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The jury is still out concerning the epistemic conditions
for backward induction, the “oldest idea in game theory”
([2, p. 635]). Aumann [2] and Stalnaker [31] take contradic-
tory positions in the debate: Aumann claims that common
‘knowledge’ of ‘rationality’ in a game of perfect informa-
tion entails the backward-induction solution; Stalnaker that
it does not.1 Of course there is nothing wrong with any of
their relevant formal proofs, but rather, as pointed out by
Halpern [22], there are differences between their interpre-
tations of the notions of knowledge, belief, strategy and ra-
tionality. Moreover, as pointed out by Binmore [14, 15],
Bonanno [17], Bicchieri [13], Reny [26], Brandenburger
[18] and others, the reasoning underlying the backward in-
duction method seems to give rise to a fundamental para-
dox (the so-called “BI paradox”): in order to even start the
reasoning, a player assumes that (common knowledge, or
some form of common belief in) Rationality holds at all the
last decision nodes (and so the obviously irrational leaves
are eliminated); but then, in the next reasoning step (go-
ing backward along the tree), some of these (last) decision
nodes are eliminated, as being incompatible with (common
belief in) Rationality! Hence, the assumption behind the
previous reasoning step is now undermined: the reasoning
player can now see, that if those decision nodes that are
now declared “irrational” were ever to be reached, then the
only way that this could happen is if (common belief in)
Rationality failed. Hence, she was wrong to assume (com-
mon belief in) Rationality when she was reasoning about
the choices made at those last decision nodes. This whole
line of arguing seems to undermine itself!

In this paper we use as a foundation the relatively stan-
dard and well-understood setting of Conditional Doxastic
Logic (CDL, [16, 5, 7, 6]), and its “dynamic” version (ob-
tained by adding to CDL operators for truthful public an-
nouncements [!ϕ]ψ): the logic PAL-CDL, introduced by
Johan van Benthem [11]. In fact, we consider a slight ex-

1Others agree with Stalnaker in disagreeing with Aumann: for exam-
ple, Samet [29] and Reny [26] also put forwards arguments against Au-
mann’s epistemic characterisation of subgame-perfect equilibrium. Sec-
tion 5 is devoted to a discussion of related literature.

tension of this last setting, namely the logic APAL-CDL,
obtained by further adding dynamic operators for arbitrary
announcements [!]ψ, as in [3]). We use this formalism to
capture a novel notion of “dynamic rationality” and to in-
vestigate its role in decision problems and games. As usual
in these discussions, we take a deterministic stance, assum-
ing that the initial state of the world at the beginning of
the game already fully determines the future play, and thus
the unique outcome, irrespective of the players’ (lack of)
knowledge of future moves. We do not, however, require
that the state of the world determines what would happen,
if that state were not the actual state. That is, we do not
need to postulate the existence of any “objective counter-
factuals”. But instead, we only need “subjective counter-
factuals”: in the initial state, not only the future of the play
is specified, but also the players’ beliefs about each other, as
well as their conditional beliefs, pre-encoding their possible
revisions of belief. The players’ conditional beliefs express
what one may call their “propensities”, or “dispositions”, to
revise their beliefs in particular ways, if given some partic-
ular pieces of new information.

Thus at the outset of a game, all is “done”, including the
future. But all is not necessarily said. In a deterministic
model, as time progresses the only thing that changes are
the pictures of the world in the minds of the players: the in-
formation states of the players. This is “on-line” learning:
while the game is being played, the players learn the played
moves, and so they may change their minds about the situa-
tion. We can simulate this on-line learning (and its effect on
the players’ beliefs) via off-line “public announcements”:
if, before the start of the game, the agents were publicly told
that the game will reach some node u, then they would be
in the same epistemic state as they would have been by (not
having any such public announcement but instead) playing
the game until node u was reached.

So in this paper we stress the importance of the dynam-
ics of beliefs and rationality during a play of an extensive
game, and we use dynamic operators in order to simulate
the play of the game. Since we focus on games of perfect
information, we only need public announcements to simu-
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late the moves of the game. The idea of adding modalities
for public announcements to epistemic logic was introduced
and developed in [24, 20]. Dynamic epistemic logic [4] pro-
vides for much richer dynamic modalities than just public
announcements, capturing the effects of more complex and
more “private” forms of learning. We think these could be
applied to the case of games with imperfect information.
However, for simplicity, we leave these developments for
future work and consider for now only perfect information,
and so only public announcements.

Using the terminology of Brandenburger [18], ours is a
belief-based approach to game theory (in the same category
as the work of Battigalli and Siniscalchi [9, 10]), in con-
trast to the knowledge-based approach of Aumann [2] and
others. This means that we take the players’ beliefs (in-
cluding conditional beliefs) as basic, instead of their knowl-
edge. However, there is a notion of knowledge that naturally
arises in this context: the “irrevocable knowledge”, consist-
ing of the beliefs that are absolutely unrevisable, i.e. be-
lieved under any conditions. This notion of knowledge is
meant to apply only to the players’ “hard information”, ob-
tained by observation or by undoubtable evidence. This
is a much stronger condition than “certain belief” (subjec-
tive probability 1) or even “true belief”, and as a result it
may happen that very few things are “known” in this sense.
One of the things we assume to be irrevocably known is the
structure of the game: the possible outcomes, the players’
preferences etc; also, in a game of perfect information, the
played moves are observed, and thus known, after they are
played; finally, another thing irrevocably known to a player
is her own beliefs: by introspection, she knows what she be-
lieves and what not. Besides this, we do not assume much
else to be known, although our setting is definitely consis-
tent with (common) knowledge of all the players’ beliefs,
their strategies, their rationality etc.

One thing we do not assume as known is the future of the
game: no outcomes that are consistent with the structure
of the game are to be excluded at the outset of the game.
In fact, we make the opposite assumption: that it is com-
mon knowledge that nobody knows the future, i.e. nobody
knows that some outcome will not be reached. This “open
future” assumption seems to contradict common knowledge
of rationality; but in fact, it is consistent with it, if by ratio-
nality we only mean “rational planning”, leaving open the
possibility that players may make mistakes or may change
their minds. The players may certainly believe their ratio-
nal plans will be faithfully carried out, but they have no way
to “know” this in advance. We think of our “open future”
assumption as being a realistic one, and moreover one that
embodies the agents’ “freedom of choice”, as well as the
“possibility of error”, that underly a correct notion of ratio-
nality. An agent’s rationality can be assessed only if she is
given some options to freely choose from. There are cer-

tainly cases in which the future can be known, e.g. when it
is determined by a known natural law. But it is an essen-
tial feature of rational agents that their own choices are not
known to them to be thus determined; or else, they would
have no real choices, and thus no rational choice. Any natu-
ral determinism is assumed to be absorbed in the definition
of the game structure, which does pose absolute limits to
choices. In a sense, this simply makes precise the mean-
ing of our “knowledge” as “hard information”, and makes a
strict delimitation between the past and the future choices,
delimitation necessary to avoid the various paradoxes and
vicious circles that plague the notions of rational decision
and freedom of choice: the agents may have “hard informa-
tion” about the past and the present, but not about their own
future free choices (although they may have “soft” infor-
mation, i.e. “certain” beliefs, with probability 1, about their
future choices).

Our notion of “dynamic” rationality takes into account
the dynamics of beliefs, as well as the dynamics of knowl-
edge. On the one hand, following Stalnaker, Reny, Batti-
galli and Siniscalchi etc. (and in contrast with Aumann), we
assess the rationality of a player’s move at a node against the
beliefs held at the moment when the node is reached. On the
other hand, we incorporate the above-mentioned epistemic
limitation to rationality: the rationality of an agent’s move
only makes sense when that move is not already known
(in an irrevocable manner) to her. Agents cannot be held
responsible for moves that they cannot choose or change
any more. Since the agents’ knowledge increases during a
game of perfect information, their set of available options
decreases: passed options/nodes, or nodes that were by-
passed, cannot be the objects of choice any more. As a re-
sult, our notion of rationality is future-oriented: it only con-
cerns her plans concerning current and future decisions. An
agent can be rational now even if in the past she has made
some “irrational” moves. So in a sense, the meaning of “ra-
tionality” changes in time, synchronous to the change of be-
liefs and the change of (known) set of options. This concept
of rationality, developed on purely a priori grounds, solves
in one move the “BI-paradox”: the first reasoning step in
the backward-induction argument (dealing with the last de-
cision nodes of the game) is not undermined by the result of
the second reasoning step, since the notion of “Rationality”
assumed in the first step is not the same as the “Rationality”
disproved in the second step! The second step only shows
that some counterfactual nodes cannot be reached by ratio-
nal play, and thus it implies that some agent must have been
irrational (or must have had some doubts about the others’
rationality, or must have made some “mistake”) before such
an “irrational” node was reached; but this doesn’t contradict
in any way the assumption that the agents will be rational at
that node (and further in the future).

Since dynamic rationality is only about rational plan-

2
59



ning, we need to strengthen it in order to capture rational
playing of the game. We do this by adding to dynamic
rationality a condition requiring that players actually play
in accordance with their beliefs. The resulting condition is
called “rational play”.

Dynamics cannot really be understood without its correl-
ative: invariance under change. Certain truths, or beliefs,
stay true when everything else changes. We have already
encountered an “absolute” form of invariance: “irrevocable
knowledge”, i.e. belief that is invariant under any possible
information change. Now, we need a second, weaker form
of invariance: “stability”. A truth, or a belief, is stable if it
remains true, or continues to be believed, after any (joint)
learning of “hard” information (via some truthful public
announcement). In fact, in the case of an “ontic” (non-
doxastic) fact p, Stalnaker’s favourite notion of “knowl-
edge” of p [31, 33] (a modal formalisation of Lehrer and
Klein’s “defeasibility theory of knowledge”), also called
“safe belief” in [7], corresponds precisely to stable belief
in p. Stability can be or not a property of a belief or a com-
mon belief: a proposition P is a “stable (common) belief”
if the fact that P is (common) belief is a stable truth, i.e. P
continues to be (common) belief after any (joint) learning
of “hard” information.

We can now give an informal statement of the main the-
orem of this paper:

Common knowledge of the game structure, of
“open future” and of stable (common2) belief in
rational play entails common belief in the back-
ward induction outcome.

Overview of the Paper To formalise stability and “stable
common belief”, we introduce in the next section Condi-
tional Doxastic Logic CDL and its dynamic version APAL-
CDL. Section 2 recalls the definition of extensive games
and shows how to build models of those games in which
the structure of the game is common knowledge, in our
strong sense of “knowledge”. In Section 3 we define “ra-
tionality” and “rational play”, starting from more general
decision-theoretic considerations, and arriving at a defini-
tion of dynamic rationality in extensive (aka “dynamic”)
games, which is in some sense a special case of the more
general notion. Section 4 gives a formal statement of our
main results. Section 5 discusses connections between our
work and some existing literature on the epistemic founda-
tions of backward induction.

2Adding the word “common” to this condition doesn’t make a differ-
ence: common knowledge that everybody has a stable belief in P is the
same as common knowledge of common safe belief in P .

1 Conditional Doxastic Logic

CDL models, also called “plausibility models” are es-
sentially the “belief revision structures” in Board [16], sim-
plified by incorporating structurally the assumption of Full
Introspection of Beliefs (which allows us to use binary plau-
sibility relations on worlds for each agent, instead of ternary
relations). But since we will also want to talk about the ac-
tual change under the effects of actions, like moves in a
game, rather than just the static notion that is in effect cap-
tured by Board’s models, we will enrich the language of
CDL with model-changing dynamic operators for “public
announcements”, in the spirit of Dynamic Epistemic Logic
(cf. [4, 11, 12]).

The models are “possible worlds” models, where the
worlds will usually be called states. Grove [21] showed
that the AGM postulates [1] for rational belief change are
equivalent to the existence of a suitable pre-order over the
state space.3 The intended interpretation of the pre-order≤i

of some agent i is the following: s ≤i t means that, in the
event {s, t}, i considers s at least as plausible as t.

In interactive situations, where there are several players,
each player i has a doxastic pre-order ≤i. In addition to
having different beliefs, any two players might have dif-
ferent knowledge. We follow the mainstream in game the-
ory since Aumann and model interactive knowledge using
a partitional structure. However, as in Board [16], we will
derive i’s partition from i’s pre-order ≤i. Let us be more
precise: fix a set S and a relation ≤i⊆ S × S; then we de-
fine the comparability class of s ∈ S for ≤i to be the set
[s]i = {t ∈ S | s ≤i t or t ≤i s} of states ≤i-comparable
to s. Now we want the set of comparability classes to form
a partition of S, so we will define a plausibility frame to
be a sequence (S,≤i)i∈N in which S is a non-empty set
of states, and each ≤i a pre-order on S such that for each
s ∈ S, the restriction of ≤i to [s]i is a “complete” (i.e. “to-
tal” or “connected”) preorder.

Fact 1.1 In any plausibility frame, {[s]i | s ∈ S} forms
a partition of S. We will interpret this as the information
partition for player i (in the sense of “hard” information, to
be explained below).

So we can define player i’s knowledge operator in the
standard way, putting for any “proposition” P ⊆ S:

KiP := {s ∈ S | [s]i ⊆ P}

As explained below, this captures a notion of indefeasible,
absolutely unrevisable knowledge. But we also want a no-
tion of belief B, describing “soft” information, which might

3A pre-order is any reflexive transitive relation. In Grove’s representa-
tion theorem the pre-order must also be total and converse-well-founded.
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be subject to revision. So we want conditional belief oper-
ators BP , in order to capture the revised beliefs given some
new information P . If S is finite, let min≤i(P ) denote the
≤i-minimal P elements {s ∈ P | ∀t ∈ P, s ≤i t}. So
min≤i(P ) denotes the set of states which i considers most
plausible given P . Then min≤i(P ∩ [s]i) denotes the set
of that states which i considers most plausible given both
P and i’s knowledge at state s. Thus we define player i’s
conditional belief operator as:

BQ
i P := {s ∈ S | min≤i(Q ∩ [s]i) ⊆ P}.

There is a standard way to extend this definition to total pre-
orders on infinite sets of states, but we skip here the details,
since we are mainly concerned with finite models. BQ

i P is
the event that agent i believes P conditional on Q. Condi-
tional belief should be read carefully: BQ

i P does not mean
that after learning that Q, i will believe P ; rather it means
that after learning Q, i will believe that P was the case be-
fore the learning. This is a subtle but important point: the
conditional belief operators do not directly capture the dy-
namics of belief, but rather as van Benthem [11] puts it,
they ‘pre-encode’ it. We refer to [11, 7] for more discus-
sion. The usual notion of (non-conditional) belief can be
defined as a special case of this, by putting BiP := BS

i P .
The notions of common knowledge CkP and common be-
lief CbP are defined in the usual way: first, one introduces
general knowledge EkP :=

⋂
i KiP and general belief

EbP :=
⋂

i BiP , then one can define CkP :=
⋂

n(Ek)nP
and CbP :=

⋂
n(Eb)nP .

It will be useful to associate with the states S some
non-epistemic content; for this we use a valuation function.
Assume given some finite set Φ of symbols, called basic
(or atomic) sentences, and meant to describe ontic (non-
epistemic, non-doxastic) “facts” about the (current state of
the) world. A valuation on Φ is a function V that associates
with each p ∈ Φ a set V (p) ⊆ S: V specifies at which states
p is true. A plausibility model for (a given set of atomic sen-
tences) Φ is a plausibility frame equipped with a valuation
on Φ.

Interpretation: ‘hard’ and ‘soft’ information Informa-
tion can come in different flavours. An essential distinction,
due to van Benthem [11], is between ‘hard’ and ‘soft’ in-
formation. Hard information is absolutely “indefeasible”,
i.e. unrevisable. Once acquired, a piece of ‘hard’ informa-
tion forms the basis of the strongest possible kind of knowl-
edge, one which might be called irrevocable knowledge and
is denoted about by Ki. For instance, the principle of Intro-
spection of Beliefs states that (introspective) agents possess
‘hard’ information about their own beliefs: they know, in
an absolute, irrevocable sense, what they believe and what
not. Soft information, on the other hand, may in principle
be defeated (even if it happens to be correct). An agent

usually possesses only soft information about other agents’
beliefs or states of mind: she may have beliefs about the oth-
ers’ states of mind, she may even be said to have a kind of
‘knowledge’ of them, but this ‘knowledge’ is defeasible: in
principle, it could be revised, for instance if the agent were
given more information, or if she receives misinformation.

For a more relevant, game-theoretic example, consider
extensive games of perfect information: in this context, it
is typically assumed (although usually only in an implicit
manner) that, at any given moment, both the structure of
the game and the players’ past moves are ‘hard’ informa-
tion; e.g. once a move is played, all players know, in an
absolute, irrevocable sense, that it was played. Moreover,
past moves (as well as the structure of the game) are com-
mon knowledge (in the same absolute sense of knowledge).
In contrast, a player’s ‘knowledge’ of other players’ ratio-
nality, and even a player’s ‘knowledge’ of her own future
move at some node that is not yet reached, are not of the
same degree of certainty: in principle, they might have to be
revised; for instance, the player might make a mistake, and
fail to play according to her plan; or the others might in fact
play “irrationally”, forcing her to revise her ‘knowledge’
of their rationality. So this kind of defeasible knowledge
should better be called ‘belief’, and is based on players’
“soft” information.4

In the ‘static’ setting of plausibility models given above,
soft information is captured by the “belief” operator Bi. As
already mentioned, this is defeasible, i.e. revisable, the re-
vised beliefs after receiving some new information ϕ being
pre-encoded in the conditional operator Bϕ

i . Hard informa-
tion is captured by the “knowledge” operator Ki; indeed,
this is an absolutely unrevisable form of belief, one which
can never be defeated, and whose negation can never be
accepted as truthful information. This is witnessed by the
following valid identities:

KiP =
⋂

Q⊆S

BQ
i P = B¬P

i ∅.

Special Case: Conditional Probabilistic Systems If, for
each player i, we are given a conditional probabilistic sys-
tem a la Renyi [27] over a common set of states S (or if al-
ternatively we are given a lexicographic probability system
in the sense of Blume et al), we can define subjective con-
ditional probabilities Probi(P |Q) for events of zero prob-
ability. When S is finite and the system is discrete (i.e.,
Prob(P |Q) is defined for all non-empty events Q), we can
use this to define conditional belief operators for arbitrary
events, by putting BQ

i P := {s ∈ S : Probi(P |Q) = 1}.
4By looking at the above probabilistic interpretation, one can see that

the fact that an event or proposition has (subjective) probability 1 cor-
responds only to the agent having “soft” information (i.e. believing the
event). “Hard” information corresponds to the proposition being true in all
the states in the agent’s information cell.
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It is easy to see that these are special cases of finite plausi-
bility frames, by putting: s ≤i t iff Probi({s}|{s, t}) "= 0.
Moreover, the notion of conditional belief defined in terms
of the plausibility relation is the same as the one defined
probabilistically as above.

Dynamics and Information: ‘hard’ public announce-
ments Dynamic epistemic logic is concerned with the
“origins” of hard and soft information: the “epistemic ac-
tions” that can appropriately inform an agent. In this pa-
per, we will focus on the simplest case of hard-information-
producing actions: public announcements. These actions
model the simultaneous joint learning of some ‘hard’ piece
of information by a group of agents; this type of learning
event is perfectly “transparent” to everybody: there is noth-
ing hidden, private or doubtful about it. But dynamic epis-
temic logic [4] also deals with other, more complex, less
transparent and more private, forms of learning and com-
munication.

Given a plausibility model M = (S,≤i, V )i∈N and a
“proposition” P ⊆ S, the updated model M ! P produced
by a public announcement of P is given by conditionalisa-
tion: (P,≤i! P, V ! P ), where ≤! P is the restriction of
≤ to P and (V ! P )(p) = V (p) ∩ P . Notice that public
announcements can change the knowledge and the beliefs
of the players. So far we have, for readability, been writ-
ing events without explicitly writing the frame or model in
question. However, since we are now talking about model-
changing operations it is useful to be more precise; for this
we will adopt a modal logical notation.

APAL-CDL: Language and Semantics Our language
APAL − CDL is built recursively, in the usual manner,
from atomic sentences in Φ, using the Boolean connectives
¬ϕ, ϕ∧ψ, ϕ∨ψ and ϕ ⇒ ψ, the epistemic operators Kiϕ,
Bϕ

i ψ, Ckϕ and Cbϕ and the dynamic modalities [!ϕ]ψ and
[!]ϕ. (The language CDL of conditional doxastic logic con-
sists only of the formulas of APAL − CDL that can be
formed without using the dynamic modalities.)

For any formula ϕ of this language, we write !ϕ"M for
the interpretation of ϕ, the event denoted by ϕ, in M. We
write Mϕ for the updated model M ! !ϕ"M after the pub-
lic announcement of ϕ. The interpretation map is defined
recursively: !p"M = V (p); Boolean operators behave as
expected; and the definitions given above of the epistemic
operators in terms of events give the interpretation of epis-
temic formulae. Then the interpretation of the dynamic
formulae, which include public announcement modalities
[!ϕ]ψ, goes as follows:

![!ϕ]ψ"M = {s ∈ S | s ∈ !ϕ"M ⇒ s ∈ !ψ"Mϕ}

Thus [!ϕ]ψ means that after any true public announcement
of ϕ, ψ holds. The arbitrary (public) announcement modal-

ity [!]ϕ is to be read: after every (public) announcement, ϕ
holds. Intuitively, this means ϕ is a “stable” truth: not only
it is true, but it continues to stay true when any new (true)
information is (jointly) learned (by all the players). There
are some subtleties here: do we require that the new in-
formation/announcement be expressible in the language for
example? This is the option taken in [3], where the possible
announcements are restricted to epistemic formulas, and a
complete axiomatisation is given for this logic. In the con-
text of finite models (as the ones considered here), this defi-
nition is actually equivalent to allowing all formulas of our
language L as announcements. As a result, we can safely
use the following apparently circular definition:

![!]ϕ"M = {s ∈ S | ∀ψ ∈ L s ∈ ![!ψ]ϕ"M}

Dynamic epistemic logic captures the “true” dynamics
of (higher-level) beliefs after some learning event: in the
case of public announcements, the beliefs of an agent i af-
ter a joint simultaneous learning of a sentence ϕ are fully
expressed by the operator [!ϕ]Bi, obtained by composing
the dynamic and doxastic operators. Note that this is not
the same as the conditional operator Bϕ

i , but the two are
related via the following “Reduction Law”, introduced in
[11]:

[!ϕ]Biψ ⇔ (ϕ ⇒ Bψ
i [!ϕ]ψ).

This is the precise sense in which the conditional belief op-
erators are said to “pre-encode” the dynamics of belief.

Special Case: Bayesian Conditioning In the case of a
conditional probability structure, the update M ! P by a
public announcement !P corresponds to Bayesian update
(conditionalisation): the state space is reduced to the event
P , and the updated probabilities are given by Prob′i(Q) :=
Probi(Q|P ). So a dynamic modality [!P ]Q corresponds to
the event that, after conditionalising with P , event Q holds.
Similarly, the arbitrary announcement modality [!]P is the
event that P stably holds, i.e. it holds after conditionalising
with any true event.

2 Models and languages for games

The notion of extensive game with perfect information
is defined as usual (cf. [23]): Let N be a set of ‘players’,
and G be a finite tree of ‘decision nodes’, with terminal
nodes (leaves) O (denoting “possible outcomes”), such that
at each non-terminal node v ∈ G − O, some player i ∈ N
is the decision-maker at v. We write Gi ⊆ G for the set
of nodes at which i is the decision-maker. Add to this a
payoff function hi for each player i, mapping all the leaves
o ∈ O into real numbers, and you have an extensive game.
We write ‘G’ to refer both to the game and to the corre-
sponding set of nodes. We also write u → v to mean that
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v is an immediate successor of u, and u ! v to mean that
there is a path from u to v. A subgame of a game G is any
game G′, having a subset G′ ⊆ G as the set of nodes and
having the immediate successor relation→′, the set of deci-
sion nodes G′

i and the payoff function h′
i (for each player i)

being given by restrictions to G′ of the corresponding com-
ponents of the game G (e.g. G′

i = Gi ∩G′ etc). For v ∈ G,
we write Gv for the subgame of G in which v is the root.
A strategy σi for player i in the game G is defined as usu-
ally as a function from Gi to G such that v → σi(v) holds
for all v ∈ Gi. Similarly, the notions of strategy profile, of
the (unique) outcome determined by a strategy profile and
of subgame-perfect equilibrium are defined in the standard
way. Finally, we define as usually a backward induction
outcome to be any outcome o ∈ O determined by some
subgame-perfect equilibrium. We denote by BIG the set of
all backward-induction outcomes of the game G.

Consider as an example the “centipede” game G
(cf. [14]) given in Figure 1. This is a two-player game for a
(Alice) and b (Bob).

!"#$%&'(v0 : a !!

""

!"#$%&'(v1 : b !!

""

!"#$%&'(v2 : a !!

""

)*+,-./0o4 : 4, 5

)*+,-./0o1 : 3, 0 )*+,-./0o2 : 2, 3 )*+,-./0o3 : 5, 2

Figure 1. The “centipede” game G

Here, we represent the nodes of the game by circles and
the possible moves by arrows. In each circle we write first
the name of the node that the circle represents; then, if
the node is non-terminal, we write the name of the player
who decides the move at that node; while in the termi-
nal nodes (outcomes) o1, o2, o3, o4, we write the payoffs as
pairs (pa, pb), with pa being Alice’s payoff, and pb Bob’s.
Note that in this game there is one backward induction out-
come, o1, and furthermore that the unique backward induc-
tion strategy profile assigns to each vm the successor om+1.

Language for Games For any given game G, we define a
set of basic (atomic) sentences ΦG from which to build a
language. First, we require ΦG to contain a sentence for
each leaf: for every o ∈ O, there is a basic sentence o. For
simplicity, we often just write o, instead of o. In addition
ΦG contains sentences to express the players’ preferences
over leaves: for each i ∈ N and {o, o′} ⊆ O, ΦG has a
basic sentence o ≺i o′. Our formal language for games
G is simply the language APAL − CDL defined above,
where the set of atomic sentences is the set ΦG. To talk
about the non-terminal nodes, we introduce the following

abbreviation:
v :=

∨

v!o

o ,

for any v ∈ G − O. As for terminal nodes, we will often
denote this sentence by v for simplicity, instead of v.
Plausibility Models for Games We now turn to defining
game models. A plausibility model for game G is just a
plausibility model (S,≤i, V )i∈N for the set ΦG. We inter-
pret every state s ∈ S as an initial state in a possible play
of the game. Intuitively, the sentence o is true at a state s if
outcome o will be reached during the play that starts at s;
and the sentence o ≺i o′ says that player i’s payoff at o is
strictly smaller than her payoff at o′.

Observe that nothing in our definition of models for G
guarantees that states come with a unique outcome or that
the players know the set of outcomes! To ensure this (and
other desirable constraints), we later focus on a special class
of plausibility models for a game, called “game models”.

Examples Figures 2 and 3 represent two different plausibil-
ity modelsM1 andM2 for the centipede game G. Here, we
use labelled arrows for the converse plausibility relations
≥a (going from less plausible to more plausible states), but
for convenience we skip all the loops.12 3456 78o3

a,b

##!
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a,b
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Figure 2. A game modelM1 for the centipede
game G
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Figure 3. A plausibility model M2 for G,
which is not a game model

Note that in the model M2, Alice (player a) knows the
state of the world: in each state, she knows both the out-
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come and Bob’s beliefs (and belief revision policy), i.e. the
sentence

∧
o∈O(o ⇒ Kao) holds at all states of M2. But

this is not true in model M1: on the contrary, in M1 (it is
common knowledge that) nobody knows the outcome of the
game, and moreover nobody can exclude any outcome. In-
tuitively, the future is “epistemically open” in M1, but not in
M2. However, we can also intuitively see that, in both mod-
els, (it is common knowledge that) all the players know the
(structure of the) game: the available outcomes, the struc-
ture of the tree, the payoffs etc.

We now want to formalise our intuitions about open fu-
ture and about having common knowledge of the structure
of the game. To do this, we will focus on a special class
of models, that we call “game models”. Intuitively, each
state of a game model comes with a complete play of the
game, and hence it should have a uniquely determined out-
come, and the set of possible outcomes as well as the play-
ers’ preferences over them should be common knowledge.
However, the players in this (initial) state should not have
non-trivial knowledge about the outcome of the play. In-
deed, they should have “freedom of choice” during the play,
which means they can in principle play any move, so that at
the outset of the play they cannot exclude a priori any out-
comes.

Game Models The class of game models for G, denoted
by MG, as the class of all plausibility model for G satisfy-
ing the following conditions (for all players i ∈ N ):

1. ∀s ∈ S ∃!o ∈ O : s ∈ V (o)

2. V (o ≺i o′) =
{

S if hi(o) < hi(o′)
∅ otherwise

3. ∀s ∈ S ∀o ∈ O : V (o) ∩ [s]i (= ∅

The first condition entails that there is common knowledge
of the set of possible outcomes, as well as of the fact that
each state is associated a unique actual outcome. This re-
flects the fact that the future, for each particular play (state),
is determined. The second condition entails that the pref-
erences over outcomes are commonly known. Finally, the
third condition says that (it is common knowledge that) the
future is epistemically open: in the initial state of any play,
no player has “knowledge” (in the strong sense of “irrevoca-
ble”, absolutely unrevisable knowledge) that any outcome is
impossible. This is meant to apply even to the states that are
incompatible with that player’s plan of action.

Open Future We take condition (3) to embody the play-
ers’ freedom of choice, as well as the possibility of error: in
principle, players might always change their minds or make
mistakes, hence any belief excluding some of the outcomes
may have to be revised later. Even if we would assume (as

usually is assumed) that players (irrevocably) know their
own strategy, i.e. even if they are not allowed to change their
minds, and even if we assume (as postulated by Aumann)
that they have common knowledge of “rationality” (and so
that they can exclude some obviously irrational choices), it
still would not follow that they can completely exclude any
outcome: mistakes can always happen, or players may al-
ways lose their rationality and become temporarily insane;
so a rational plan does not necessarily imply a rational play,
and hence the future still remains open.

Condition (3) is natural given our interpretation of the
“knowledge” operator K as representing hard information,
that is absolutely certain and irrevocable. If any node is
“known” (in this sense) to be unreachable, then that node
should simply be deleted from the game tree: this just cor-
responds to playing a different game. So if a player i would
irrevocably know that a node is unreachable, then the struc-
ture of the game is not “really” common knowledge: i
would in fact know that she is playing another game than
G. Thus, one can consider the “open future” postulate as
a natural strengthening of the “common knowledge of the
game” assumption.

A different way to proceed would be to impose the above
conditions only locally, at the “real” (initial) state of the
play. Let StructG be the following sentence, describing the
“structure of the game” G:

∨

o∈O
o ∧

∧

o#=o′∈O
¬(o ∧ o′)∧

∧

i∈N,o,o′∈O
s.t. hi(o)<hi(o′)

o ≺i o′ ∧
∧

i∈N,o,o′∈O
s.t. hi(o)≥hi(o′)

¬o ≺i o′

Similarly, let FG :=
∧

o∈O,i∈N ¬Ki¬o be the sentence
saying that at the outset of game G the future is epistemi-
cally open. Then our proposed “local” requirement is that in
the initial state s we have “common knowledge of the struc-
ture of the game and of open future”, i.e. s satisfies the sen-
tence Ck(StructG∧FG). Then it is easy to see that this “lo-
cal” requirement is equivalent to the above global require-
ment of having a “game model”: for every state s in any
plausibility model M for G, s satisfies Ck(StructG ∧ FG)
iff it is bisimilar5 to a state in some game modelM′ ∈ MG .
Examples Note that the modelM1 from Figure 2 is a game
model, whileM2 from Figure 3 is not: indeed, inM2 it is
common knowledge that Alice always knows the outcome,
which contradicts the “Open future” assumption.

Encoding Strategies as Conditional Beliefs If a player
adopts a particular (pure) strategy, our language can encode

5Here, “bisimilarity” is the standard notion used in modal logic, applied
to plausibility models viewed as Kripke models with atomic sentences in Φ
and with relations≤i. The important point is that our language APAL−
CDL cannot distinguish between bisimilar models and states.
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this in terms of the player’s conditional beliefs about what
she would do at each of her decision nodes. For instance,
we say that Alice “adopts the backward induction strategy”
in a given state s of a model for the Centipede Game in
Figure 1 iff the sentences Bao1 and Bv2

a o3 hold at state s.
Similarly, we can express the fact that Bob adopts a partic-
ular strategy, and by putting these together we can capture
strategy profiles. A given profile is realized in a model if the
correspondent sentence is true at a state of that model.

Note that, in our setting, nothing forces the players to
adopt (pure) strategies. Strategies are “complete” plans of
action prescribing a unique choice (a belief that a partic-
ular move will be played) for each decision node of the
player. But the players might simply consider all their op-
tions as equi-plausible, which essentially means that they
do not have a strategy.
Examples In (any state of) modelM1 from Figure 2 it is
common knowledge that both players adopt their backward
induction strategies. In contrast, in the modelM3 from Fig-
ure 4, it is common knowledge that no player has a strategy
(at any node): !" #$%& '(o3

!!

a,b

""!
!!

!!
!!

!!
!!

!!
!!

!##

a,b

$$
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&&""
""

""
""

""
""

""
""
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!" #$%& '(o1
!" #$%& '(o2''

a,b
((

Figure 4. A game modelM3 in which players
don’t have strategies

So the assumption that players have (pure) “strategies”
is an extremely strong assumption, which we will not need.
There is no a priori reason to assume (and there are good
empirical reasons to reject) that players play according to
fully-determined strategies. Our models are general enough
to dispense with this assumption; indeed, our work shows
that this assumption is not needed for proving (common be-
lief) that the backward induction strategy is played.
Intentions as Beliefs In the above discussion, we identified
an agent’s intentions with her beliefs about what she is go-
ing to do, and so we represented the decision maker’s plan
of action as a belief about her (future) action. This iden-
tification is philosophically debatable, since agents may be
aware of the possibility of mistakes, and so they may doubt
that their intentions will be realized. But one can also ar-
gue that, in the context of Game Theory, such distinctions
will be of very limited significance: indeed, an intention
that is not believed to be enforceable is irrelevant for strate-

gic planning (though see [28] for a discussion of intentions
in game theory). The players only need to know each oth-
ers’ beliefs about their future actions and about each oth-
ers’ beliefs etc., in order to make their own rational plans;
whether or not they are being informed about each others’
(completely unenforceable and not believed to be enforce-
able) “intentions” will not make any difference. So, for the
purposes of this paper, we can safely adopt the simplifying
assumption that the agents believe that they will be able to
carry out their plans. Given this assumption, an agent’s “in-
tentions” can be captured by her beliefs about her (future)
actions.

Representing Players’ Evolving Beliefs Recall that we
think of every state of a game model MG ∈ MG as an
initial state (of a possible play) of the game G. As the
play goes on, the players’ hard and soft information, their
knowledge and beliefs, evolve. To represent this evolution,
we will need to successively change our model, so that
e.g. when a node v is reached, we want to obtain a cor-
responding model of the subgame Gv . That is precisely,
in this perfect information setting, what is achieved by up-
dating the model with public announcements: indeed, in a
game of perfect information, every move, say from a node
u to one of its immediate successors u′, can be “simulated”
by a public announcement !u′. In this way, for each sub-
game Gv of the original modelM, we obtain a modelMv ,
that correctly describes the players’ knowledge and beliefs
at the moment when node v is reached during a play. This
is indeed a model of the corresponding subgame Gv:

Proposition 2.1 IfM ∈ MG thenMv ∈ MGv .

Example Consider a play of the Centipede game G that
starts in the initial situation described by the modelM1 in
Figure 2, and in which the real state of the world is the one
having outcome o2: so Alice first plays “right”, reaching
node v1, and the Bob plays “down”, reaching the outcome
o2. The modelM1 from Figure 2 gives us the initial situ-
ation, the modelMv1

1 in Figure 5 describes the epistemic
situation after the first move, and then the modelMo2

1 in
Figure 6 gives the epistemic situation at the end of the play:

In this way, for each given initial state s (of a given play
v0, v1, . . . , o of the game, where o is the unique outcome
such that s ∈ V (o)), we obtain a sequence of evolving game
models

M =Mv0 ,Mv1 , . . . ,Mo ,

describing the evolving knowledge and beliefs of the play-
ers during any play. Each modelMv accurately captures
the players’ beliefs at the moment when node v is reached.
Note also that every such sequence ends with a modelMo

consisting of only one node (a leaf o); this reflects the fact
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Figure 5. The model Mv1
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Figure 6. The model Mo2
1

that at the end of the game, there is no uncertainty left: the
outcome, as well as the whole history of the game, are now
common knowledge.
Simulating Moves by Public Announcements Using the
dynamic “public announcement” modalities in constructs
such as [!v]Bi, we can talk, at the initial state s ∈ M and
without leaving the original model M ∈ MG, about all
these future, evolving beliefs of the players at nodes v other
than the initial node v0. Indeed, in a game of perfect infor-
mation, all the moves are public. So the epistemic effect of
a move to node v is the same as that of a truthful public an-
nouncement !v (saying that the node v is reached during the
play). In other words, we can “simulate” moves in games
of perfect information by truthful public announcements.6

3 Rationality in Decisions and Games

We now define our fundamental notions of dynamic ra-
tionality and rational play. First we will look at single-
agent (one-step) decision situations, and then at interactive
decision situations, i.e. games.

3.1 Single Agent Decision Problems

Given a one-step decision problem P with a set of out-
comes O, the decision-maker i selects one of the outcomes
o ∈ O. The decision-maker may have various hard and
soft information about which outcomes can actually be re-
alized and which not. This will determine her knowledge
and her beliefs. We assume that her “hard” knowledge re-
stricts her possible choices: she can only select outcomes
that she doesn’t know to be impossible.

6We believe that the more general case, of games of imperfect infor-
mation, can also be handled by using other kinds of epistemic actions pro-
posed in Dynamic Epistemic Logic [4]. But we leave this development for
future work.

What this amounts to is the following: for the decision
maker i, the “true” set of possible outcomes is {o ∈ O |
¬Ki¬o}, i.e. the set of all the “epistemically possible” out-
comes. So her selected option must satisfy: o ∈ {o ∈ O |
¬Ki¬o}. This allows us to capture the “selection” problem
using epistemic operators.

To assess whether the decision is “rational” or not,
one considers the decision-maker’s subjective preferences,
modelled as a total preorder !i on O. We assume that
agents know their preferences; indeed, these are interpreted
as “doxastic” preferences: beliefs about what’s best. Given
this interpretation, the CDL postulation of Full Introspec-
tion (of beliefs) implies that agents know their preferences.
Rational Choice Rationality, in this case, corresponds to re-
quiring that the selected option is not worse than any other
(epistemically) possible alternative. In other words, i’s so-
lution of the decision problem P is rational if she does not
choose any option that is strictly less preferable than an op-
tion she doesn’t know to be impossible:

RPi :=
∧

o,o′∈O
(o ≺i o′ ∧ ¬Ki¬o′ ⇒ ¬o).

The main difference between our definition and the standard
definition of rational decision-making is the epistemic lim-
itation of the choice set. The epistemic operators are used
here to delimit what is currently known about the availabil-
ity of options: i’s choice should only be compared against
options that are not known to be unavailable. This is an
important difference, and its importance will become clear
when we generalise our definition to extensive games.

3.2 Extensive Games

We now aim to extend the above definitions to the case
of multi-agent many-stage decisions, i.e. “extensive games”
(of perfect information). Recall that in an extensive game
we are given the players’ subjective preferences !i only
over the leaves. However, at all the intermediate stages
of the game, players have to make local choices, not be-
tween “final” outcomes, but between “intermediary” out-
comes, that is: between other nodes of the game tree.

So, in order to assess players’ rationality, we need to ex-
tend the subjective preference relations to all the nodes of
the game tree. Fortunately, given the above doxastic inter-
pretation of preferences, there is an obvious (and natural)
way to define these extensions. Namely, a player considers
a node u to be strictly less preferable to a node u′ if she be-
lieves the first to be strictly dominated by the second. More
precisely, if every outcome that she believes to be achiev-
able given that u is reached is worse than every outcome
that she believes to be achievable given that u′ is reached:

u ≺i u′ :=
∧

o,o′∈O
(¬Bu

i ¬o ∧ ¬Bu′

i ¬o′ ⇒ o ≺i o′).
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By the Full Introspection of beliefs (a postulate of the logic
CDL), it follows that we still have that players know their
extended preferences over all the nodes of the game.
Rationality at a Node Each node v ∈ Gi can be consid-
ered as a (distinct) decision problem, in which the decision-
maker is i, the set of outcomes is the set {u ∈ G : v → u}
of all immediate successors of v, and the subjective pref-
erence relation is given by the (restriction of the) extended
relation ≺i defined above (to the set {u ∈ G : v → u}). So
we can define the rationality of a player i at a node v ∈ Gi

as rationality for the corresponding decision problem, i.e.
the player’s selection at each decision node consists only of
“best answers”. Note that, as before, the player’s choice is
epistemically limited: if she has “hard knowledge” exclud-
ing some successors (for instance, because those nodes have
already been bypassed), then those successors are excluded
from the set of possible options. The only difference is that
the “knowledge” involved is the one the agent would have at
that decision node, i.e. it is conditional on that node being
reached. Formally, we obtain:

Rv
i :=

∧

u,u′←v

(u ≺i u′ ∧ ¬Kv
i ¬u′ ⇒ ¬u)

where Kϕ
i ψ := Ki(ϕ⇒ ψ).

Dynamic Rationality Let Ri be the sentence

Ri =
∧

v∈Gi

Rv
i .

If Ri is true, we say that player i satisfies dynamic ratio-
nality. By unfolding the definition, we see it is equivalent
to:

Ri =
∧

v∈Gi

∧

u,u′←iv

(u ≺i u′ ∧ ¬Kv
i ¬u′ ⇒ ¬u).

As we’ll see, asserting this sentence at a given moment is a
way of saying that the player will play rationally from that
moment onwards, i.e. she will make the best move at any
current or future decision node.

In the following, “Dynamic Rationality” denotes the sen-
tence

R :=
∧

i

Ri

saying that all players are dynamically rational.

Comparison with Substantive Rationality To compare
our notion with Aumann’s concept of “substantive rational-
ity”, we have to first adapt Aumann’s definition to a belief-
revision context. This has already been done by a number
of authors e.g. Battigalli and Siniscalchi [9, 10], resulting in
a definition of “rationality at a node” that differs from ours
only by the absence of epistemic qualifications to the set of
available options (i.e. the absence of the term ¬Kv

i ¬u′).

The notion of substantive rationality is then obtained from
this in the same way as dynamic rationality, by quantify-
ing over all nodes, and it is thus equivalent to the following
definition:

SRi =
∧

v∈Gi

∧

u,u′←iv

(u ≺i u′ ⇒ ¬u).

It is obvious that substantive rationality implies dynamic
rationality

SRI ⇒ Ri,

but the converse is in general false. To better see the dif-
ference between SRi and Ri, recall that a formula being
true in a model M ∈ MG means that it is true at the first
node (the root) of the game tree G. However, we will later
have to evaluate the formulas Ri and SRi at other nodes w,
i.e. in other models of the form Mw (models for subgames
Gw). Since the players’ knowledge and beliefs evolve dur-
ing the game, what is (not) known/believed conditional on
v in model Mw differs from was (not) known/believed con-
ditional on v in the original model (i.e. at the outset of the
game). In other words, the meaning of both dynamic ratio-
nality Ri and substantive rationality SRi will change during
a play. But they change in different ways. At the initial
node v0, the two notions are equivalent. But, once a node
v has been bypassed, or once the move at v has already
been played by a player i, that player is counted as rational
at node v according to our definition, while according to
the usual (non-epistemically qualified) definition the player
may have been irrational at v.

In other words, the epistemic limitations we imposed on
our concept of dynamic rationality make it into a future-
oriented concept. At any given moment, the rationality of a
player depends only on her current beliefs and knowledge,
and so only on the options that she currently considers pos-
sible: past, or by-passed, options are irrelevant. Dynamic
Rationality simply expresses the fact that the player’s de-
cision in any future contingencies is rational (given her fu-
ture options and beliefs). Unlike substantive rationality, our
concept has nothing to do with the past or with contingen-
cies that are known to be impossible: a player i may still
be “rational” in our sense at a given moment/node v even
when v could only have been reached if i has already made
some “irrational” move. The (knowledge of some) past mis-
take(s) may of course affect the others’ beliefs about this
player’s rationality; but it doesn’t directly affect her ratio-
nality, and in particular it doesn’t automatically render her
irrational.

Solving the BI Paradox As explained above, our concept
is very different from (and, arguably, more realistic than)
Aumann’s and Stalnaker’s substantive rationality, but also
from other similar concepts in the literature (for exam-
ple Rabinowicz’s [25] “habitual” or “resilient” rationality,
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etc). The difference becomes more apparent if we consider
the assumption that “rationality” is common belief, in the
strongest possible sense, including common “strong” be-
lief (in the sense of Battigalli and Siniscalchi [10]), com-
mon persistent belief, or even common “knowledge” in the
sense of Aumann. As correctly argued by Stalnaker and
Reny, these assumptions, if applied to the usual notions of
rationality in the literature, bear no relevance for what the
players would do (or believe) at the nodes that are incom-
patible with these assumptions! The reason is that, if these
counterfactual nodes were to be reached, then by that time
the belief in “rationality” would have already been publicly
disproved: we cannot even entertain the possibilities reach-
able by irrational moves except by suspending our belief (or
“knowledge”) in rationality. Hence, the above assumptions
cannot tell us anything about the players’ behaviour or ra-
tionality at such counterfactual nodes, and thus they cannot
be used to argue for the plausibility of the backward induc-
tion solution (even if they logically imply it)! In contrast,
our notion of dynamic rationality is not automatically dis-
proved when we reach a node excluded by common belief
in it: a player may still be rational with respect to her cur-
rent and future options and decisions even after making an
“irrational” move. Indeed, the player may have been play-
ing irrationally in the past, or may have had a moment of
temporary irrationality, or may have made some mistakes
in carrying out her rational plan; but she may have recov-
ered now and may play rationally thereafter. Since our no-
tion of rationality is future-oriented, no information about
past moves will necessarily and automatically shatter belief
in rationality (although of course it may still shatter it, or
at least weaken it). So it is perfectly consistent (although
maybe not always realistic) to assume that players maintain
their common belief in dynamic rationality despite all past
failures of rationality. In fact, this is our proposed solution
to the BI paradox: we will show that such a “stable” com-
mon belief in dynamic rationality (or more precisely, com-
mon knowledge of the stability of the players’ common be-
lief in rationality) is exactly what is needed to ensure com-
mon belief in the backward induction outcome!

Rational Planning A weaker condition requires only that,
for each decision node v, the option that the decision-
maker is planning at v to select (at v) is the best, given
the other (epistemically) possible alternatives. By identify-
ing as above the players’ plans of actions with their beliefs
about their actions, we can thus say that a decision maker is
a rational planner in the game G if at each decision node
she believes that she will take “the best decision”, even if in
the end she may accidentally make a wrong choice:

RPi :=
∧

v∈Gi

Bv
i Rv

i .

By unfolding the definition, we see it is equivalent to:

RPi =
∧

v∈Gi

∧

u,u′←iv

(u ≺i u′ ∧ ¬Kv
i ¬u′ ⇒ Bv

i ¬u).

No Mistakes As noted above, RPPi only states that the de-
cision maker i has a rational plan for current and future
contingencies. But mistakes can happen, so if we want to
ensure that the decision that is actually taken is rational we
need to require the player makes no mistakes in carrying out
her plan:

No-Mistakesi :=
∧

v∈Gi

∧

u←v

(Bv
i ¬u⇒ ¬u)

The sentence No-Mistakesi says that player i’s decision
are always consistent with her “plan”: she never plays a
move that, at the moment of playing, she believed won’t be
played.

As expected, the conjunction of “rational planning” and
“no mistakes” entails “rational playing”:

RPi ∧ No-Mistakesi ⇒ Ri.

4 Backward Induction in Games of Perfect
Information

It is easy to see that Aumann’s theorem can be strength-
ened to the following

Proposition 4.1 In any state of any plausibility model for
a game of perfect information, common knowledge of dy-
namic rationality implies the backward induction outcome.

Unfortunately, common knowledge of (either dynamic
or substantive) rationality can never hold in a game model:
it is simply incompatible with the “Epistemically-Open Fu-
ture” condition. By requiring that players have “hard” in-
formation about the outcome of the game, Aumann’s as-
sumption does not allow them to reason hypothetically or
counterfactually about other possible outcomes, at least not
in a consistent manner.7 This undermines the intuitive ratio-
nale behind the backward induction solution, and it is thus
open to Stalnaker’s criticism.

So in this section, we are looking for natural conditions
that can be satisfied on game models, but that still imply the
backward induction outcome (or at least common belief in
it). One such condition is common knowledge of (general)
stable belief in (dynamic) rationality: Ck[!]EbR. This is
in fact a “strong” form of common belief, being equivalent
to Ck[!]CbR, i.e. to common knowledge of stable common
belief in rationality.

7Indeed, if o is the backward induction outcome, then the above Propo-
sition entails Kio for all players i, and thus for every other outcome o′ != o

and every proposition P , we have Bo′
i P : the players believe everything

(including inconsistencies) conditional on o′.
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Theorem 4.2 The following holds in any state s of any
game model M ∈MG:

Ck[!]EbR ⇒ Cb(BI) ,

where BI :=
∨
{o | o ∈ BIG} is the sentence saying that

the current state determines a backward-induction outcome.
Equivalently, the following formula is valid over plausibility
frames for the game G:

Ck(StructG ∧ FG ∧ [!]CbR) ⇒ Cb(BI).

In English: assuming common knowledge of the game
structure and of open future, if it is common knowledge
that, no matter what new (truthful) information the play-
ers may (jointly) learn during the game (i.e. no matter what
is played), general belief in rationality will be maintained,
then it is common belief that the backward induction out-
come will be reached. If we define “stable common be-
lief” in a proposition P as [!]CbP , then we can give a more
concise English formulation of the above theorem: common
knowledge of the game structure, of open future and of sta-
ble common belief in dynamic rationality implies common
belief in the backward-induction outcome.

Although rationality cannot be common knowledge in a
game model, rational planning can be. When this is the
case, we obtain the following

Corollary 4.3 In a game model, common knowledge of
“rational planning” and of stable belief in “no mistakes”
implies the backward-induction outcome; i.e. the formula

Ck(RP ∧ [!]EbNo-Mistakes) ⇒ Cb(BI)

is valid on game models.

The above results only give us common belief in the
backward-induction outcome, but nothing ensures that this
belief is correct. If we want to ensure that the backward-
induction outcome is actually played, we need to add the
requirement that the (stable common) belief in rational play
assumed in the premise is correct, i.e. that players actually
play rationally:

Theorem 4.4 The following holds in any state s of any
game model M ∈MG:

R ∧ Ck[!]EbR ⇒ BI

No strategies! Observe that we did not assume that the
players have complete (pure) “strategies” (fully determined
plans of action, uniquely specifying one move for at each
decision node), but only that they have partial plans, i.e. (in-
complete) beliefs about what moves should they play: at
each decision node they choose a set of moves rather than

one unique move. So an important side-result of our work
is that the assumption that players have (complete, pure)
strategies is not necessary for proving backward-induction
results.

Ensuring Backward-Induction Strategy Profile If,
however, we want to postulate that every player does have a
(complete, pure) strategy, we need to say that, for each node
v of her choice, there exists a (unique) immediate successor
u that she believes will be played if v is reached (i.e. she
plans to play u at v):

Strategies :=
∧

i

∧

v∈Gi

∨

u←iv

Bv
i u.

In cases where Str is common knowledge as well, we can
strengthen the Theorem 4.2 to:

Corollary 4.5 The following holds in any state s of any
game model M ∈MG:

Ck(Strategies ∧ [!]EbR) ⇒ Cb(BI-Profile)

where BI-Profile is the sentence saying that the strategies
given by each player’s conditional beliefs in the initial state
s form a backward-induction profile.

Finally, the following theorem ensures that above results
are not vacuous:

Theorem 4.6 For every extensive game G, there is a game
model M ∈MG and a state s ∈M satisfying the sentence

No-Mistakes ∧ Ck(RP ∧ Strategies ∧ [!]EbNo-Mistakes).

As a consequence, the sentence R ∧ Ck[!]EbR ∧
CkStrategies is also satisfied.

The proofs of these theorems are in Appendix 1. Alter-
native (weaker) conditions ensuring the backward induction
outcome are given in Appendix 2.

5 Comparison with Other Work

The game-theoretic issues that we deal with in this paper
originate in the work of Aumann [2], Stalnaker [30, 31, 32]
and Reny [26], and have been investigated by a number of
authors [14, 15, 13, 8, 9, 10, 17, 18, 22, 29, 19] etc. Our
work obviously owes a great deal to these authors for their
illuminating discussions of the topic.

The logic CDL of conditional belief was first introduced
and axiomatised by Board [16], in a slightly more compli-
cated form. The version presented here is due to Baltag and
Smets [5, 7]. The dynamic extension of CDL obtained by
adding the public announcements modalities (coming from
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the public announcement logic PAL, originally developed
by Plaza [24]) has been developed by van Benthem [11]
and, independently, by Baltag and Smets [5]. The extension
of PAL with arbitrary announcement modalities [!]ϕ is due
to Balbiani et al [3]. The belief-revision-friendly version of
APAL presented here (obtained by combining APAL with
CDL) is an original contribution of our paper.

The work of Battigalli and Siniscalchi [10] is the clos-
est to ours, both through their choice of the basic setting for
the “static logic” (also given by conditional belief operators)
and through the introduction of a strengthened form of com-
mon belief (“common strong belief”) as an epistemic basis
for a backward-induction theorem. Strong belief, though
different from our “stable” belief, is another version of per-
sistent belief: belief that continues to be maintained unless
and until it is contradicted by new information. However,
their notion of rationality is only “partially dynamic”: al-
though taking into account the dynamics of beliefs (using
conditional beliefs given node v to assess the rationality of
players’ choices at v), it does not fully take into account the
limitations posed to the set of possible options by the dy-
namics of “hard knowledge”. In common with most other
previous notions of rationality, it requires agents to make
rational choices at all nodes, including the past ones and
the ones that have already been bypassed. As a result, it is
enough for a player to make only one “irrational” move to
completely shatter the (common) belief (however strong) in
rationality; and as a consequence, common strong belief in
rationality does not by itself imply backward induction. To
obtain their theorem, Battigalli and Siniscalchi have to add
another assumption: that the game model is a complete type
structure, i.e. it contains, in a certain sense, every possible
epistemic-doxastic “type” for each player. This means that
the players are assumed to have absolutely no “hard” in-
formation, not only about the outcomes or about the other
players’ strategies, but also about the other players’ beliefs,
so that they have to consider as epistemically possible all
consistent (probabilistic) belief assignments for the other
players! This is an extremely extremely strong (and, in our
opinion, unrealistic) “completeness” assumption, one that
can only be fulfilled in an infinite model. In contrast, the
analogue completeness assumption in our approach is the
much weaker “Open Future” assumption, postulating that
(at the beginning of the game) players have no non-trivial
“hard” information about the outcomes (except the informa-
tion given by the structure of the game): they cannot foretell
the future, cannot irrevocably know the players’ freely cho-
sen future moves (though they do irrevocably know the past,
and they may irrevocably know the present, including all the
beliefs and the plans of action of all the players). Our more
realistic postulate is weak enough to be realized on finite
models. In particular, it can be realized on models as small
as the set of terminal nodes of the game tree (having one

state for each terminal node), and in which all the plans of
action are common knowledge, so that the only uncertainty
concerns possible mistakes in playing (and hence the final
outcome).

Samet [29] introduces a notion of hypothetical knowl-
edge, in order to develop an epistemic characterisation of
backward induction. Hypothetical knowledge looks prima
facie similar to conditional belief, except that the interpre-
tation of the hypothetical knowledge formula Kϕ

i ψ is dif-
ferent: “Had ϕ been the case, i would have known ψ”
(op. cit., p. 237). This mixture of counterfactual condition-
als and knowledge is specifically introduced in [29] only to
discuss backward induction, and it has not occurred before
or subsequently in the literature. In contrast, our approach
is grounded in the relatively standard and well-understood
foundations of Conditional Doxastic Logic, independently
studied by logicians and philosophers. While Samet does
make what we agree is the important point that some form
of counterfactual reasoning is of vital importance to the
epistemic situation in extensive games, his model and con-
ditions seem to us more complex, less transparent and less
intuitive that ours.

We are aware of only one prior work that uses dy-
namic epistemic logic (more precisely, the logic of pub-
lic announcements, but in the context of “classical DEL”,
i.e. dealing only with knowledge update and not with belief
revision) for the analysis of solution concepts in extensive
games: van Benthem’s work [12]. That work takes Au-
mann’s “static” notion of rationality as given, and accepts
Aumann’s classical result as valid, and so it does not attempt
to deal with the cases in which Aumann’s assumptions do
not apply, nor to address the criticism and the issues raised
by Stalnaker, Reny and others. Instead, van Benthem’s con-
tribution focuses on the sources of knowledge, on explain-
ing how complex epistemic conditions of relevance to Game
Theory (such as Aumann’s common knowledge of rational-
ity) can be brought about, via repeated public announce-
ments of rationality. So van Benthem does not use public
announcements in order to simulate a play of the game.
Public announcements in van Benthem’s approach repre-
sent off-line learning, i.e. pre-play or inter-play learning,
whereas the public announcements in our present approach
represent on-line learning, i.e. learning that takes place dur-
ing the play of the game. A very interesting open question is
to address the same issue answered by van Benthem, but for
the case of the dynamic-epistemic condition proposed here,
instead of Aumann’s condition: find some off-line com-
munication or learning protocol that can achieve common
knowledge of stable common belief in rational play.
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Appendix 1: Some Proofs

Definition 5.1 For a finite set O of “outcomes” and a finite set P
of “players”, we denote by Games(O, P ) the class of all perfect
information games having any subset ofO as their set of outcomes
and having any subset of P as their set of players. !

Definition 5.2 A sentence is valid on a game G if it is true at
every state s of every game model M ∈MG.

A sentence is valid over Games(O, P ) if it is valid on every
game G ∈ Games(O, P ). !

Lemma 5.3 For every perfect information game G, if we denote
the root of G by v0, the first player of G (playing at v0) by i and
the first move of i (the successor node played at v0) by v1, then the
sentence

Rv0
i ∧

^

u←v0

Bu
i [!u]BI ∧ [!v1]BI ⇒ BI

is valid on G.

Proof.This follows directly from the definition of rationality at a
node and the definition of BI. The assumption that Bu

i [!u]BI is
true at s means that all the states (deemed as “most plausible by i
conditional on u ”) in the set su

i := min≤i(u∩[s]i) have only out-
comes that are backward induction outcomes in the corresponding
subgame: i.e. we have o(t) ∈ BIGu for all t ∈ su

i . Given that
all these outcomes {u : u ← v0} are consistent with i’s knowl-
edge (since we are in a game model), the fact that i is rational
at v0 implies that the successor node v1 chosen by i must be one
that maximises her payoff hi(o(s

u
i )) among all the outcomes inS

u←v0
BIGu . But, by the definition, such a node v1 is exactly

the choice prescribed at v0 by the backward induction strategy!
Given this backward-induction choice (v1) of i at node v0, and
given the fact (ensured by the condition [!v1]BI) that starting from
node v1 everybody will play the backward induction choices, we
can conclude that the outcome o(s) belongs to the backward in-
duction set of outcomes BIGv = BIG for the game G. Hence s
satisfies BI. QED

The Main Lemma underlying our results is the following:

Lemma 5.4 (“Main Lemma”) Fix a finite set O of outcomes and
a finite set P of players. Let φ be any sentence in our language
APAL − CDL having the following property: for every game
G ∈ Games(O, P ), if we denote the root of G by v := vG

0 , the
first player of G (playing at v0) by i := iG0 and the first move of i
(the successor node played at vG

0 ) by v1 := vG
1 , then the sentence

φ⇒ Rv0
i ∧

^

u←v0

Bu
i [!u]φ ∧ [!v1]φ

is valid on G.
Under this assumption, we have that the sentence

φ⇒ BI

is valid over Games(O, P ).

Proof.We need to prove that, for every game G ∈ Games(O, P ),
the sentence φ ⇒ BI is valid on G. The proof is by induction on
the length of the game G.

For games of length 0 (only one outcome, no available moves),
the claim is trivial (since the only possible outcome is by definition
the backward induction outcome).

Let G be now a game of length n > 0, and assume the claim is
true for all games of smaller length. Let v0 be the root of G, i be
the first player of G, M ∈MG be a game model for G and s be a
state in M such that s |=M φ.

Let u be any arbitrary immediate successor of v0 (i.e. any
node such that u← v0). By the property assumed in the statement
of this Lemma, we have that s |=M Bu

i [!u]φ, and so (if su
i is

the set defined in the proof of the previous Lemma, then) we have
t |=M [!u]φ for all t ∈ su

i . Hence, we have t |=Mu φ for all
t ∈ su

i ∩u. By the induction hypothesis, we must have t |=Mu BI
(since Mu is a game model for Gu, which has length smaller
than G, and so the implication φ ⇒ BI is valid on Mu), for all
t ∈ su

i ∩ u. From this we get that t |=M [!u]BI for all t ∈ su
i , and

hence that s |=M Bu
i [!u]BI.

Let v1 be now the first move of the game in state s (i.e. the
unique immediate successor v1 ← v0 such that s |=M v1). By
the property assumed in this Lemma, we have that s |=M [!v1]φ.
By the same argument as in the last paragraph, the induction hy-
pothesis gives us that s |=M [!v1]BI. Putting together with the
conclusion of the last paragraph and with the fact (following from
the theorem’s assumption) that φ ⇒ Rv0

i is valid on M, we in-
fer that s |=M Rv0

i ∧
V

u←v0
Bu

i [!u]BI ∧ [!v1]BI. The desired
conclusion follows now from Lemma 5.3. QED

Lemma 5.5 The sentence

φ := R ∧ Ck[!]EbR

has the property assumed in the statement of Lemma 5.4.

Proof.The claim obviously follows from the following three sub-
claims:

1. dynamic rationality is a “stable” property, i.e. the implication
R ⇒

V
u[!u]R is valid;

2. the implication Ck[!]Ebψ ⇒ Bu
i [!u]Ck[!]Ebψ is valid, for

all formulas ψ and all nodes u ∈ G;

3. the implication Ck[!]Ebψ ⇒ [!u]Ck[!]Ebψ is valid, for all
formulas ψ and all nodes u.

All these claims are easy exercises in dynamic-epistemic logic.
The first follows directly from the definition of dynamic rational-
ity.

The second sub-claim goes as follows: assume that we
have Ck[!]Ebψ at some state of a given model; then we also
have Ck[!u][!]Ebψ for any node u (since [!]θ implies [!u][!]θ),
and so also KiCk[!u][!]Ebψ (since common knowledge im-
plies knowledge of common knowledge), from which we get
Bu

i Ck[!u][!]Ebψ (since knowledge implies conditional belief un-
der any conditions). This is the same as Bu

i (u→ Ck[!u][!]Ebψ),
which implies Bu

i (u → Cku[!u][!]Ebψ) (since common knowl-
edge implies conditional common knowledge). But this last clause
is equivalent to Bu

i [!u]Ck[!]Ebψ (by the Reduction Law for com-
mon knowledge after public announcements).
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The third sub-claim goes as follows: assume that we have
Ck[!]Ebψ in some state of a given model; then as before we
also have Ck[!u][!]Ebψ, and thus Cku[!u][!]Ebψ (since common
knowledge implies conditional common knowledge). From this
we get u → Cku[!u][!]Ebψ (by weakening), which is equivalent
to [!u]Ck[!]Ebψ (by the Reduction Law for common knowledge
after public announcements). QED

Theorems 4.4 and 4.2

Proof.Theorem 4.4 follows now from Lemma 5.4 and Lemma 5.5.
Theorem 4.2 follows from Theorem 4.4, by applying the operator
Ck[!]Eb to both its premiss and its conclusion, and noting that the
implication

Ck[!]Ebψ ⇒ Ck[!]EbCk[!]Ebψ

is valid. QED

Appendix 2

The epistemic condition R ∧ Ck[!]EbR that was given in this
paper (to ensure backward induction) is not the weakest possible
condition (ensuring this conclusion). Any property φ satisfying
the assumption of our Main Lemma (Lemma 5.4) would do it. In
particular, there exists a weakest such condition (the smallest event
E ⊆ S such that E ⊆ Rv0

i ∩
T

u←v0
Bu

i [!u]E ∩ [!v1]E), but it
is a very complicated and unnatural condition. The one given in
the paper seems to be simplest such condition expressible in our
language APAL− CDL.

However, one can give weaker simple conditions if one is will-
ing to go a bit beyond the language APAL − CDL, by adding
fixed points for other (definable) epistemic operators.

Let stable true belief be a belief that is known to be a stable
belief and it is also a stably true belief. Formally, we define:

Stbiϕ := Ki[!]Biϕ ∧ [!]ϕ.

Stable true belief is a form of “knowledge”, since it implies truth
and belief:

Stbiϕ⇒ ϕ ∧Biϕ

(and in fact it implies stable truth: Stbiϕ ⇒ [!]ϕ). Knowledge
that something is stably true implies stable true belief in it:

Ki[!]ϕ⇒ Stbiϕ.

Stable true belief is inherently a “positively introspective” attitude,
i.e.

Stbiϕ⇒ StbiStbiϕ,

but it is not positively introspective with respect to (“hard”) knowl-
edge:

Stbiϕ '⇒ KiStbiϕ.

Stable true belief is not negatively introspective, neither inherently
nor with respect to knowledge.

We can define common stable true belief in the same way as
common knowledge: first define general stable true belief

Estbϕ =
^

i∈P

Stbiϕ

(“everybody has stable true belief”), then put

Cstbϕ =
^

n

(Estb)nϕ.

Note that this definition, although semantically meaningful, is not
a definition in our language APAL− CDL, since it uses infinite
conjunctions. Indeed, we conjecture that common stable true be-
lief is undefinable in the language APAL−CDL, since it doesn’t
seem to be expressible as a combination of common knowledge,
common belief and dynamic operators.

Lemma 5.6 The sentence CstbR satisfies the assumptions of our
Main Lemma (Lemma 5.4).

As an immediate consequence, we have:

Theorem 5.7 The sentence

CstbR ⇒ BI

is valid over game models. In English: (if we assume common
knowledge of the structure of the structure of the game and of open
future, then) common stable true belief in (dynamic) rationality
implies the backward induction outcome .
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