The dynamics of polymers by novel mesoscopic methods
Berkenbos, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction
 1.1 Polymers 1
 1.2 Computer simulations 2
 1.3 Outline of this thesis 4

2 Theory and computational methods
 2.1 Introduction to polymer physics 8
 2.1.1 The size of a polymer chain 8
 2.1.2 The Gaussian chain 9
 2.1.3 The excluded volume chain 10
 2.2 Introduction to computer simulations 15
 2.2.1 The Andersen thermostat 15
 2.2.2 Dissipative Particle Dynamics 15
 2.2.3 The Lowe-Andersen thermostat 17
 2.2.4 Alternative mesoscopic simulation methods ... 19
 2.3 Simulating polymer chains 23
 2.4 Conclusions 25

3 Solid-Fluid boundary interactions in mesoscopic model fluids 27
 3.1 Introduction 28
 3.2 Description of the method 30
 3.3 Results 34
 3.4 Discussion and conclusions 40

4 Drift velocity of single ideal polymer chains in microfluidic capillaries 43
 4.1 Introduction 44
 4.2 Methodology 47
 4.2.1 Polymer model 48
 4.2.2 Solvent model 48
 4.2.3 Solid geometry 49
 4.3 Results 50
 4.4 Discussion and conclusions 57

5 Flow of concentrated polymer solutions in microfluidic capillaries 59
 5.1 Introduction 60
 5.2 Simulation details 64
 5.3 Calculated hydrodynamic properties of concentrated model polymer solutions 67
5.4 Calculated flow profiles for concentrated polymer solutions in a capillary ... 68
5.5 Slight slip model .. 69
5.6 Comparison of the slight slip theory with simulation and experiment .. 77
5.7 Volumetric flow rate .. 81
5.8 Polymer drift velocity .. 83
5.9 Discussion and conclusions 86

6 Long polymer thermodynamics from short blobby chains 89
 6.1 Introduction ... 90
 6.2 Effective interactions in a blob chain 94
 6.3 Simulation method ... 97
 6.4 Results ... 101
 6.4.1 Structure in the dilute limit 101
 6.4.2 The osmotic pressure 103
 6.4.3 The pressure of a spherically confined polymer ... 106
 6.4.4 Rheology ... 107
 6.5 Discussion and conclusions 109

Bibliography .. 113
Summary ... 121
Samenvatting .. 125
Dankwoord ... 129