoretic 
Logics edited by Barwise and Feferman - -  is squarely situated within clas- 
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made (oral and/or  written) contributions and comments to this research survey which 
we gratefully acknowledge, and without which it would not have been written. But it is 
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full responsibility for the final formulation of the paper. In addition, we are grateful for 
comments received from some further colleagues, in particular, Dorit Ben-Shalom, Makoto 
Kanazawa, Victor Sanchez, Yde Venema and two anonymous referees. 
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sical model theory, with mathematics as its main source of inspiration and 
set theory as its basic :framework. 

In the beginning eighties the study of quantifiers received an impetus 
from a quite different direction, when it was realized (by Barwise and Cooper, 
Keenan and Stavi, and others) that  determiners and noun phrases, which 
abound in most natural languages, were interpreted in Montague style se- 
mantics by means of generalized quantifiers. This brought parts of the estab- 
lished model theory of quantifiers to bear on linguistics, but it also brought 
new logical questions about quantifiers, motivated by the linguistic perspec- 
tive and by particular constraints inherent in natural  languages (such as 
conservativity, or the use of finite or at least 'small' models). 

Research on quantifiers stemming directly from the original waves of 
inspiration (LindstrSm's theorem and Montague semantics, respectively) has 
perhaps had its hey-day, but the field does not show signs of exhaustion. 
On the contrary, a lot of work on quantifiers is going on, addressing not 
only 'classical' issues, but also extending them in new directions, charting 
new territories and establishing sometimes surprising connections with other 
fields. One such connection is with finite model theory as used in descriptive 
complexity theory in computer science. Another is with recent developments 
in modal logic. Both will be elaborated on below. 

Our aim here is to indicate the direction of some of this recent research, 
sketching a few major research areas and research problems, in a way that  
hopefully may be useful both for the practitioner in the field and for the 
interested logician/linguist, and also for students looking around for some- 
thing to set their teeth in. At least, that  is our intention. Moreover, through 
this unified presentation, we hope to illustrate, and to encourage the cur- 
rent confluence and interaction of more mathematical  and more linguistic 
research lines in this area. After some background, the material is presented 
under eight distinct headings. This is for ease of exposition, but it will be- 
come clear that  much of the work is interconnected and some of it belongs 
under more than one heading. 

Thus, this paper is not a scholarly survey but rather a condensed 'state 
of the art '  document.  Extensive surveys of generalized quantifier theory and 
its uses in various fields already exist (cf., in addition to the volume edited 
by Barwise and Feferman, van Benthem 1986, Westerst£hl 1989, Krynicki, 
M. Mostowski and Szczerba 1994, Keenan and Westerst£hl 1994), though,  
to our knowledge, none that  covers all the aspects of quantifiers signalled 
here. 
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2. B a c k g r o u n d  

We assume familiarity with s tandard notions and terminology from gener- 
alized quantifier theory. In particular, the initial concept of a (generalized) 
quantifier is that  of a class of structures of a given similarity type, or, equiva- 
lently and more informatively (when the similarity type is finite and involves 
only relations), a functional relation Q associating with each universe M a 
quantifier QM on M,  i.e., a relation between relations on M, of that  type. 
The type  can then be identified with a finite sequence of natural  numbers  
(nl , . . . ,nk) ,  and (M, R1,. . . ,Rk) e Q can be writ ten 

QMR1... Rk where Ri C_ M TM. 

Q is usually assumed to be closed under isomorphic structures (ISOM); we 
will note explicitly when this is not required. The arity of Q is max(n1,... ,  
nk). Let Qn be the class of all n-ary quantifiers. Q1 is the class of monadic 
quantifiers, i.e., quantifiers of type (1, 1 , . . . ,  1/; the others are called polyadic. 
A quantifier Q of type n l , . . . , n k  comes with a variable-binding opera- 
tor binding ni distinct variables in formulas ~ai, i = 1 , . . . ,  k, respectively, 
and when a corresponding formation rule and the obvious t ru th  condi- 
tion is added to first-order logic we obtain the logic L~o~(Q). Similarly for 
L ~ ( Q 1 , . . . ,  Q,~), or L~(Q) where Q is a class of quantifiers, and also for 
L(Q) where L is some other familiar given logic. 1 This is a s tandard con- 
cept of generalized quantifier ( 'Lindstrhm quantifiers'). Various extended or 
otherwise different concepts will appear below. 

3. L o g i c a l  d e f i n a b i l i t y  a n d  e x p r e s s i v e  p o w e r  2 

The first thing you want to know about a quantifier is its expressive power, 
which in model  theory is measured in terms of what you can say with the 
corresponding sentences. L _( L I iff for every L-sentence there is an equiv- 
alent L~-sentence (one with the same models), and L _ L ~ iff L < L ~ and 
L' ~< L. In particular,  L(Q) < L(Q') iff Q is definable in L(Q'), i.e., there is 
an L(Q')-sentence ~ with non-logical symbols matching the type of Q such 
that  QMR1...Rk ¢~z (M, R I , , R k )  ]= ~a. There are thus innumerable (un- 
countably many!)  definabihty issues for quantifiers. Typical forms of these 
questions are: 

*The notations 'EL(Q)' and 'FO(Q)' for L,,,~(Q) are also common. Often 'L(Q)' is also 
used, but here we let L be any logic which uses the same models as first-order logic, and 
which allows addition of generMized quantifiers in a similarly straightforward way. 

2Thanks to Lauri Hella for help with this section! 
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( la)  Given two quantifiers Q and Q', when is Q definable in L=~(Q')? 

(lb) Given a quantifier Q and a class of quantifiers Q, when is Q definable 
in L ~ ( Q ) ?  

(lc) When is Q definable in L(Q) for some other logic L? 

To prove definability of a particular quantifier Q you provide a definition. To 
prove undefinability you either proceed indirectly, using some known prop- 
erty of the target logic L which would fail if Q were definable in it, or directly 
by providing for each L-sentence q~ a model over which Q and ~2 disagree. 
Often, the latter is done for each quantifier depth d (the maximal number of 
nestings of quantifier symbols in a formula): you find two models which are 
equivalent for L-sentences of quantifier depth at most d but which differ over 
Q, where L-equivalence up to d is estabhshed by means of an Ehrenfeucht- 
Fraissd game for the logic L. The general theme in the background here is 
the characterization of appropriate semantic invariances for quantifier lan- 
guages, either via comparison games or via some structural connection like 
'partial isomorphism' or 'bisimulation' (see van Benthem and Bergstra 1993, 
de Rijke 1993 on this general theme for families of modal logics and process 
theories). 

Undefinability proofs range from straightforward to impossibly difficult. 
Lots of particular results occur in the literature, but systematic attacks on 
definabihty questions are only fairly recent. For a start, Corredor 1986 gave 
a complete characterization for the mutual definabihty, relative to first-order 
logic, of two universe-independent type (1} quantifiers on finite structures; 
the result involves simple arithmetical properties of such quantifiers. 3 Re- 
cently V/i/£n£nen proved (V£/in/£nen 1994) that the question of definability 
between any two monadic quantifiers can be reduced to a relationship be- 
tween certain boolean algebras associated with them. Thus, problem (la) 
has in principle been solved in the case of monadic quantifiers (though var- 
ious issues, also discussed by V/t£n~nen, of finding particularly perspicuous 
definability classifications for interesting classes of monadic quantifiers re- 
main). The next natural step would be to consider quantifiers of type (2}. 
There seem to be no characterization results for mutual definability here, 
and such results appear difficult to obtain for any extensive class of binary 
quantifiers. Still, it could be worthwhile to find general criteria for definabil- 
ity and undefinability also in the case of polyadic quantifiers. Undefinability 
results for particular polyadic quantifiers are multiplying (the next section 

3Here universe-independence means that  if A C M, M '  then QMA ¢=~ QM, A. This prop- 
erty, often called extension (EXT) in the literature, applies straightforwardly to quantifiers 
of other types as well. 
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has some examples), and probably some of the constructions behind these 
could be turned into such general criteria for undefinability. 

Questions (]b) and (1c) have attracted attention especially in the case 
where Q = Q~. Already LindstrSm 1966 proved that the well ordering 
quantifier W is not definable in L~(Q1). Krynicki, Lachlan and V££n£nen 
1984 gave an example of a ternary quantifier not definable in L ~ ( Q 2 ) .  
Then, V££n£nen 1986 established the existence of arity-based hierarchies 
of quantifiers: for each n there are (n + 1)-ary quantifiers not definable 
in L~(@~) .  Using this result as a starting point, Hella 1989 developed a 
fairly general method for proving that a given quantifier is not definable in 
L~(Qn).  The paper Hella and Luosto 1992 contains an up to date survey 
of results obtained by this method. The existence of natural hierarchies 
of quantifiers is another important genera] theme, which fits in well with 
developments elsewhere in linguistic semantics (witness various proposed 
hierarchies of expressive power in categorial, modal or dynamic logics: cf. 
van Benthem 1991). Arity-based quantifier hierarchies are tightly connected 
with another definability issue, the finite generation problem: 

(2a) Given a logic L, does there exist a finite set Q of quantifiers such that 
L - L ~ ( Q ) ?  (Equivalently, is there a single quantifier Q such that 
L ___ 4) 

(2b) Is there a finite set Q of quantifiers such that L -_- L'(Q) for some 
other logic L'? 

If a logic L is capable of defining a sequence Q1, Q2,... of quantifiers such 
that for each n, Qn+I is not definable in L~(Qn) ,  then L cannot be finitely 
generated (or even be a sublogic of a finitely generated logic). Hence, the 
known arity hierarchies of quantifiers have led to negative answers to the 
finite generation problem for many extensions of first-order logic familiar 
from the literature (cf. Hella and Luosto 1992). The finite generation prob- 
lem was first rMsed by Makowsky, Shelah and Stavi 1976 for the A-closure 
of the cardinality logic L~(Q1), where Q1 is now the quantifier "there ex- 
ist uncountably many". The answer for this special case is still open. The 
problem is of particular interest in cases, like A(L~(Q1)) ,  where the syntax 
or semantics of the logic under consideration is given in an indirect way: 
a representation of the form L~(Q) with some finite set Q of quantifiers 
would give the logic a simple finitary syntax and a nice semantics. 

The study of definability with generalized quantifiers has received new 
impetus recently through contacts with computer science. Two influentiM 

4That this is an equivalent formulation was observed in Krynicki and V£~n£nen 1982. 
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themes here are finite model theory and complexity of queries, as we shall 
demonstrate  by a few examples. 

In finite model theory certain extensions of first-order logic have proved 
feasible to work with. A main examp]e is (least) fixed point logic (introduced 
in this context by Chandra and Hare] 1982), FP, which roughly extends L ~  
by allowing certain recursive definitions. Another is the logic L ~  which 
has been shown to extend FP. Here L ~  is just as L ~  except that  there 
are only k variables, and L ~  = [.Jk<w L ~ .  Kolaitis and V££n£nen 1992 
proved that  the H~rtig quantifier I (defined by IMAB ~ ]A{ = {B{) is not 
definable in L~(Q)  for any finite set Q of type (1) quantifiers. The main 
result of Cai, Furer and Immermann 1992 implies the existence of a binary 
quantifier which is computable in polynomial time (PTIME) (cf. below and 
section 6) but not definable in L ~ ( Q 1 ) .  Extending this result, Hella 1992 
proved that  for each n there is a PTIME computable (n + 1)-ary quantifier 
which is not definable in L~(Q.n). 

The result by Kolaitis and V~£n£nen also points towards other quanti- 
fier hierarchies than purely arity-based ones. For example, with monadic 
quantifiers one may count the number of l:s in their type. Let Q(~) be the 
class of monadic quantifiers with at most n l:s. By the Kolaitis-V~£n£nen 
result, I is not definable in L~(Q(1)). Lindstrhm 1992 used a counting 
argument to show that the classes Q(n) form a strict hierarchy over finite 
structures relative to Lw~. In general, the most fine-grained complexity or- 
dering of types w.r.t, definability is the following. For a type r of arity 
n and 1 ~ k ~ n, let rk be the number of relations of arity k in r ,  and 
associate with r the sequence s~ = ( r n , . . . , v l ) .  Then types r and a are 
compared by means of the lexicographic order between s~ and s~. (E.g., 
(1,2,2,3> < (2,2,2,3)  <: (2,3,3).) Extending Lindstrhm's proof, Hella, Lu- 
osto and V££n~nen 1994 prove a general hierarchy theorem for this ordering: 
each type contains a quantifier Q not definable in first-order logic over finite 
models from any finite number of quantifiers of lower type. Moreover, Q can 
be made to have various properties, like being monotone or PTIME.  The 
theorem a]so yields a resumption hierarchy: A type (1) quantifier Q yields a 
sequence of resumptions Q(n) of type (n), n = 1, 2 , . . . ,  where Q(n) says of an 

n-ary relation R what Q says of the set of n-tuples of _R (Q~)R ~=~ QM~R), 
and they prove that  there exists a Q such that  for each n, Q(~+I) is not defin- 
able in L~w(Q(~)) over finite structures. 5 However, it should be noted that  
the existence of these quantifiers is proved by probabilistic methods,  not 
explicit construction. The hierarchy theorem gives no information about 

5In fact, it is not definable in Lw~(Q), where Q is any finite set of quantifiers of the 
form Q~m), where Q1 is of type (1 / and m ~ n. 
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particular quantifiers - for them the definability issues remain. For example, 
does some familiar quantifier yield a resumption hierarchy? What  about QR 
defined by QRMA ¢++ IAI > I M -  A]? 

A much studied problem in finite model theory concerns connections 
with natural  complexity classes whose original definition was algorithmic. 
In particular, there has been a very interesting search for a logical charac- 
terization for polynomial-time computability. If we consider models with a 
given ordering then fixed point logic FP provides such a characterization: a 
property P of finite ordered structures is PTIME computable if and only if P 
is definable in FP  ( Immermann t986, Vardi 1982). However, in the general 
case where the existence of a linear order is not assumed, this characteriza- 
tion fails badly. Indeed the above mentioned quantifier hierarchy result of 
Hella 1992 implies that  there exists no finite set Q of quantifiers such that  
FP(Q)  would characterize a~ PTIME computable properties of finite struc- 
tures. Thus,  PTIME,  as a logic on finite structures, is not finitely generated 
even over FP. 

This negative result does not rule out the possibility of characterizing 
PTIME by a so-called uniform sequence of quantifiers: there might exist 
a single (PTIME computable) quantifier Q such that  PTIME = L ~ ( Q ) ,  
where Q is the set of all relativized resumptions of Q.6 Note that  this is 
actually a finite generation problem in disguise: if L* is like L~++ except 
that  it has explicit formation rules for relativizing and for quantifying of 
tuples of variables, then L~+(Q) =- L,(Q). 7 Dawar 1993 proves a result that  
emphasizes the significance of this variation of the finite generation problem 
for PTIME.  Namely, there is a reasonable logic capturing PTIME iff PTIME 
is finitely generated over L*. In particular, a negative answer to this finite 
generation problem would immediately yield the separation of PTIME from 
NPTIME.  Regardless of whether the answer in this specific case is negative 
or positive, it would be desirable to find general tools for proving that  a 
given logic is not finitely generated over L*. 

With  this we hope to have shown that  logical definability of general- 
ized quantifiers is an active research area, with a large supply of particular 
problems, but  also with some more general structure theorems, sometimes 
related to problems of computational complexity. In the next section we will 
also find relations to linguistic issues. 

We end this section with a suggestion (as opposed to a conjecture or a 
well-defined problem) pointing in a different direction. Some undefinabil- 

6I.e., quantifiers Q(~)~t of type (1, n} defined by (Q(n)*'t)MAR ¢~ O(An)A~nR. 
rL* is a quite natural logic from a computer science point of view; cf. Makowsky and 

Pnueli 1993. Dawar 1993 calls Q1 reducible to Q2 if QI is definable in L*(Q2). 
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ity results for generalized quantifiers on finite structures seem to require 
sophisticated combinatorial methods. For example, the proof of the result 
about the H£rtig quantifier mentioned above starts with type (1) quantifiers 
Q 1 , . . . , Q m  and a number k, and constructs two models M and M ~, each 
with two disjoint unary predicates P and R, so that  M and M '  are equiv- 
alent relative to the k move Ehrenfeucht-Frai'ssd game for Q I , . . . , Q m ,  and 
P and R have the same cardinality in M but not in M ' .  One way of doing 
this uses van der Waerden's theorem. It also seems that  the construction of 
the models is impossible without some appeal to Ramsey theory, although 
some work would be needed to make this statement exact. This leads to the 
question whether every proof of the undefinability result requires Ramsey 
theory. Or is there perhaps another proof which avoids the construction of 
such models? s 

Given the very general nature of generalized quantifiers it may be worth- 
while to do some ~reverse mathematics '  in the field of finite combinatorics 
and definability questions, and thus to assess the combinatorial content of 
certain results about generalized quantifiers. And corresponding results may 
be obtainable also for infinite models. 9 

4. P o l y a d i c  q u a n t i f i e r s  a n d  l i n g u i s t i c  d e f i n a b i l i t y  

The quantifiers appearing as denotations of determiners in natural  languages 
are normally monadic - -  usually of type (1, 1) where the first argument  
belongs to the noun and the second to the verb phrase, though noun phrases 
with more than one nouns and hence quantifiers of type ( 1 , . . . ,  1~ occur as 
well. A typical example is mostMAB ¢v IAHB I > ]A - B I. But sentences 
can combine such monadic quantifiers into polyadic ones. The canonical 
example is a sentence with quantified subject and object and a transitive 
verb, like most students criticized at least two teachers. With type (1, 1) 
determiner denotations Q1 and Q2 of the subject and object, respectively, 
this construction results in the type (1, 1, 2 / iteration QIQ2, defined by 

(QIQ2)MABR ¢~ (Q1)MA{a E M :  (Q2)MBR~} 

where R a = { b E M : R a b } .  

However, linguists have noted that  natural language sometimes operates on 

nit may be noted that the corresponding result for the stronger quantifier more  
( m o r e M A B  z~ IAI > IBI) ' also proved in Kolaitis and V£~n~nen 1992, only requires a 
simple use of the pigeon hole principle. 

9Barwise 1972a and Friedman 1974 studied how much set theory is needed to prove the 
existence of the ganf  number of second order logic. How much set theory is required to 
prove that the game quantifier is not definable in Loo~? 
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monadic  quantifiers in other  ways. Among the examples cited are branching 
(e.g. for two quantifiers which are upward  monotone  in their right a rgument ,  
Br(Q1,Q2)ABR ¢:~ 3X c_ A 3Y C_ B [ Q 1 X & Q 2 Y & X  × Y c_ R]), the 
resumptions ment ioned  above, and Ramsey quantifiers (Ramk(Q1)AR ¢=~ 
3X C A [Q1X& Vdistinct  al , . . . ,akEXRal , . . . ,ak] ) .  1° Initial papers  
in this move are Keenan 1987,1992, van Benthem 1989, Sher 1990, while 
Keenan and Westerst£hl  1994 is the most  up- to-date  survey. 

A systemat ic  s tudy of such polyadic patterns would thus be quite in- 
teresting.  First ,  what  are most  general schemas of definition for polyadic 
quantif icat ion (cf. Sher 1991, Spaan 1993)? More systematically, one may  
inquire how much  of the existing monadic  theory (cf. van Ben them 1986, 
Westerst£hl  1989) can be lifted to the polyadic case. Second, what  are typ- 
ical propert ies  of the lifts, and can some lifts be interestingly characterized 
in terms of such propert ies? Third,  can we get an i l luminating overview 
of all the  lifts tha t  occur in natura l  languages? Fourth ,  there are obvious 
questions of definability in this connection: how far (and in what  sense) do 
these lifts increase expressive power? And finally, what  are the prospects for 
axiomatizabil i ty here? 

An indicat ion of recent research on points one to four can be found in the 
survey paper  ment ioned  above - -  the subject is far from exhausted.  Here, 
we shall jus t  emphasize some general themes. First,  the general linguistic 
challenge in this area involves the extent  and precise nature  of the princi- 
ple of semant ic  compositionality (cf. Janssen 1994). Where lies the 'Frege 
Boundary '  of s t andard  i terat ion of (quantified) components  of expressions, 
and where do we need addit ional forms of 'logical glue' to construct  the 
sentence meanings  tha t  we use? In the limit, one might  use full l ambda  
calculus or type  theory for this purpose (cf. van Benthem 1991), but  intu- 
itively there are s t rong constraints  on what  would be admissible in empirical 
' l inguistic definability'  (which will be weaker than  logical definability tout  
court) .  These general concerns may  actually be t ranslated into a variety of 
specific technical questions of definability in the earlier sense. Here is a quite 
recent i l lustration. 

There  are two obvious definability questions for a polyadic lift F:  Is 
F(Q1, . . . ,  Qk) definable in terms of Q 1 , . . - ,  Qk, or, more generally, in terms 
of any monadic  quantifiers? As logicians we thus ask if F(Q1, . . . ,Qk)  is 
definable in L ~ ( Q 1 , . . . , Q k ) ,  or in L~,~,(Q1). (A case might  also be made  
for considering other  basis logics than  L ~  here.) But it is not clear tha t  

1°Observe that branching and Ramsey quantifiers could be handled by adding monadic 
quantifiers to second-order logic instead. But the polyadic quantifiers give a more precise 
estimate of just how much extra expressive power one needs here. 
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logical definability is really what the linguist wants: one might reasonably 
restrict attention to definitions that are somehow easily expressed in natural 
languages. Definability as an iteration, or as a boolean combination of itera- 
tions, are obvious candidates that have been studied, but common construc- 
tions in natural languages would yield richer notions of linguistic definability, 
tending towards full lambda calculus and type theory in the limit. Keenan 
1992 calls the most restrained definability notion (definability as an itera- 
tion) reducibility, and provides methods for proving unreducibility of several 
linguistic constructions; these methods are systematized and extended in 
Ben-Shalom 1994a. Apart from reducibility this area remains largely unex- 
plored, but note that in so far as linguistic definitions are expressible in the 
logicM language, a logicM un-definability result yields linguistic undefinabil- 
ity as well. In this connection, Hella, V~£n~nen and Westerst£hl 1994 obtain 
a characterization of precisely when Br(Q1, Q2)is definable in L~(Q1,  Q2), 
and in L ~ ( Q 1 ) ,  on finite structures, and similarly for Ramk(Q1). In gen- 
eral, e.g. when Q1 = Q2 = most or some other 'proportional' quantifier, 
the branching (and the corresponding Ramsey quantifier) is not definable in 
L ~ ( Q 1 ) .  The case of resumption seems harder, but recently Luosto (1994) 
succeeded in proving (using van der Waerden's theorem) the conjecture that 
most(2) is not definable in L ~ ( Q 1 )  on finite structures. 

Another interesting linguistic topic is the semantic and inferential be- 
haviour of quantifier combinations, involving the central notion of scope. 
For instance, how strict is the position-dependence of individual quantifiers 
in a sequence: when can they be interchanged, etcetera? See, for example, 
Zimmermann 1993, van Benthem 1989, Keenan 1993, Westerst£hl 1994. For 
a technicM illustration, once again connecting linguistics with mathemat- 
ics, let us mention Keenan's Prefix Theorem, which is formulated for the 
linear prefixes of iteration, but holds in a suitable form for the 'vertical' 
prefixes of simple branching as well. One version says that if Q1 , . . . ,  Qk and 
Q~, . . . ,  Q~ are positive (do not hold of 0) non-trivial type (1 / quantifiers 
on M and QI'" "Qk = QIl'" "QJk on M, then Qi = Q~ for i = 1 , . . . ,  k, on 
M. There is also a version which does not mention M. Compare this with 
the Linear Prefix Theorem of Keisler and Walkoe 1973 which says that,  for 
Q1 , . . . ,Qk ,  Q~,. . . ,Q'k E {V, 3}, if ( Q , , . . . , Q k )  and (Q~, . . . ,Q~)  are dis- 
tinct prefixes then there is a sentence with the (Q1,. . . ,Qk)-prefix which 
is not equivalent to any sentence with the (Q~,.. . ,Q~)-prefix. Keenan's 
Prefix Theorem generalizes this to arbitrary quantifiers, but the conclusion 
is weaker, namely, only that the two sentences QlXl . . .QkxkRxl . . .xk  and 
Q~Xl...Q~xkRxl.. .xk are not equivalent. The proof is surprisingly simple, 
whereas the Keisler-Walkoe theorem uses Ramsey theory. An obvious ques- 
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tion is: Can the Keisler-Walkoe result be generalized to other quantifiers 
than V and 37 (See the last paragraphs of Keenan 1993 for some caveats.) 
For truly polyadic constructions, of course, these issues would require more 
sophisticated formulations. (Some linguists have even claimed that  absence 
of scope is a hall-mark of the latter: cf. de Mey 1990.) 

As a final linguistic issue, we mention the pervasive phenomenon of plural 
predicates and collective quantification. So far we have been talking about 
so-called 'distributive quantification', i.e., quantification over individuals, 
but an equally common natural  language phenomenon, especially in con- 
nection with plurals, is collective quantification, which can be construed as 
quantification over sets of individuals. This suggests a second-order version 
of generalized quantifiers, or, more generally, a higher-order version. Here 
too there are natural  notions of lifts from the first-order (monadic) domain 
to the higher-order one, and all of the issues we mentioned above for the 
potyadic lifts have their counterparts. These lifts have been investigated in 
van der Does 1992, 1994a, but a general study from the perspective sug- 
gested here does not yet exist. And in contrast with the polyadics there is 
not this t ime an established model theory to fall back on. 

5. W e a k  s e m a n t i c s  a n d  a x i o m a t i z a b i l i t y  

Going higher-order, as in the previous section, carries connotations of a 
substantial  increase in complexity, loss of nice properties, etc. But in fact 
this need not be so. The familiar technique of general models allows great 
freedom in the choice of sets, while re taining a many-sorted first-order 
framework. Thus,  in the analysis of collective quantification, one avoids set 
theoretic complexity and can be explicit about which sets to invoke for the 
t reatment  of plurals. In other words, one may profitably use a 'weak' seman- 
tics tailored to one's needs. Likewise, polyadic patterns may actually involve 
only the existence of certain restricted families of 'choice functions', rather 
than full quantification over Skolem functions and the like. This perspective 
on lowering semantic complexity is discussed at length in van Benthem 1994, 
where a plea is made for reconsidering many received views on semantic com- 
plexity in tile semantics of natural languages and computation. Of course, 
the art will be not just to switch to some broad abstract model class, but to 
find some informative yet more tractable ' intermediate'  modelling. (Many 
successful examples of this kind may be found in the field of algebraic logic, 
which has to navigate between standard set-theoretic models at one extreme 
and trivial Lindenbaum algebras at the other.) Again, this general theme 
has definite technical counterparts. 
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Few logics with generalized quantifiers are axiomatizable in the sense 
of having a recursively enumerable set of standard validities. For example, 
in L~(most )  one can characterize the order of the naturM numbers,  so 
there is no axiomatization (by Tarski's Theorem). But here again there are 
moves to 'weak' semantics which sometimes restore axiomatizability. This 
was originally used by Keisler and others as a technical step in proofs of 
ordinary completeness and omitting types results for certain quantifiers, but 
we have Mready hinted that  'weak' semantics has an independent motivation. 

A weak model has the form (M, q), where M is an ordinary model  and 
q is a quantifier on M - -  in this context ISOM is not assumed. If we now 
take a (generalized) quantifier of type r to be a class Q of weak models 
instead, where the right elements are of type r ,  satisfaction of the usual 
formulas of L ~ ( Q )  in weak models is defined as expected, and the earlier 
notion of a quantifier is essentially the speciM case of a class of models of 
the form (M, QM). n Such quantifiers are called ambiguous in Krynicki and 
Mostowski 1993, the idea being that the variety of local instances of Q on 
a given universe may reflect an ambiguity of meaning. 12 An example would 
be most, which on infinite models might need some form of measure to give 
a reasonable interpretation. 

Continuing with most as our example, there are now at least two ways 
in which axiomatizability could be obtained. First, we may consider a type 
(1, 1) ambiguous quantifier which allows all local quantifiers with some typ- 
ical properties of most, like monotonicity, conservativity, existential import ,  
etc. Now valid reasoning with most which only depends on these properties 
can be axiomatized - -  Doets 1991 in fact shows (roughly) that  universM 
properties like these are always axiomatizable. 

Another route to axiomatization goes via the observation that  (the or- 
dinary quantifier) most is definable in second-order logic, which already has 
a familiar complete semantics in terms of generM models, i.e., models of 
the form (M, K),  where K is a class of relations on M over which the 
second-order variables vary. M. Mostowski 1993b provides proof systems 
for second-order definable quantifiers, which are complete with respect to 
~ny class of general models (M, K) such that  K is closed under definability 
over (M,  K) by L~(Q)-formulas .  This again turns most into an ambiguous 
quantifier, whose ambiguity now resides in the choice of the class K. Other 
cases are the ttenkin quantifiers (quantifiers with partially ordered prefixes), 
but of course there is a vast supply of further examples. For example, if Q1 

11Equivalently, we can view Q as a functional relation which with each M associates a 
class Q M  of quantifiers of type r on M.  

12This is then an extended concept of a generalized quantifier.  W h a t  constra ints  does 
it obey? Some proposals are discussed in Krynicki and Mostowski 1993. 
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and Q2 are second-order definable, so are Br(Q1,Qu) and Ramk(Q1), and 
hence they can be axiomatized by the same methods. 13 

Yet another class of ambiguous quantifiers are the so-called relational 
quantifiers; cf. Krynicki (1994a,b). Using models of the form (M, R), where 
R is a binary relation on M, let Qx~(x)  mean 3a e M Vb E M(aRb ~ ~(b)). 
Here the ambiguity lies in the choice of R, and Krynicki gives completeness 
results for various classes of models of this form. The motives for studying 
these quantifiers have been mostly technical, but there also seem to exist 
affinities with modal  logic - -  cfi section 8 for a general exploration of the 
analogies between quantifiers and modal operators. 

A final proposal for capturing most (due to Krynicki and Mostowski) is 
via using a measure in the sense of a function # from M to [0,1] which is 
finitely additive and homogeneous in that  #({a}) = #({b}) for a, b E M. 
Then on each ( M , # )  one interprets most as usual but using the measure 
instead of cardinality. Does this give an axiomatizable logic? TM 

6. C o m p u t a t i o n a l  s e m a n t i c s  

Intuitively, quantifiers may be viewed in two different ways. On the one 
hand, they express static quantitative relationships that  may hold between 
predicates of individuals. But on the other hand, we can also think of 
them through their associated semantic procedures. This theme has already 
emerged briefly in section 3, during the discussion of generalized quantifiers 
and query languages in computer science. It will also occupy most of section 
7 on 'dynamic semantics'.  At least in the more linguistic tradition, how- 
ever, the first computational  analysis of this kind had to do with so-called 
'procedural semantics' ,  thinking of expressions as coming with certain algo- 
r i thms for their successful evaluation. E.g., van Benthem 1986 introduced 
'semantic au tomata '  for generalized quantifiers. In a more mathematical  
setting, Moschovakis 1991 even proposes to equate evaluation algorithms 
with Fregean 'senses', as opposed to the earlier-mentioned static 'reference' 
of quantifier expressions. This general perspective turns out to be firmly 
related to a long technical tradition. 

Qnantifiers on finite structures can be coded as sets of words. This is 
particularly simple in the monadic case. A binary word wl. • .wn corresponds 

a3Note that the 'second-order version' of an ordinary quantifier Q is sensitive to the 
choice of defining formula - -  equivMent formulas may yield versions with different prop- 
erties. When are they the Same? 

14A similar proposal was made in Colban 1991 using a different notion of measure, 
which however (as Colban noted) reduced to a universal property of Q and hence was 
axiomatizable by the result of Doets mentioned earlier. 






































