
SUPPLEMENTARY MATERIAL

A TWIN NETWORKS AND
COUNTERFACTUALS

In addition to probabilistic and causal reasoning about in-
terventions, ioSCMs allow for counterfactual reasoning.
Given an ioSCM M with graph G+ = (V ∪̇U ∪̇J,E+),
a set W ⊆ V ∪ J and the corresponding intervened
ioSCM Mdo(W ) with graph G+

do(W ) one can construct a
(merged) twin ioSCM Mtwin similarly to the acyclic case
(see [24]), or a single world intervention graph (SWIG,
see [30]). This is done by identifying/merging the
corresponding nodes, mechanisms and variables from
the non-descendants of W , i.e., NonDescG

+

(W ) and

NonDesc
G+

do(W )(W ), which are unchanged by the ac-
tion do(W ). Then one has the two different branches

DescG
+

(W ) and Desc
G+

do(W )(W ) in the network. This
construction then allows one to formulate counterfactual
statements like in the acyclic case (see [24]), but now for
general ioSCMs. E.g., one could state the assumption of
strong ignorability (see [24, 31]) as:

(
Y do(�), Y do(X)

) σ

⊥⊥
Gtwin

X |Z,

or the conditional ignorability (see [31, 32]) as:

Y do(X)
σ

⊥⊥
Gtwin

X |Z.

All the causal reasoning rules derived in this paper can
thus also be applied to reason about counterfactuals.

B MARGINALIZATION OF DIRECTED
MIXED GRAPHS

For completeness, we provide here the definition of
marginalization of directed mixed graph. For more de-
tails and the relationship with the marginalization of
an mSCM (or as a straightforward generalization, an
ioSCM), we refer the reader to [10].

Definition B.1 (Marginalization of DMGs). Let G =
(V,E,B) be a directed mixed graph (DMG) with set of
nodes V , directed edges E and bidirected edges B. Let
W ⊆ V be a subset of nodes. We define the marginal-
ized DMG G\W := G′ = (V ′, E′, B′) (“marginalizing
out W”), also called latent projection of G onto V \W ,
with set of nodes V ′ := V \W via the following rules
(for v1, v2 ∈ V \W = V ′):

1. v1 v2 ∈ E′ iff there exist k ≥ 0 nodes
w1, . . . , wk ∈W such that the directed walk:

v1 w1 · · · wk v2

lies in G (the corner case v1 v2 ∈ E also ap-
plies).

2. v1 v2 ∈ B′ iff there exist k ≥ 0 nodes
w1, . . . , wk ∈ W and an index 0 ≤ m ≤ k such
that a walk of the form:

v1 w1 · · · wm · · · wk v2

lies in G with m ≥ 1 or a walk of the form:

v1 w1 · · · wm︸ ︷︷ ︸
m≥0

wm+1 · · · wk︸ ︷︷ ︸
k−m≥0

v2

lies in G (including the corner cases v1 v2 ∈ B
and v1 w v2 in G with w ∈W ).

C CONDITIONAL INDEPENDENCE
AND ITS ALTERNATIVE WITH
CONFOUNDED INPUTS

Here we want to give a generalization of [3, 29] in the
flavor of definition 3.1. The main point is that the ap-
proaches of conditional independence for families of dis-
tributions/Markov kernels in [3, 29] implicitely assume
that the input variables J are jointly confounded. The
definition 3.1 of conditional independence, in contrast,
assumes (via the product distributions) that the variables
J are jointly independent. The approach in definition 3.1
can be easily adapted to the confounded input setting as
follows.

C.1 INPUT CONFOUNDED CONDITIONAL
INDEPENDENCE

Definition C.1 (Input confounded conditional indepen-
dence). Let XV :=

∏
v∈V Xv and XJ :=

∏
j∈J Xj be

the product spaces of any measurable spaces and

PV (XV |XJ)

a Markov kernel (i.e. a family of distributions on
XV measurably5 parametrized by XJ ). For subsets
A,B,C ⊆ V ∪̇J we write:

XA ⊥⊥
PV (XV |XJ ),•

XB |XC

if and only if for every joint distribution PJ on XJ we
have:

XA ⊥⊥PV∪J
XB |XC ,

which means that for all measurable F ⊆ XA we have:

PV ∪J(XA ∈ F |XB , XC) = PV ∪J(XA ∈ F |XC) PV ∪J -a.s.,
5We require that for every measurable F ⊆ XV the map

XJ → [0, 1] given by xJ 7→ PV (XV ∈ F |XJ = xJ) is
measurable.



where PV ∪J(XV ∪J) := PV (XV |XJ) ⊗ PJ(XJ), the
distribution given by XJ ∼ PJ and then XV ∼
PV (_|XJ).

Lemma C.2. Let the situation be like in C.1 and assume
all spaces Xv , v ∈ V , to be standard measurable spaces.
Let A,B,C be pairwise disjoint, A ∩ J = ∅ and J ⊆
B ∪ C. Then every statement implies the one below:

1. There is a version of PV (XA|XB , XC) such that for
all xB , x′B ∈ XB , xC ∈ XC:

PV (XA|XB = xB , XC = xC)

= PV (XA|XB = x′B , XC = xC).

2. XA ⊥⊥
PV (XV |XJ ),•

XB |XC .

3. XA ⊥⊥
PV (XV |XJ )

XB |XC (using definition 3.1).

4. XA ⊥⊥
PV (XV |XJ )⊗δxJ

(XJ )
XB |XC for every xJ ∈

XJ .

If there is a Markov kernel P(XA|XC) that is a version of
PV ∪J(XA|XC) for every Dirac delta distribution PJ =
δxJ

(e.g. if J ⊆ C) then the last point also implies the
first.

Proof. 1. =⇒ 2.: Functional dependence only on xC .
2. =⇒ 3. =⇒ 4.: Every product distribution is a
joint distribution and every Dirac delta distribution is a
product distribution.
1. ⇐= 4.: Let N ⊆ XB∪C be the measurable set
on which the Markov kernels PV (XA|XB , XC) and
P(XA|XC) (considered as functions of (xB , xC)) differ.
For every xJ ∈ XJ we have by assumption:

XA ⊥⊥
PV (XV |XJ )⊗δxJ

(XJ )
XB |XC .

This shows that:

PV (XA|XB = xB , XC = xC) = P(XA|XC = xC)

for (xB , xC) outside of a PV (X(B∪C)\J |XJ = xJ)-
zero set, for which we can take the section NxJ

of N .
This implies that N is a PV (X(B∪C)\J |XJ)-zero set. So
P(XA|XC) is a version of PV (XA|XB , XC) and satis-
fies 1..

Remark C.3. 1. The existence of the Markov ker-
nel P(XA|XC) under the assumption 4. in lemma
C.2 always/only holds up to measurability ques-
tions, because for every fixed PJ the regular condi-
tional probability distribution PV ∪J(XA|XB , XC)
always exists in standard measurable spaces and
agrees with PV ∪J(XA|XC) (by the assumption 4.).
The existence of the Markov kernel P(XA|XC) fol-
lows for standard measurable spaces Xv , v ∈ V , if
either:

(a) J ⊆ C and assumption 4. holds, or:
(b) XJ is discrete and assumption 2. holds, or:
(c) PV (XV |XJ) comes as PU (XV |XJ) from an

ioSCM and assumptions 2.-4. even hold in
form of the corresponding σ-separation state-
ment in the induced DMG G.

We plan in future work to address all these subtleties
in more detail.

2. Lemma C.2 shows that definition C.1 (and also al-
ready definition 3.1) generalizes the one from [29]
(when applied symmetrized). The clear correspon-
dence/generalization is that for any (not necessarily
disjoint) A,B,C ⊆ V ∪ J:

XA ⊥⊥
[29]

XB |XC

:⇐⇒ XA ⊥⊥
PV (XV |XJ ),•

XB∪J |XC

∨ XB ⊥⊥
PV (XV |XJ ),•

XA∪J |XC .

3. Thm. 4.4 in [3] shows that definitions 3.1, C.1 also
generalize the one from [3] in the same sense.

4. In contrast with [3,6,29], definition C.1 can accom-
modate any variable from V or J at any position of
the conditional independence statement.

5. Also note that ⊥⊥ PV (XV |XJ ),• is well-defined for
any measurable spaces and is not restricted to dis-
crete variables or distributions/Markov kernels that
come with densities.

6. Furthermore, ⊥⊥ PV (XV |XJ ),• satisfies the separoid
axioms (see [6, 13, 25] or see rules 1-5 in Lem. 4.5
for ⊥⊥ PV (XV |XJ ),•). Indeed, every single ⊥⊥ PV∪J
satisfies the separoid axioms (see [3, 6]) and an ar-
bitrary intersection of separoids is again a separoid
(see [7]):

〈
⊥⊥

PV (XV |XJ ),•

〉
=
⋂

PJ

〈
⊥⊥

PV∪J

〉
.

C.2 INPUT CONFOUNDED GLOBAL MARKOV
PROPERTY

We can also prove a global Markov property for the input
confounded version of conditional independence. For
this we need to modify the graphical structures a bit and
introduce a few more notations. Note that all spaces are
assumed to measurable (but not necessarily standard).

Definition C.4 (Input confounded ioSCM). Let M =
(G+,X ,PU , g) be an ioSCM with graph G+ =
(V ∪̇U ∪̇J,E+). The corresponding input confounded
ioSCM M• is then constructed from M by the following
changes:

1. V• := V ∪ J and U• := U ,
2. J• := {•} with a new node • with space X• := XJ ,



3. E+
• := E+ ∪ {• j | j ∈ J},

4. add g{j}, the canonical projection fromX• ontoXj ,
to g for j ∈ J .

With this setting M• is a well-defined ioSCM.
Furthermore, let G• be the input confounded induced
DMG, i.e. the induced DMG of G+

• where • is marginal-
ized out. In other words, G• arises from the induced
DMGG ofG+ by just adding j1 j2 for all j1, j2 ∈ J ,
j1 6= j2, to G.

Theorem C.5 (Input confounded directed global Markov
property). Let M be an ioSCM with input confounded
induced DMGG•. Then for all subsetsA,B,C ⊆ V ∪J
we have the implication:

A
σ

⊥⊥
G•
B |C =⇒ XA ⊥⊥

PU (XV | do(XJ )),•
XB |XC .

In words, if A and B are σ-separated by C in G•
then the corresponding variables XA and XB are con-
ditionally independent given XC for any distribution
PU (XV |do(XJ)) ⊗ PJ(XJ) for any joint distribution
PJ on XJ .

Proof. This directly follows from the σ-separation cri-
terion/global Markov property 5.2 applied to the input
confounded ioSCM M• and G+

• , or, alternatively, again
from the mSCM-version proven in [10,11] for each fixed
joint distribution PJ on XJ = X•. Note that G• is a
marginalization of G+

• and σ-separation is stable under
marginalization.

D THE EXTENDED IOSCM - PROOFS

Proposition D.1. Let M = (G+,X ,PU , g) be an
ioSCM with G+ = (V ∪̇U ∪̇J,E+) and M̂ the extended
ioSCM. Let A,B,C ⊆ V be pairwise disjoint set of
nodes and xC∪J ∈ XC∪J . Then we have the equations:

PU (XA|XB ,do(XC∪J = xC∪J))

= PU (XA|XB , IC = xC , XJ = xJ)

= PU (XA|XB , IC = xC , XC = xC , XJ = xJ).

Proof. Consider the first equality. For any subset D ⊆
V the variable X

do(XC∪J=xC∪J )
D was recursively de-

fined in Mdo(C) via g using G+
do(C), whereas the vari-

able X
do((IC ,IV \C ,XJ )=(xC ,�V \C ,xJ ))

D was recursively
defined in M̂ via the same g but using I(xC ,�V \C)
and G+

do(I(xC ,�V \C))
. Since xC ∈ XC we have

that I(xC ,�V \C) = C and thus G+
do(I(xC ,�V \C))

=

G+
do(C). It directly follows that:

X
do(XC∪J=xC∪J )
D = X

do((IC ,IV \C ,XJ )=(xC ,�V \C ,xJ ))

D .

This shows the equality of top and middle line. For the
equality between the middle and bottom line note that:

IC = xC
xC∈XC=⇒ XC = xC .

E THE THREE MAIN RULES OF
CAUSAL CALCULUS - PROOFS

Theorem E.1 (The three main rules of causal calcu-
lus). Let M be an ioSCM with set of observed nodes
V and intervention nodes J and induced DMG G. Let
X,Y, Z ⊆ V and J ⊆W ⊆ V ∪ J be subsets.

1. Insertion/deletion of observation:

If Y
σ

⊥⊥
G
X|Z,do(W ) then:

P(Y |X,Z,do(W )) = P(Y |Z,do(W )).

2. Action/observation exchange:

If Y
σ

⊥⊥
G
IX |X,Z,do(W ) then:

P(Y |do(X), Z,do(W )) = P(Y |X,Z,do(W )).

3. Insertion/deletion of actions:

If Y
σ

⊥⊥
G
IX |Z,do(W ) then:

P(Y |do(X), Z,do(W )) = P(Y |Z,do(W )).

Proof. 1. Thm. 5.2 applied to Gdo(W ) gives:

Y
σ

⊥⊥
G
X|Z,do(W )

5.2
=⇒ Y ⊥⊥

P
X|Z,do(W ).

The latter directly gives the claim:

P(Y |X,Z,do(W )) = P(Y |Z,do(W )).

2. The σ-separation criterion 5.2 w.r.t. to Ĝdo(W )

gives:

Y
σ

⊥⊥
G
IX |X,Z,do(W )

5.2
=⇒ Y ⊥⊥

P
IX |X,Z,do(W ).

Together with Prp. 6.2 (applied to Mdo(W )) we
have:

P(Y |do(X), Z,do(W ))
6.2
= P(Y |IX , X, Z, do(W ))

Y ⊥⊥ IX |X,Z,do(W )
= P(Y |X,Z,do(W )).

3. As before we have:

Y
σ

⊥⊥
G
IX |Z,do(W )

5.2
=⇒ Y ⊥⊥

P
IX |Z,do(W ).

And again: P(Y |do(X), Z,do(W ))

6.2
= P(Y |IX , Z,do(W ))

Y ⊥⊥ IX |Z,do(W )
= P(Y |Z,do(W )).



F ADJUSTMENT CRITERIA

F.1 PROOFS

Theorem F.1 (General adjustment criterion and for-
mula). Let the setting be like in 8.1. Assume that data
was collected under selection bias, P(V |S = s,do(W ))
(or under P(V |do(W )) and S = ∅), and there are un-
biased samples from P(Z|C,do(W )). Further assume
that the variables satisfy:

1. (Z0, L)
σ

⊥⊥
G
IX |C, do(W ), and

2. Y
σ

⊥⊥
G
(IX , Z+) |C,X,Z0, L,do(W ), and

3. Y
σ

⊥⊥
G
S |C,X,Z, do(W ), and

4. L
σ

⊥⊥
G
X |C,Z,do(W ).

Then one can estimate the conditional causal effect
P(Y |C,do(X),do(W )) via the adjustment formula:

P(Y |C,do(X),do(W ))

=

∫
P(Y |X,Z,C, S = s,do(W )) dP(Z|C, do(W )).

Proof. Since C, do(W ) occur everywhere as a condi-
tioning set, we will suppress C, do(W ) in the following
everywhere. Then note that the σ-separation criterion 5.2
implies the corresponding conditional independencies in
the following when indicated. The adjustment formula
then derives from the following computations:

P(Y |do(X))

=

∫
P(Y |Z0, L,do(X))

dP(Z0, L|do(X))

6.2
=

∫
P(Y |IX , X, Z0, L) dP(Z0, L|IX)

Y ⊥⊥ IX |X,Z0,L;
=

(Z0,L) ⊥⊥ IX

∫
P(Y |X,Z0, L) dP(Z0, L)

∫
dP(Z+|Z0,L)=1

=

∫ ∫
P(Y |X,Z0, L)

dP(Z+|Z0, L) dP(Z0, L)

Y ⊥⊥ Z+|X,Z0,L
=

∫
P(Y |X,Z0, Z+, L) dP(Z+, Z0, L)

Z=Z+∪Z0
=

∫
P(Y |X,Z,L) dP(Z,L)

=

∫ ∫
P(Y |X,Z,L) dP(L|Z) dP(Z)

L ⊥⊥ X|Z
=

∫ ∫
P(Y |L,X,Z)

dP(L|X,Z) dP(Z)

=

∫
P(Y |X,Z) dP(Z)

Y ⊥⊥ S|X,Z
=

∫
P(Y |X,Z, S) dP(Z).

F.2 SPECIAL CASES

Corollary F.2. Let the notations be like in 8.1 and 8.2
and W = J = ∅. We have the following special cases,
which in the acyclic case will reduce to the ones given by
the indicated references:

1. General selection-backdoor (see [4]): C = ∅, and

(a) (Z0, L)
σ

⊥⊥
G
IX , and

(b) Y
σ

⊥⊥
G
(IX , Z+) |X,Z0, L, and

(c) Y
σ

⊥⊥
G
S |X,Z, and

(d) L
σ

⊥⊥
G
X |Z, implies:

P(Y |do(X)) =

∫
P(Y |X,Z, S = s) dP(Z).

2. Selection-backdoor (see [1]): C = L = ∅, and

(a) Z0

σ

⊥⊥
G
IX , and

(b) Y
σ

⊥⊥
G
(IX , Z+, S) |X,Z0 implies:

P(Y |do(X)) =

∫
P(Y |X,Z, S = s) dP(Z).

3. Extended backdoor6 (see [26, 32]): C = S = ∅,
(a) (Z0, L)

σ

⊥⊥
G
IX , and

(b) Y
σ

⊥⊥
G
(IX , Z+) |X,Z0, L, and

(c) L
σ

⊥⊥
G
X |Z, implies:

P(Y |do(X)) =

∫
P(Y |X,Z) dP(Z).

4. Backdoor (see [21, 22, 24]): C = S = L = Z+ =
∅,
(a) Z

σ

⊥⊥
G
IX , and

(b) Y
σ

⊥⊥
G
IX |X,Z, implies:

P(Y |do(X)) =

∫
P(Y |X,Z) dP(Z).

F.3 MORE ON ADJUSTMENT CRITERIA

The following generalizes the adjustment criterion of
type I in [4].

6In the acyclic case it was shown in [32] that when L is al-
lowed to represent latent variables in a graph G′ that marginal-
izes to G then this criterion actually characterizes all adjust-
ment sets for G and P(Y | do(X)).



Theorem F.3 (General adjustment without external
data). Let the setting be like in 8.1. Assume that data
was collected under selection bias, P(V |S = s). Fur-
ther assume that the variables satisfy:

1. Y
σ

⊥⊥
G
S |do(X),

2. Z0

σ

⊥⊥
G
IX |S,

3. Y
σ

⊥⊥
G
Z+ |Z0, S,do(X),

4. Y
σ

⊥⊥
G
IX |X,Z, S.

Then one can estimate the causal effect P(Y |do(X)) via
the following adjustment formula from the biased data:

P(Y |do(X)) =

∫
P(Y |X,Z, S = s) dP(Z|S = s).

Proof. First note that the σ-separation criterion Theorem
5.2 implies the corresponding conditional independen-
cies in the following when indicated. We implicitly make
use of Proposition 6.2 when needed. The adjustment for-
mula then derives from the following computations:

P(Y |do(X))

Y ⊥⊥ S | do(X)
= P(Y |S,do(X))

chain rule
=

∫
P(Y |Z0, S,do(X))

dP(Z0|S, do(X))

Z0 ⊥⊥ IX |S
=
6.2

∫
P(Y |Z0, S,do(X)) dP(Z0|S)

∫
dP(Z+|Z0,S)=1

=

∫
P(Y |Z0, S,do(X))

dP(Z+, Z0|S)
Y ⊥⊥ Z+ |Z0,S,do(X)

=

∫
P(Y |Z+, Z0, S,do(X))

dP(Z+, Z0|S)
Z=Z+∪Z0

=

∫
P(Y |Z, S,do(X)) dP(Z|S)

Y ⊥⊥ IX |X,Z,S
=
6.2

∫
P(Y |Z, S,X) dP(Z|S).

The following theorem generalizes the adjustment cri-
terion of type III in [5]. For this we have to introduce
even more adjustment sets: ZA0 , Z

B
0 , Z

A
1 , Z

B
1 , Z2, Z3

and L0, L1. We write Z0 = (ZA0 , Z
B
0 ), ZA≤1 =

(ZA0 , Z
A
1 ), etc..

Theorem F.4 (General adjustment with partial external
data). Assume that data was collected under selection
bias, P(V |S = s), but we have unbiased data from
P(ZB≤1). Further assume that the variables satisfy:

1. (L0, Z0) ⊥⊥ IX ,
2. Y ⊥⊥ Z1 |L0, Z0,do(X),
3. ZA≤1 ⊥⊥ S |ZB≤1,
4. L0 ⊥⊥ IX |Z≤1,
5. Y ⊥⊥ S |Z≤1,do(X),
6. (L1, Z2) ⊥⊥ IX |S,Z≤1,
7. Y ⊥⊥ Z3 |L1, S, Z≤2,do(X),
8. L1 ⊥⊥ IX |S,Z,
9. Y ⊥⊥ IX |X,S,Z.

Then we have the adjustment formula: P(Y |do(X)) =

∫ ∫
P(Y |S = s, Z,X) dP(Z\ZB≤1|S = s, ZB≤1) dP(ZB≤1).

Note that this formula does not depend on L0 and L1. So
L0 and L1 can be chosen in a graphG′ that marginalizes
to G.

Proof.

P(Y |do(X))

chain rule
=

∫
P(Y |L0, Z0,do(X))

dP(L0, Z0|do(X))

(L0,Z0) ⊥⊥ IX
=
6.2

∫
P(Y |L0, Z0,do(X))

dP(L0, Z0)
∫
dP(Z1|L0,Z0)=1

=
Z≤1=Z0∪Z1

∫
P(Y |L0, Z0,do(X))

dP(L0, Z≤1)

Y ⊥⊥ Z1 |L0,Z0,do(X)
=

∫
P(Y |L0, Z≤1,do(X))

dP(L0, Z≤1)

chain rule
=

Z≤1=Z
A
≤1
∪ZB
≤1

∫
P(Y |L0, Z≤1,do(X))

dP(L0|Z≤1) dP(ZA≤1|ZB≤1)
dP(ZB≤1)

ZA
≤1 ⊥⊥ S |ZB

≤1
=

∫
P(Y |L0, Z≤1,do(X))

dP(L0|Z≤1) dP(ZA≤1|S,ZB≤1)
dP(ZB≤1)

L0 ⊥⊥ IX |Z≤1
=
6.2

∫
P(Y |L0, Z≤1,do(X))

dP(L0|Z≤1,do(X))

dP(ZA≤1|S,ZB≤1) dP(ZB≤1)
chain rule

=

∫
P(Y |Z≤1,do(X))

dP(ZA≤1|S,ZB≤1) dP(ZB≤1)



Y ⊥⊥ S |Z≤1,do(X)
=

∫
P(Y |S,Z≤1,do(X))

dP(ZA≤1|S,ZB≤1) dP(ZB≤1)
chain rule

=

∫
P(Y |L1, Z2, S, Z≤1,do(X))

dP(L1, Z2|S,Z≤1,do(X))

dP(ZA≤1|S,ZB≤1) dP(ZB≤1)
Z≤2=Z≤1∪Z2

=

∫
P(Y |L1, S, Z≤2,do(X))

dP(L1, Z2|S,Z≤1,do(X))

dP(ZA≤1|S,ZB≤1) dP(ZB≤1)
(L1,Z2) ⊥⊥ IX |S,Z≤1

=
6.2

∫
P(Y |L1, S, Z≤2,do(X))

dP(L1, Z2|S,Z≤1)
dP(ZA≤1|S,ZB≤1) dP(ZB≤1)

Y ⊥⊥ Z3 |L1,S,Z≤2,do(X)
=∫

P(Z3|L1,S,Z≤2)=1

∫
P(Y |L1, S, Z≤2, Z3,do(X))

dP(L1, Z2, Z3|S,Z≤1)
dP(ZA≤1|S,ZB≤1) dP(ZB≤1)

chain rule
=

Z=Z≤2∪Z3

∫
P(Y |L1, S, Z, do(X))

dP(L1|S,Z)
dP(Z \ ZB≤1|S,ZB≤1) dP(ZB≤1)

L1 ⊥⊥ IX |S,Z
=
6.2

∫
P(Y |L1, S, Z, do(X))

dP(L1|S,Z,do(X))

dP(Z \ ZB≤1|S,ZB≤1) dP(ZB≤1)

chain rule
=

∫
P(Y |S,Z,do(X))

dP(Z \ ZB≤1|S,ZB≤1) dP(ZB≤1)
Y ⊥⊥ IX |X,S,Z

=

∫
P(Y |S,Z,X)

dP(Z \ ZB≤1|S,ZB≤1) dP(ZB≤1).

G IDENTIFYING CAUSAL EFFECTS

Remark G.1 (More remarks about the ID-algorithm).

1. The extended version of the ID algorithm is equiv-
alent to applying the ID algorithm to the acyclifi-
cation G+,acy of G+, which here is meant to be
the conditional ADMG that arises by adding edges
v w′ if v /∈ ScG(w) 3 w′ and v w ∈ G+,
and erasing all edges inside ScG(w), w ∈ V (see
[10]).

2. A consolidated district in G then is the same as a
district in Gacy.

3. Every apt-order ofG is a topological order ofGacy.
4. So identifiability inGacy implies identifiability inG.
5. This leads to the rule of thumb that causal effects

where both cause and effect nodes are inside one
strongly connected component of G are not iden-
tifiable from observational data alone, and, that
the causal effects of sets of nodes between strongly
connected components follow rules similar to the
acyclic case.

6. Similarly, the corner cases for the identification
of conditional causal effects P(Y |R,do(W )) in
G that are not covered by the identification of
P(Y,R|do(W )) in G follow from the (acyclic) con-
ditional ID-algorithm from [36] applied to Gacy

and then translated back to G by the above corre-
spondences.

Lemma G.2. Let M = (G+,X ,PU , g) be an ioSCM
with G+ = (V ∪̇U ∪̇J,E+) and < an apt-order for G+

and G its induced DMG (with nodes V ∪̇J). Let S ⊆ V
be a strongly connected component of G and D ⊆ V be
any union of consolidated districts inG with S ⊆ D (e.g.
D = CdG(S)) and P := PaG(D) \ D. Then we have
the equality (indices for emphasis):

PM (S|PredG<(S) ∩ V,do(J))
= PM[D]

(S|PredG[D]

< (S) ∩D,do(P )).

Proof. First note that since D is a union of strongly con-
nected components and all other variables in G[D] have
no parents the total order < is also an apt-order for G[D].
It follows that we have the equality of sets of nodes:

Pred
G[D]

< (S) ∩D = PredG<(S) ∩D =: D<.

Now we introduce the following further abbreviations:

D> := D \ (S ∪D<),

P< := PredG<(S) ∩ (P ∩ V ),

P> := (P ∩ V ) \ PredG<(S),
PJ := P ∩ J,
J< := PredG<(S) ∩ J,
J> := J \ PredG<(S),
R< := PredG<(S) ∩ V \ (D ∪ P ),
R> := V \ (D ∪ P ∪ PredG<(S)).



Then we get the relations between the sets of nodes:

V = R< ∪̇D ∪̇R> ∪̇P< ∪̇P>
D = D< ∪̇S ∪̇D>,

P = P< ∪̇P> ∪̇PJ ,
PredG<(S) ∩ V = D< ∪̇R< ∪̇P<,

J = J< ∪̇ J>.

Since PredG≤(S) is ancestral in G and Pred
G[D]

≤ (S) is
ancestral in G[D], resp., we can by remark 9.7 arbitrarily
intervene on all variables outside of these sets without
changing the distributions PM (S|PredG<(S)∩V,do(J))
and PM[D]

(S|PredG[D]

< (S) ∩ D,do(P )), resp.. With
these remarks and our new notations we have the equali-
ties:

PM (S|PredG<(S) ∩ V,do(J))
= PM (S|D<, R<, P<,do(J))

9.7
= PM (S|D<, R<, P<,do(J,R>, P>, D>));

and:

PM[D]
(S|PredG[D]

< (S) ∩D,do(P ))
= PM[D]

(S|D<,do(P<, P>, PJ))

9.7
= PM[D]

(S|D<,do(P<, P>, PJ , D>))

9.7
= PM (S|D<,do(P<, P>, J,D>, R<, R>)).

So the equality between those expressions and thus the
claim follows by the 2nd rule of causal calculus in The-
orem 7.2 with the σ-separation statement:

S
σ

⊥⊥
G
IR<,P< |D<, R<, P<,do(J,R>, P>, D>).

To prove the latter note that the intervention
do(R>, P>, D>) allows us to restrict to the ances-
tral subgraph PredG≤(S) ∪ J . Now let π be a path
from an indicator variable from IR<,P< to S (in
PredG≤(S) ∪ J). Then the path can only be of the form:

vi · · · vp vd · · · vs,

with vi ∈ IR<,P< , vp ∈ P<, vd ∈ D, vs ∈ S, as
there cannot be any bidirected edge or directed edge in
the other direction between R< ∪ P< and D by the def-
inition of consolidated districts and P = PaG(D) \ D.
Since we condition on P< the path π is σ-blocked.


