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Chapter 3

Behaviour of Prequential Codes under
Misspecification

Universal coding lies at the basis Rissanen’s theory of MDL (minimum description
length) learning [4, 39] and Dawid’s theory of prequential model assessment [26].
It also underlies on-line prediction algorithms for data compression and gambling
purposes. In the introductory chapter (Section 1.2.3), we defined universality of
a code in terms of its worst-case regret. Roughly, a code is universal with respect
to a model M if it achieves small worst-case regret: it allows one to encode data
using not many more bits than the optimal code in M. We also described the
four main universal codes: the Shtarkov or NML code, the Bayesian mixture
code, the 2-part MDL code and the prequential mazimum likelihood code (PML),
also known as the “ML plug-in code” or the “predictive MDL code” [4, 38]. This
code was introduced independently by Rissanen [69] and by Dawid [26], who
proposed it as a forecasting strategy rather than as a code. In this chapter we
study the behaviour of the PML code if the considered model M does not contain
the data-generating distribution P*. We require that the model is a 1-parameter
exponential family, but our results can possibly be extended to models with more
parameters.

Instead of the worst-case regret, we analyse the redundancy, a closely re-
lated concept. We find that the redundancy of PML can be quite different from
that of the other main universal codes. For all these codes, the redundancy is
1clnn+0(1) for some ¢, but while ¢ = 1 for Bayes, NML and 2-part codes (under
regularity conditions on P* and M), we show here that for PML, any ¢ > 0 is
possible, depending on P* and M.

There are a plethora of results concerning the redundancy and/or the regret
for PML, for a large variety of models including multivariate exponential families,
ARMA processes, regression models and so on. Examples are [70, 44, 97, 57].
In all these papers it is shown that either the regret or the redundancy grows
as glnn + o(Inn), either in expectation or almost surely. Thus, these results
already indicate that ¢ = 1 for those models. The reason that these results do
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92 Chapter 3. Behaviour of Prequential Codes under Misspecification

not contradict ours, is that they invariably concern the case where the generating
P* is in M, so that automatically vary(X) = varps(X).

As discussed in Section 3.4, the result has interesting consequences for pa-
rameter estimation and practical data compression, but the most important and
surprising consequence is for MDL learning and model selection, where our re-
sult implies that PML may behave suboptimally even if one of the models under
consideration is correct!

In Section 3.1 we informally state and explain our result. Section 3.2 contains
the formal statement of our main result (Theorem 3.2.3), as well as a proof. In
Section 3.3 we show that our results remain valid to some extent if “redundancy” is
replaced by “expected regret” (Theorem 3.3.1). We discuss further issues, includ-
ing relevance of the result, in Section 3.4. Section 3.5 states and proves various
lemmas needed in the proofs of Theorems 3.2.3 and 3.3.1.

3.1 Main Result, Informally

Suppose M = {F, : 0 € ©} is a k-dimensional parametric family of distribu-
tions, and Zy, Zs, ... are i.i.d. according to some distribution P* € M. A code
is universal for M if it is almost as efficient at coding outcomes from P* as the
best element of M. (As in previous chapters, we sometimes use codes and distri-
butions interchangeably.) In the introductory chapter we measured the overhead

incurred on the first n outcomes 2" = z1,..., 2, in terms of the worst-case regret
max R(L, M,2") = max <L(z”) — inf L’(z”)) :
z" zm L'eM

but in this chapter we consider the redundancy instead. We define the redundancy
of a distribution () with respect to a model M as

R(P,Q,M,n) = E [-InQ(Z")]—inf E [—InPy(Z")], (3.1)
Zn P 0€0 Zn.p*
where we use nats rather than bits as units of information to simplify equations.
We omit the first three arguments of the redundancy if they are clear from con-
text. These and other notational conventions are detailed in Section 3.2. The
redundancy is a close lower bound on the expected regret, see Section 3.3. We do
not know the exact relationship to worst-case regret.

The four major types of universal codes, Bayes, NML, 2-part and PML, all
achieve redundancies that are (in an appropriate sense) close to optimal. Specifi-
cally, under regularity conditions on M and its parameterisation, these four types
of universal codes all satisfy

R(P*,Q, M,n) = glnn+0(1), (3.2)
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where the O(1) may depend on P*, M and the universal code @ that is used.
This is the famous “k over 2 log n formula”, refinements of which lie at the basis
of most practical approximations to MDL learning, see [38].

Often, the source distribution P* is assumed to be an element of the model. If
such is the case, then by the information inequality [25] the second term of (3.1)
is minimised for Py = P*, so that

R(P*,Q, M, n) = Ep. [~ 1nQ(Z")] — Ep-[~In P*(Z")]. (3.3)

Thus, (3.3) can be interpreted as the expected number of additional nats one
needs to encode n outcomes if one uses the code corresponding to @) instead of
the optimal (Shannon-Fano) code with lengths —In P*(Z™). For a good universal
code this quantity is small for all or most P* € M.

In this chapter we consider the case where the data are i.i.d. according to an
arbitrary P* not necessarily in the model M. It is now appropriate to rename
the redundancy to relative redundancy, since we measure the number of nats we
lose compared to the best element in the model, rather than compared to the
generating distribution P*. The definition (3.1) remains unchanged. It can no
longer be rewritten as (3.3) however: Assuming it exists and is unique, let Py« be
the element of M that minimises KL divergence to P*:

0" = argmin D(P*||Py) = argminEp«|—InB(7Z)],
e =E)
where the equality follows from the definition of the KL divergence [25]. Then
the relative redundancy satisfies

R(P*,Q, M, n) = Ep:[~ 10 Q(Z")] — Ep:[—In Py (2. (3.4)

It turns out that for the NML, 2-part MDL and Bayes codes, the relative redun-
dancy (3.4) with P* ¢ M, still satisfies (3.2), under some conditions on M and
P* (Section 3.3). In this chapter we show that (3.2) does not hold for PML. The
PML code with length function L works by sequentially predicting Z;,; using a
(slightly modified) ML or Bayesian MAP estimator §; = 6(z?) based on the past
data, that is, the first ¢ outcomes 2’. The total code length L(z") on a sequence
2™ is given by the sum of the individual “predictive” code lengths (log losses):
L(z") = Z?:_Ol[— In Py (2i11)]. In our main theorem, we show that if and M is a
regular one-parameter exponential family (k = 1), then

R(P*,Q, M,n) = LY X 0 1 oq) (3.5)

ey 2varp,, X ’ '

where X is the sufficient statistic of the family. Example 6 below illustrates the
phenomenon. Note that if P* € M, then Py~ = P* and (3.5) becomes the familiar
expression. The result holds as long as M and P* satisfy a mild condition that is
stated and discussed in the next section. Section 3.4 discusses the consequences of
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this result for compression, estimation and model selection, as well as its relation
to the large body of earlier results on PML coding.

Example 6. Let M be the family of Poisson distributions, parameterised by their
mean p. Since neither the NML universal code nor Jeffreys’ prior are defined for
this model it is attractive to use the PML code as a universal code for this model.
The ML estimator fi; is the empirical mean of 2y, ..., z;.

Suppose Z, Zy, Zs, ... are i.i.d. according to a degenerate P with P(Z =
4) = 1. Since the sample average is a sufficient statistic for the Poisson family, /i
will be equal to 4 for all ¢ > 1. On the other hand, p*, the parameter (mean) of
the distribution in M closest to P in KL-divergence, will be equal to 4 as well.
Thus the relative redundancy (3.4) of the PML code is given by

n—1

R(P*, Q. M,n) = —InPy,(4) + InPy(4) + > [~ In Py(4) + In Py(4)] = O(1),

=1

assuming an appropriate definition of fig. In the case of the Poisson family, we
have Z = X in (3.5). Thus, since varp.Z = 0, this example agrees with (3.5).

Now suppose data are i.i.d. according to some P,, with P,(Z = z) o< (2 +1)73
for all z smaller than 7, and P.(Z = z) = 0 for z > 7. It is easy to check that,
for 7 — o0, the entropy of P, converges to a finite constant, but the variance of
P, tends to infinity. Thus, by choosing 7 large enough, the redundancy obtained
by the Poisson PML code can be made to grow as clogn for arbitrarily large c.

Example 7. The Hardy-Weinberg model deals with genotypes of which the alleles
are assumed independently Bernoulli distributed according to some parameter p.
There are four combinations of alleles, usually denoted “aa”, “AA”, “aA”, “Aa’;
but since “aA” and “Aa” result in the same genotype, the Hardy-Weinberg model
is defined as a probability distribution on three outcomes. We model this by
letting X be a random variable on the underlying space, that maps “aA” and
“Aa” to the same value: X (aa) =0, X(aA) = X(Aa) = ; and X(AA) = 1. Then
P(X=0)=(1-p)* P(X =3) =2p(1 —p) and P(X =1) = p>. The Hardy-
Weinberg model is an exponential family with sufficient statistic X. To see this,
note that for any parameter p € [0,1], we have EX = p = P(A) = p, so we can
parameterise the model by the mean of X. The variance of the distribution with
parameter y is %u(l — ). Now suppose that we code data in a situation where
the Hardy-Weinberg model is wrong and the genotypes are in fact distributed
according to P(X = 1) = P(X =1) = 1 and P(X = 0) = 0, such that mean and

variance of X are Z% and 3% respectively. The closest distribution in the model has

the same mean (since the mean is a sufficient statistic), and variance % Thus

PML will achieve a redundancy of §Inn rather than $Inn (up to O(1)).
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3.2 Main Result, Formally

In this section, we define our quantities of interest and we state and prove our main
result. Throughout this text we use nats rather than bits as units of information.
Outcomes are capitalised if they are to be interpreted as random variables instead
of instantiated values. Let P* be a distribution on some set Z, which can be either
finite or countably infinite, or a subset of k-dimensional Euclidean space for some
k > 1. A sequence of outcomes z, ..., 2, is abbreviated to z". Let X : Z — R*
be a random vector. We write Ep:[X] as a shorthand for Ey..p«[X]. When we
consider a sequence of n outcomes independently distributed ~ P*, we even use
Ep- as a shorthand for the expectation of (X, ..., X,) under the n-fold product
distribution of P*. Finally, P*(X) denotes the probability mass function of P*
in case X is discrete-valued, and the density of P* in case X takes values in a
continuum. When we write “density function of X7, then, if X is discrete-valued,
this should be read as “probability mass function of X”. Note however that in
our main result, Theorem 3.2.3 below, we do not assume that the data-generating
distribution P* admits a density.

We define the particular random vector Z(z) := z. Let X : Z — R be a
random variable on Z, and let X = {x €¢ R : 3z € Z : X(2) = z} be the
range of X. Exponential family models are families of distributions on Z defined
relative to a random variable X (called “sufficient statistic”) as defined above,
and a function h 1 Z — (0,00). Let Z(n) == [ _, e X @ h(2)dz (the integral to
be replaced by a sum for countable Z), and ©,, := {n € R : Z(n) < oo}.

Definition 3.2.1 (Exponential family). The single parameter exponential fam-
ily [48] with sufficient statistic X and carrier h is the family of distributions
with densities P, (z) := ﬁe*"X(z)h(z), where n € ©,. O, is called the natural
parameter space. The family is called regular if ©, is an open interval of R.

In the remainder of this text we only consider single parameter, regular expo-
nential families with a 1-to-1 parameterisation; this qualification will henceforth
be omitted. Examples include the Poisson, geometric and multinomial families,
and the model of all Gaussian distributions with a fixed variance or mean. In the
first four cases, we can take X to be the identity, so that X = Z and X = Z. In
the case of the normal family with fixed mean, 02 becomes the sufficient statistic
and we have Z =R, X =[0,00) and X = Z2.

The statistic X (z) is sufficient for n [48]. This suggests reparameterising
the distribution by the expected value of X, which is called the mean wvalue
parameterisation. The function p(n) = Ep, [X] maps parameters in the natural
parameterisation to the mean value parameterisation. It is a diffeomorphism
(it is one-to-one, onto, infinitely often differentiable and has an infinitely often
differentiable inverse) [48]. Therefore the mean value parameter space ©,, is also
an open interval of R. We note that for some models (such as Bernoulli and
Poisson), the parameter space is usually given in terms of the a non-open set
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of mean-values (e.g., [0, 1] in the Bernoulli case). To make the model a regular
exponential family, we have to restrict the set of parameters to its own interior.
Henceforth, whenever we refer to a standard statistical model such as Bernoulli
or Poisson, we assume that the parameter set has been restricted in this sense.

We are now ready to define the PML distribution. This is a distribution on
infinite sequences z1, 23, ... € Z°°, recursively defined in terms of the distributions
of Z,41 conditioned on Z" = z", for all n = 1,2,..., all 2" = (z1,...,2,) € Z™.
In the definition, we use the notation x; := X (z;).

Definition 3.2.2 (PML distribution). Let ©, be the mean value parameter do-
main of an exponential family M = {P, | p € ©,}. Given M and constants
zo € ©, and ng > 0, we define the PML distribution U by setting, for all n, all
Zn+& c Zntl.

U(zngr | 2") = Pﬂ(zn)(zn+1)7

where U(z,41 | 2") is the density/mass function of 2,1 conditional on Z" = 2",

n
T Mo+ T

n + ng

A=)
and Py, (-) is the density of the distribution in M with mean /i(2").

We henceforth abbreviate fi(2") to fi,,. We usually refer to the PML distribu-
tion in terms of the corresponding code length function

n—1 n—1
Ly(z") = Lu(ziq | ') =Y —In Py (2i01).
=0 =0

To understand this definition, note that for exponential families, for any sequence
of data, the ordinary maximum likelihood parameter is given by the average
n~1 3" z; of the observed values of X [48]. Here we define our PML distribution
in terms of a slightly modified maximum likelihood estimator that introduces a
“fake initial outcome” xq with multiplicity ng in order to avoid infinite code lengths
for the first few outcomes (a well-known problem called by Rissanen the “inherent
singularity” of predictive coding [71, 36]) and to ensure that the probability of the
first outcome is well-defined for the PML distribution. In practice we can take
ng = 1 but our result holds for any nyg > 0. The justification of our modification
to the ML estimator is discussed further in Section 3.4.

Theorem 3.2.3 (Main result). Let X, X1, Xo,... be i.i.d. ~ P*, with Ep:[X]| =

w*. Let M be a single parameter exponential family with sufficient statistic X

and p* an element of the mean value parameter space. Let U denote the PML

distribution with respect to M. If M and P* satisfy Condition 3.2.4 below, then
var ps X

R(P* U, M,n) =1———Inn+O(1). (3.6)

Vamaﬂx)
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Comparing this to (3.5), note that P, is the element of M achieving smallest
expected code length, i.e. it achieves inf,co, D(P*||F,) [48].

Condition 3.2.4. We require that the following holds both for T := X and
T:=-X:

o If T is unbounded from above then there is a k € {4,6,...} such that the

first k moments of T exist under P* and that d%D(PM* P,) =0 (u*°).

P,) is polynomial

o [fT is bounded from above by a constant g then C%D(Pu*
in1/(g—n).

Roughly, this condition expresses a trade-off between the data generating dis-
tribution P* and the model. If the model is well-behaved, in the sense that the
fourth order derivative of the KL divergence does not grow too fast with the pa-
rameter, then we do not require many moments of P* to exist. Vice versa if the
model is not well-behaved, then the theorem only holds for very specific P*, of
which many moments exist.

The condition holds for most single-parameter exponential families that are
relevant in practice. To illustrate, in Figure 3.2 we give the fourth derivative
of the divergence for a number of common exponential families explicitly. All
parameters beside the mean are treated as fixed values. Note that to interpret
the mean 0 normal distributions as a 1-parameter exponential family the density
we had to set X (z) = 2%, so that its mean E[X] is actually the variance E[Z?]
of the normal distribution. As can be seen from the figure, for these exponential
families, our condition applies whenever at least the first four moments of P*
exist: a quite weak condition on the data generating distribution.

Proof of Theorem 3.2.3. For exponential families, we have

Ep«|—InP,(Z)] — Ep-[-In P, (Z)]
= n(WEp-[X(2)] + I Z(n(p)) + Ep-[=Inh(Z)]
W) Ep [X(2)] — nZ(()) — B[~ W h(Z)
= Ep|—InP,(X)] — Ep:[-In Py(X)],

so that R(P*, U, M,n) = Ep«|Ly(X")] —inf, Ep«[—In P,(X™)]. This means that
relative redundancy, which is the sole quantity of interest in the proof, depends
only on the sufficient statistic X, not on any other aspect of the outcome that
may influence Z. Thus, in the proof of Theorem 3.2.3 as well as all the Lemmas
and Propositions it makes use of, we will never mention Z again. Whenever
we refer to a “distribution” we mean a distribution of random variable X, and
we also think of the data generating distribution P* in terms of the distribution
it induces on X rather than Z. Whenever we say “the mean” without further
qualification, we refer to the mean of the random variable X. Whenever we
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Figure 3.1 C%D(Pm

P,) for a number of exponential families.

d
: GdyAl 6(1u 5)
- o Ou —p
Bernoulli (1 — )t +
T K
‘ el ,U/*$ 6/,L*
Poisson
x! s
()" 6p~  6(p"+1)
Geometric 0"(1—-10) = — a — Yol :
(pr + )"+ p 6(u +2}1) ]
Exponential . e~/ - 'I;
X 5
Normal (fixed =0 — e -,
ormal (fixed mean = 0) \{me o + e
Normal (fixed variance = 1 e 2@ i)’ 0
( ) o
ab® a—1 , 6a
Pareto o for b = H E

refer to the Kullback-Leibler (KL) divergence between P and @), we refer to the
KL divergence between the distributions they induce for X. The reader who is
confused by this may simply restrict attention to exponential family models for
which Z = X, and consider X and Z identical.

The proof refers to a number of theorems and lemmas which will be developed
in Section 3.5. In the statement of all these results, we assume, as in the statement
of Theorem 3.2.3, that X, X7, Xs,... are i.i.d. ~ P* and that u* = Ep«[X]. If X
takes its values in a countable set, then all integrals in the proof should be read
as the corresponding sums.

The redundancy can be rewritten further as the sum of the expected risk for
each outcome (Lemma 3.5.6). We obtain

—_

n—

R(P*, U, M,n) = (DI (3.7)

fri~P

Il
=)

%

Here, the estimator ji; is a random variable that takes on values according to P*,
while the optimal parameter value p* is fixed (and determined by P*). We will
write D(p*||f1;) as shorthand notation for P,» and Pj,.

We now first rewrite the divergence. We abbreviate 8; := fi;—u* and D®) (p) :=
%D(PM*]\PH). That is, D®(u) is the k-th derivative of the function f(u) =

D(P,.

P,). Taylor-expansion of the divergence around p* yields

5 5;° 5" N
D(Fyr|Fp) = 04 6D (") + - D () o < DO () o+ 5 DO,
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The last term is the remainder term of the Taylor expansion, in which ji; € [u*, fi;].
The second term D™ (1*) is zero, since D(p*||p) reaches its minimum at p = p*.
For the third term we observe that

D) = 3B () ~ B0 = = B A ()

which is equal to the Fisher information. Fisher information is defined as I(0) :=
E|(&Inf (X ] 6))2} but as is well known [48], for exponential families this is

equal to — d€2 E [In f(X | )], which matches D®(-) exactly. Furthermore, for
the mean value parameterisation I(x) = 1/varp, (X). We obtain

D(

/‘L*

1 1 1 .
1) = §5i2/Vaer (X) + 651317(3) (n*) + ﬁ5i4D(4) (fii)- (3.8)

We plug this expression back into (3.7), giving

R(P"U,M,n) = 2varp* ZEP* [ } R(n), (3.9)

where the remainder term R(n) is given by

Rin) = 3 Ep- | g02D900) + 564D (3.10)

24

and where 4 and §; are random variables; note that although x is not indexed it
does depend on the index i. In Lemma 3.5.8 we show that R(n) = O(1), giving:

R(P*, U, M,n)=0(1) + Wl(X) z_:Ep* (i — 1)?] (3.11)

Note that ji; is almost the ML estimator. This suggests that each term in the
sum of (3.11) should be almost equal to the variance of the ML estimator, which
is varX/i. Because of the slight modification that we made to the estimator, we
get a correction term of O(i2) as established in Theorem 3.5.2:

Z_:Ep* (s —p)?] = Z_:O ((i +1)7%) + varp-(X) '_ (i+1)*

= O(1) +varp«(X)Inn (3.12)

The combination of (3.11) and (3.12) completes the proof. O



60 Chapter 3. Behaviour of Prequential Codes under Misspecification

3.3 Redundancy vs. Regret

The “goodness” of a universal code relative to a model M can be measured in
several ways: rather than using redundancy (as we did here), one can also choose
to measure code length differences in terms of regret, where one has a further
choice between ezpected regret and worst-case regret [4]. Here we only discuss the
implications of our result for the expected regret measure.

Let M = {Fy | 6 € O} be a family of distributions parameterised by ©. Given
a sequence z" = zy,...,2, and a universal code U for M with lengths Ly, the
regret of U on sequence 2" is defined as

Ly(2") — 912(3[_ In Py(2")]. (3.13)

Note that if the (unmodified) ML estimator #(z") exists, then this is equal to
Ly (2") +In By, (2"). Thus, one compares the code length achieved on 2" by U
to the best possible that could have been achieved on that particular 2", using
any of the codes/distributions in M. Assuming 7, Zs, ... are i.i.d. according to
some (arbitrary) P, one may now consider the expected regret

Egnp[R(P", U, M, n)] = Ep-[Ly(2") — nf[~In Py(2")]].

To quantify the difference with redundancy, consider the function

d(n) := inf Ep[—1In Py(Z")] — Ep [inf[—1In Pp(Z")]],
0cO GSC]

and note that for any universal code, R — E[R] = d(n). In case P* € M, then
under regularity conditions on M and its parameterisation, it can be shown [23]
that "

lim d(n) = 5 (3.14)
where k is the dimension of M. In our case, where P* is not necessarily in M,
we have the following :

Theorem 3.3.1. Let X be finite. Let P*, P, and p* be as in Theorem 3.2.3.
Then ) x
. var px
lim d(n) = -———. 3.15
nlj{olo (n) 2V&I’pu*X ( )
Once we are dealing with 1-parameter families, in the special case that P* €
M, this result reduces to (3.14). We suspect that, under a condition similar to
Condition 3.2.4, the same result still holds for general, not necessarily finite or
countable or bounded X', but we do not know the details. In any case, our result
is sufficient to show that in some cases (namely, if X" is finite), we have
1 X
R(P*,U,M,n) = =22 10+ O(1),

2 var P X
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so that, up to O(1)-terms, the redundancy and the regret of the prequential ML
code behave in the same way.

Incidentally, we can use Theorem 3.3.1 to substantiate the claim in Section 3.1,
which stated that the Bayes (equipped with a strictly positive differentiable prior),
NML and 2-part codes still achieve relative redundancy of %lnn if P*# M, at
least if X is finite. Let us informally explain why this is the case. It is easy
to show that Bayes, NML and (suitably defined) 2-part codes achieve regret
% Inn+O(1) for all sequences 21, 23, . .. such that é(z”) is bounded away from the
boundary of the parameter space ©,, for all large n [4, 38]. It then follows using,
for example, the Chernoff bound that these codes must also achieve expected
regret 2 Inn+ O(1) for all distributions P* on X that satisfy Ep«[X]| = p* € ©,,.
Theorem 3.3.1 then shows that they also achieve relative redundancy 5 Inn+O(1)
for all distributions P* on X that satisfy Ep:[X]| = p* € ©,. We omit further
details.

3.4 Discussion

3.4.1 A Justification of Our Modification of the ML Esti-
mator

A prequential code cannot be defined in terms of the ordinary ML estimator
(ng = 0 in Definition 3.2.2) for two reasons. First, the ML estimator is undefined
until the first outcome has been observed. Second, it may achieve infinite code
lengths on the observed data. A simple example is the Bernoulli model. If we first
observe z; = 0 and then z; = 1, the code length of 2z, according to the ordinary
ML estimator of z, given z; would be —In Py.,y(22) = —In0 = oo. There are
several ways to resolve this problem. We choose to add an “fake initial outcome”.
Another possibility that has been suggested (e.g., [26]) is to use the ordinary ML
estimator, but to postpone using it until after m outcomes have been observed,
where m is the smallest number such that —In Pﬂ(zm)(Zm+1> is guaranteed to be
finite, no matter what value Z,,; is realized. The first m outcomes may then be
encoded by repeatedly using some code Ly on outcomes of Z, so that for i < m,
the code length of z; does not depend on the outcomes zi~!. In the Bernoulli
example, one could for example use the code corresponding to P(Z; = 1) = 1/2,
until and including the first ¢ such that z* includes both a 0 and a 1. It then takes
i bits to encode the first 2! outcomes, no matter what they are. After that, one
uses the prequential code with the standard ML estimator. It is easy to see (by
slight modification of the proof) that our theorem still holds for this variation of
prequential coding. Thus, our particular choice for resolving the startup problem
is not crucial to obtaining our result. The advantage of our solution is that, as we
now show, it allows us to interpret our modified ML estimator as a Bayesian MAP
and Bayesian mean estimator as well, thereby showing that the same behaviour
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can be expected for such estimators.

3.4.2 Prequential Models with Other Estimators

An attractive property of our generalisation of the ML estimator is that it actu-
ally also generalises two other commonly used estimators, namely the Bayesian
maximum a-posteriori and Bayesian mean estimators.

The Bayesian maximum a-posteriori estimator can always be interpreted as
an ML estimator based on the sample and some additional “fake data”, provided
that a conjugate prior is used ([12]; see also the notion of ESS (Equivalent Sample
Size) Priors discussed in, for example, [51]). Therefore, the prequential ML model
as defined above can also be interpreted as a prequential MAP model for that
class of priors, and the whole analysis carries over to that setting.

For the Bayesian mean estimator, the relationship is slightly less direct. How-
ever, it follows from the work of Hartigan [42, Chapter 7] on the so-called “max-
imum likelihood prior”, that by slightly modifying conjugate priors, we can con-
struct priors such that the Bayesian mean also becomes of the form of our modified
ML estimator.

Our whole analysis thus carries over to prequential codes based on these esti-
mators. In fact, we believe that our result holds quite generally:

Conjecture 3.4.1. Let M be a reqular exponential family with sufficient statistic
X and let P be the set of distributions on Z such that Ep-[X*] exists. There exists
no “in-model” estimator such that the corresponding prequential code achieves
redundancy 3 Inn+ O(1) for all P* € P.

Here, by an in-model estimator we mean an algorithm that takes as input
any sample of arbitrary length and outputs a P, € M. Let us contrast this
with “out-model estimators™ fix some prior on the parameter set ©, and let
P(u | z1,...,2,-1) be the Bayesian posterior with respect to this prior and

data z1,...,2,-1. One can think of the Bayesian predictive distribution P(z, |
Zyeey Zno1) = fuem P(zn)P(p | 21,...,20—1)dp as an estimate of the distri-
bution of Z, based on data zq, ..., z,_1. But unlike estimators as defined in the

conjecture above, the resulting Bayesian predictive estimator will in general not
be a member of M, but rather of its convex closure: we call it an out-model estima-
tor. The redundancy of the Bayesian universal model is equal to the accumulated
Kullback-Leibler (KL) risk of the Bayesian predictive estimator [36]. Thus, the
accumulated KL risk of the Bayesian predictive estimator is %lnn + O(1) even
under misspecification. Thus, if our conjecture above holds true, then in-model
estimators behave in a fundamentally different way from out-model estimators in
terms of their asymptotic risk.

Example 8. The well-known Laplace and Krichevsky-Trofimov estimators for
the Bernoulli model [38] define PML distributions according to Definition 3.2.2:
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they correspond to xy = 1/2,n9 = 2, and xg = 1/2,n9 = 1 respectively. Yet,
they also correspond to Bayesian predictive distributions with uniform prior or
Jeffreys’ prior respectively. This implies that the code length achieved by the
Bayesian universal model with Jeffreys’ prior and the PML distribution with
o = 1/2,n9 = 1 must coincide. We claimed before that the expected regret for a
Bayesian universal model is %logn + O(1) if data are i.i.d. ~ P*, for essentially
all distributions P*. This may seem to contradict our result which says that the
expected regret of the PML distribution can be 0.5clogn + O(1) with ¢ # 1 if
P* ¢ M. But there really is no contradiction: since the Bernoulli model happens
to contain all distributions P* on {0, 1}, we cannot have P* ¢ M so Theorem 1
indeed says that ¢ = 1 no matter what P* we choose. But with more complicated
models such as the Poisson or Hardy-Weinberg model, it is quite possible that
P* ¢ M. Then the Bayesian predictive distribution will not coincide with any
PML distribution and we can have ¢ # 1.

3.4.3 Practical Significance for Model Selection

As mentioned in the introduction, there are many results showing that in various
contexts, if P* € M, then the prequential ML code achieves optimal redundancy.
These results strongly suggest that it is a very good alternative for (or at least
approximation to) the NML or Bayesian codes in MDL model selection. Indeed,
quoting Rissanen [71]:

“If the encoder does not look ahead but instead computes the best
parameter values from the past string, only, using an algorithm which
the decoder knows, then no preamble is needed. The result is a pre-
dictive coding process, one which is quite different from the sum or
integral formula in the stochastic complexity.! And it is only because
of a certain inherent singularity in the process, as well as the some-
what restrictive requirement that the data must be ordered, that we
do not consider the resulting predictive code length to provide another
competing definition for the stochastic complexity, but rather regard
it as an approximation.”

Our result however shows that the prequential ML code may behave quite differ-
ently from the NML and Bayes codes, thereby strengthening the conclusion that
it should not be taken as a definition of stochastic complexity. Although there is
only a significant difference if data are distributed according to some P* & M,
the difference is nevertheless very relevant in an MDL model selection context
with disjoint models, even if one of the models under consideration does contain
the “true” P*. To see this, suppose we are comparing two models M; and M, for

IThe stochastic complexity is the code length of the data z1,..., 2, that can be achieved
using the NML code.
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the same data, and in fact, P* € M; U Mj. For concreteness, assume M is the
Poisson family and M is the geometric family. We want to decide which of these
two models best explains the data. According to the MDL Principle, we should
associate with each model a universal code (preferably the NML code). We should
then pick the model such that the corresponding universal code length of the data
is minimised. Now suppose we use the prequential ML code lengths rather than
the NML code lengths. Without loss of generality suppose that P* € M;. Then
P* & M,. This means that the code length relative to M; behaves essentially
like the NML code length, but the code length relative to My behaves differently
— at least as long as the variances do not match (which for example, is forcibly
the case if M is Poisson and M, is geometric). This introduces a bias in the
model selection scheme. In the previous chapter we found experimentally that the
error rate for model selection based on the prequential ML code decreases more
slowly than when other universal codes are used. Even though in some cases the
redundancy grows more slowly than %ln n, so that the prequential ML code is
more efficient than the NML code, we explained that model selection based on
the prequential ML codes must nevertheless always behave worse than Bayesian
and NML-based model selection. The practical relevance of this phenomenon
stems from the fact that the prequential ML code lengths are often a lot easier
to compute than the Bayes or NML codes. They are often used in applications
[61, 52], so that is important to determine when this can be done safely.

3.4.4 Theoretical Significance

The result is also of theoretical-statistical interest: our theorem can be re-inter-
preted as establishing bounds on the asymptotic Kullback-Leibler risk of density
estimation using ML and Bayes estimators under misspecification (P* ¢ M). Our
result implies that, under misspecification, the KL risk of estimators such as ML,
which are required to lie in the model M, behaves in a fundamentally different
way from the KL risk of estimators such as the Bayes predictive distribution,
which are not restricted to lie in M. Namely, we can think of every universal
model U defined as a random process on infinite sequences as an estimator in the
following way: define, for all n,

%

Py = P()]r(ZnH =-|\Zi=2,.... 2y = 2),

a function of the sample z1, ..., z,. P, can be thought of as the “estimate of the
true data generating distribution upon observing zq,...,2,”. In case U is the

prequential ML model, B, = P, is simply our modified ML estimator. However,
universal models other than PML, P, does not always lie in M. An example is the
Bayesian universal code defined relative to some prior w. This code has lengths
L'(z"):= —In [ P,(z")w(p) du [38]. The corresponding estimator is the Bayesian
posterior predictive distribution Ppages(zit1 | 2°) == [ Pu(zip1)w(p | 2°) du [38].
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The Bayesian predictive distribution is a mixture of elements of M. We will
call standard estimators like the ML estimator, which are required to lie in M,
in-model estimators. Estimators like the Bayesian predictive distribution will be
called out-model.

Let now P, be any estimator, in-model or out-model. Let P,» be the distribu-
tion estimated for a particular realized sample z". We can measure the closeness
of P to P+, the distribution in M closest to P* in KL-divergence, by considering
the extended KL divergence

D*(P,+||Pon) = Egps|—In Pou(Z) — [~ In P, (2)]).

We can now consider the expected KL divergence between P, and B, after ob-
serving a sample of length n:

EZ1 ----- Zp~P* [D*(Pu* pn)] (316)

In analogy to the definition of “ordinary” KL risk [4], we call (3.16) the extended
KL risk. We recognise the redundancy of the PML distribution as the accu-
mulated expected KL risk of our modified ML estimator (see Proposition 3.5.7
and Lemma 3.5.6). In exactly the same way as for PML, the redundancy of the
Bayesian code can be re-interpreted as the accumulated KL risk of the Bayesian
predictive distribution. With this interpretation, our Theorem 3.2.3 expresses
that under misspecification, the cumulative KL risk of the ML estimator differs
from the cumulative KL risk of the Bayes estimator by a term of ©(Inn). If our
conjecture that no in-model estimator can achieve redundancy 3 Inn-+0O(1) for all
p* and all P* with finite variance is true (Section 3.4.2), then it follows that the
KL risk for in-model estimators behaves in a fundamentally different way from
the KL risk for out-model estimators, and that out-model estimators are needed

to achieve the optimal constant ¢ = 1 in the redundancy %clnn +O(1).

3.5 Building Blocks of the Proof

The proof of Theorem 3.2.3 is based on Lemma 3.5.6 and Lemma 3.5.8. These
Lemmas are stated and proved in Sections 3.5.2 and 3.5.3, respectively. The proofs
of Theorem 3.2.3 and Theorem 3.3.1, as well as the proof of both Lemmas, are
based on a number of generally useful results about probabilities and expectations
of deviations between the average and the mean of a random variable. We first
list list these deviation-related results.

3.5.1 Results about Deviations between Average and Mean

Lemma 3.5.1. Let X, X, Xo, ... be i.i.d. with mean 0. Then E [(ZL Xi)Q} =
nvar(X).
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Proof. The lemma is clearly true for n = 0. Suppose it is true for some n.

Abbreviate S, = > ", X;. We have E[S,] = > EX = 0. Now we find
E[$2,] = E [(Sn +X) } = E[S?] + 2E[S,) EX + E[X?] = (n + 1)var(X).
The proof follows by induction. O]

Theorem 3.5.2. Let X, Xy,... be i.i.d. random wvariables, define fi, = (ng -
zo + Yoiy Xi)/(n 4 no) and p* = E[X]. If varX < oo, then E [(fi, — p*)?] =
O((n+1)72) +var(X)/(n+1).

Proof. We define Y; := X; — u*; this can be seen as a new sequence of i.i.d.
random variables with mean 0 and varY = varX. We also set yy := x¢ — p*. Now
we have:

e | P A R

= F (no«yO)Q—i—Qno-yOZYi—i- ZY; (n+n0)’2
i=1 i=1

2

O((n+1)7%)+E ZY (n+mno)~"

= O((n+1)7%) +nvar(Y)(n + ng)
O((n+1)7?) +var(X)/(n+1),

—
*
~

where (x) follows by Lemma 3.5.1. O
The following theorem is of some independent interest.

Theorem 3.5.3. Suppose X, X1, X5, ... are i.i.d. with mean 0. If the first k € N
k

moments of X exist, then we have Then E [(Z?Zl X,)k] =0 (nL§J>

Remark It follows as a special case of Theorem 2 of [98] that £ [| Y"1 | X;|*] =

O(ng) which almost proves this lemma and which would in fact be sufficient for
our purposes. We use this lemma instead which has an elementary proof.

Proof. We have:

E ixi _EZ ZX Xi| => > E[X; - X,].

ii=1 =1 =1 ip=1
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We define the frequency sequence of a term to be the sequence of exponents of
the different random variables in the term, in decreasing order. For a frequency
sequence fi,..., fm, we have 7" f; = k. Furthermore, using independence of
the different random variables, we can rewrite E[X;, --- X;,] = [[I", E[X] so
the value of each term is determined by its frequency sequence. By computing
the number of terms that share a particular frequency sequence, we obtain:

£0) ] £ 0 e

[ —" i=1

To determine the asymptotic behaviour, first observe that the frequency sequence
fi,--., fm of which the contribution grows fastest in n is the longest sequence,
since for that sequence the value of (rZ) is maximised as n — oco. However, since
the mean is zero, we can discard all sequences with an element 1, because the
for those sequences we have [[", E[X/] = 0 so they contribute nothing to the
expectation. Under this constraint, we obtain the longest sequence for even k by

setting f; = 2 for all 1 < ¢ < m; for odd k by setting f; = 3 and f; = 2 for

all 2 < ¢ < m; in both cases we have m = EJ The number of terms grows

as (") < n™/ml = O(n™); for m = L%J we obtain the upper bound O(nLgJ)

The number of frequency sequences is finite and does not depend on n; since the
contribution of each one is O (nLgJ ), so must be the sum. O

Theorem 3.5.4. Let X, Xy,... be i.i.d. random wvariables, define fi, = (ng -

To+ Yoy Xi)/(n+ng) and p* = E[X]. If the first k moments of X exist, then
. . [k

El(jtn — )] = O™ 2]).

Proof. The proof is similar to the proof for Theorem 3.5.2. We define Y; =

X, — p*; this can be seen as a new sequence of i.i.d. random variables with mean

0, and yg := o — 1*. Now we have:

k—p

= 0 <n_k> é (;) (no - yo)? - O (n“%”J) :

In the last step we used Theorem 3.5.3 to bound the expectation. We sum k + 1

terms of which the term for p = 0 grows fastest in n, so the expression is O(n~ 5] )
as required. [l
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Theorem 3.5.4 concerns the expectation of the deviation of fi,. We also need
a bound on the probability of large deviations. To do that we have the following
separate theorem:

Theorem 3.5.5. Let X, X, ... be i.i.d. random variables, define i, := (ng-xo+
Yo Xi)/(n+ng) and p* = E[X]. Let k € {0,2,4,...}. If the first k moments

exists then P(|fi, — p*| > 0) = O (n_%é_’“)
Proof.
* ~ * _ * N *\k k
P (|ji = 2 6) = P (o =) 2 6")
< FE [(ﬂn - u*)k} 5% (by Markov’s inequality)

=0 (n‘gé_k> (by Theorem 3.5.4) O

3.5.2 Lemma 3.5.6: Redundancy for Exponential Families

Lemma 3.5.6. Let U be a PML distribution model and M be an exponential
famaly as in Theorem 3.2.3. We have

n—1
R UMn) =) E DB Bl
i=0 M7

(Here, the notation ji; ~ P* means that we take the expectation with respect to
P* over data sequences of length i, of which [i; is a function.)

Proof. We have:

In

= arg min D (P,
o

arg min Ep+ [—In P,(X")] = argmin Ep- )

I j

Pu*(Xn)
Bu(X™)

In the last step we used Proposition 3.5.7 below. The divergence is minimised
when p = p* [48], so we find that:

R(P*, U, M,n) = Ep<[~InU(X")] = Ep<[—In P« (X")] = Ep- {ln %}
- P (X —
= Ep- Zl Z P;EX =2 .E, [D(P, || P)] -

(3.17)

Here, the last step again follows from Proposition 3.5.7. O]
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Proposition 3.5.7. Let X ~ P* with mean p*, and let P, index an exponential
family with sufficient statistic X, so that P, exists. We have:

Ep- {_ In %}%ﬂ = D(P,-

Proof. Let n(-) denote the function mapping parameters in the mean value pa-
rameterisation to the natural parameterisation. (It is the inverse of the function
(+) which was introduced in the discussion of exponential families.) By working
out both sides of the equation we find that they both reduce to:

N )"+ Zn(p*)) —n(@)u" —InZ(n(0)). O

Py)

3.5.3 Lemma 3.5.8: Convergence of the sum of the re-
mainder terms

Lemma 3.5.8. Let R(n) be defined as in (3.10). Then

Proof. We omit irrelevant constants. We abbreviate ddk?D(Pu* P,) = DW(p) as
in the proof of Theorem 3.2.3. First we consider the third order term. We write
Es,~p+ to indicate that we take the expectation over data which is distributed
according to P*, of which ¢; is a function. We use Theorem 3.5.4 to bound the
expectation of ¢;°; under the condition that the first three moments exist, which
is assumed to be the case, we obtain:

—_
—_

n—1 n—

B [5°D9 ()] = D) Y Bl = D9 () 3o 0(( -+ 1)) = 0(1).

§;~P*

n—

Il
=)
I
)

% =0 %

(The constants implicit in the big-ohs are the same across terms.)

The fourth order term is more involved, because D™ (1) is not necessarily
constant across terms. To compute it we first distinguish a number of regions in
the value space of §;: let A_ = (—00,0) and let Ay = [0,a) for some constant
value a > 0. If the individual outcomes X are bounded on the right hand side
by a value g then we require that a < g and we define A; = [a, g); otherwise we
define A; =[a+j—1,a+j) for j > 1. Now we must establish convergence of:

|
—

n

n—1
E [5,.41)(4)(;11-)} =YY Pien) B [6DYG) |6 €A,
i=0 j R

i~ P*

Il
o

(2

If we can establish that the sum converges for all regions A; for 7 > 0, then we
can use a symmetrical argument to establish convergence for A_ as well, so it
suffices if we restrict attention to j > 0. First we show convergence for A,. In
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this case, the basic idea is that since the remainder D®(ji;) is well-defined over
the interval p* < p < p* + a, we can bound it by its extremum on that interval,

Now we get:

namely m = sup,cp,« o ta) [P (i)
n—1
i=0

DY (ji;)

< il-E{5i4 } < mZE[aﬁ]. (3.18)

Using Theorem 3.5.4 we find that E[5;*] is O((i + 1)2) of which the sum con-
verges. Theorem 3.5.4 requires that the first four moments of P* exist, but this is
guaranteed to be the case: either the outcomes are bounded from both sides, in
which case all moments necessarily exist, or the existence of the required moments
is part of the condition on the main theorem.

Now we have to distinguish between the unbounded and bounded cases. First
we assume that the X are unbounded from above. In this case, we must show
convergence of:

—_

Y iP*éeA [5 DD (i) | 6; € A,

Jj=1

Il
=)

7

To show convergence, we bound the absolute value of this expression from above.
The J; in the expectation is at most a 4 j. Furthermore D™ (ji;) = O(u*~%) by
assumption on the main theorem, where y € [a + j — 1,a + j). Depending on
k, both boundaries could maximise this function, but it is easy to check that in
both cases the resulting function is O(j%7%). So we get:

\...)S;Z (18 2 a-+j = 1)(a+)'0G*).

Since we know from the condition on the main theorem that the first £ > 4
moments exist, we can apply Theorem 3.5.5 to find that P(|6;] > a+j—1) =
O~ [5] (a+j —1)7%) = O(i~%)O(j~*) (since k has to be even); plugging this
into the equation and simplifying we obtain » . O(i~ HY ;O(j7%). For k > 4 this
expression converges.

Now we consider the case where the outcomes are bounded from above by g.
This case is more complicated, since now we have made no extra assumptions as to
existence of the moments of P*. Of course, if the outcomes are bounded from both
sides, then all moments necessarily exist, but if the outcomes are unbounded from
below this may not be true. We use a trick to remedy this: we map all outcomes



3.6. Proof of Theorem 3.3.1 71

into a new domain in such a way that all moments of the transformed variables
are guaranteed to exist. Any constant 2~ defines a mapping ¢g(z) := max{z~,z}.
Furthermore we define the random variables Y; := ¢(X;), the initial outcome
Yo = (7o) and the mapped analogues of x* and fi;, respectively: p' is defined as
the mean of Y under P and ji; :== (yo - no + Z] 1 Y;)/ (i 4+ ng). Since fi; > fu;, we
can bound:

> P € ADE 8D i) | 6 € A

< P > a) sup [6;*DW (ji;
< Z —p' > a) sup ()
= ZP (| — p| > a+ p* — pl)g" sup |DW(ji;)]| .

5i€A1

By choosing #~ small enough, we can bring u! and p* arbitrarily close together;
in particular we can choose 2~ such that a + u* — u' > 0 so that application of
Theorem 3.5.5 is safe. It reveals that the summed probability is O(z”g). Now we
bound D™ (ji;) which is O((g — p)™™) for some m € N by the condition on the
main theorem. Here we use that ji; < fi;; the latter is maximised if all outcomes
equal the bound g, in which case the estimator equals g — no(g — o) /(i + ng) =

g — O(:™1). Putting all of this together, we get sup ’D(“)(ﬂi)‘ =0((g—p)™™) =
O(i™); if we plug this into the equation we obtain:

.<ZOZ?4O —gZO

w\?r

This converges if we choose k > m/2. As the construction of the mapping ¢(-)
ensures that all moments exist, the first m/2 moments certainly must exist. This
completes the proof. [l

3.6 Proof of Theorem 3.3.1

We use the same conventions as in the proof of Theorem 3.2.3. Specifically, we
concentrate on the random variables X, X5, ... rather than Z;, Z,,..., which
is justified by Equation (3.7). Let f(2") = —In P,-(2") — [inf,co, —In P,(z")].
Within this section, fi(z") is defined as the ordinary ML estimator. Note that,
if 2™ is such that its ML estimate is defined, then f(2") = —InP,(2") +
In Paem ().

Note d(n) = Ep«[f(X™)]. Let h(z) be the carrier of the exponential family
under consideration (see Definition 3.2.1). Without loss of generality, we assume



72 Chapter 3. Behaviour of Prequential Codes under Misspecification

h(z) > 0 for all z in the finite set X. Let a? = n~%/2. We can write

dn) = Ep-[f(X")] = 7w  Ep[f(X") ]| (0" = f1n)* > ]
+ (I=m) Ep[f(X") | (1" = jn)* < a], (3.19)

where 7, = P*((u* — i,)* > a?). We determine d(n) by bounding the two
terms on the right of (3.19). We start with the first term. Since X is bounded,
all moments of X exists under P*, so we can bound 7, using Theorem 3.5.5
with k = 8 and 0 = a, = n~ /4. (Note that the theorem in turn makes use of
Theorem 3.5.4 which remains valid when we use ny = 0.) This gives

T, = O(n™?). (3.20)
Note that for all 2 € X", we have
0< f(2") < sup f(2") < sup —InP,(2") < nC, (3.21)
.’E"eXn xneX’n

where C' is some constant. Here the first inequality follows because fi maximises
In Pjyzny(2™) over p; the second is immediate; the third follows because we are
dealing with discrete data, so that P, is a probability mass function, and P (z")
must be < 1. The final inequality follows because p* is in the interior of the pa-
rameter space, so that the natural parameter n(u*) is in the interior of the natural
parameter space. Because X is bounded and we assumed h(x) > 0 for all z € X,
it follows by the definition of exponential families that sup,c, —In P,«(z) < oo.

Together (3.20) and (3.21) show that the expression on the first line of (3.19)
converges to 0, so that (3.19) reduces to

d(n) = (1 = m) Ep-[f(X") | (0" = jin)* < a5] + O(n7"). (3.22)

To evaluate the term inside the expectation further we first Taylor approximate
f(x™) around fi,, = ji(z™), for given z" with (u* — ji,)? < a® = 1/y/n. We get

Fa™) = = = ) I P ) " = TG, (329

where [ is the Fisher information (as defined in the proof of the main theorem)
and p, lies in between p* and [, and depends on the data z™. Since the first
derivative of p at the ML estimate fi is 0, the first-order term is 0. Therefore
f(@™) = gn(p* = fin)*I (1), so that

1 . n * ~ 1

sng(n) inf  I(p) < Ep-[f(X") | (1" — f1n)* < aj] < Sng(n)  sup  I(p),
2 ME[M*—an7M*+an} ,u,E[p,*—an,,u*-i—an]
where we abbreviated g(n) := Ep«[(u* — fin)? | (1" — fin)* < a2]. Since I(p)
is smooth and positive, we can Taylor-approximate it as I(u*) + O(n_i), SO we
obtain the bound:

1

Enlf0C) | (" = ) < 2] =ngto) (316 + O ). (320
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To evaluate g(n), note that we have

Ep-[(p" — ﬂn)Z] = T Ep-[(u" — :‘ln)2 | (" — ﬂn)Q > ai] + (1 —m,)g(n). (3.25)

Using Theorem 3.5.2 with ny = 0 we rewrite the expectation on the left hand side
as varp= X /n. Subsequently reordering terms we obtain:

(varp-X)/n — m, Ep-[(1* — /ln)2 | (p* — ﬂn)Q > ai]
1—-m, '

g(n) = (3.26)

Plugging this into bound (3.24), and multiplying both sides by 1 — 7, we get:

(1= m)Ep-[f(X") | (1" — :‘ln)2 < CL?J =

(v X = B (= | (" = )? 2 1) (5706) + 07

Since X is bounded, the expectation on the right must lie between 0 and some
constant C. Using m, = O(n~?) and the fact that I(u*) = 1/varp,. X, we get

1 V&I‘p*X 1

(L= m) B [f(X") | (1" = fin)* < @3] +O0(n1).

2 V&I‘p#*X

The result follows if we combine this with (3.22).

3.7 Conclusion and Future Work

In this paper we established two theorems about the relative redundancy, defined
in Section 3.1:

1. A particular type of universal code, the prequential ML code or ML plug-in
code, exhibits behaviour that we found unexpected. While other important
universal codes such as the NML/Shtarkov and Bayesian codes, achieve a
regret of % In n, where n is the sample size, the prequential ML code achieves

a relative redundancy of %% Inn. (Sections 3.1 and 3.2.)
PH*
2. At least for finite sample spaces, the relative redundancy is very close to

the expected regret, the difference going to %% as the sample size in-
¥

creases (Section 3.3, Theorem 3.3.1). In future work, we hope to extend this
theorem to general 1-parameter exponential families with arbitrary sample
spaces.

There is a substantial amount of literature in which the regret for the prequen-
tial ML code is proven to grow with %ln n. While this may seem to contradict
our results, in fact it does not: In those articles, settings are considered where
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P* € M, and under such circumstances our own findings predict precisely that
behaviour.

The first result is robust with respect to slight variations in the definition of
the prequential ML code: in our framework the so-called “start-up problem” (the
unavailability of an ML estimate for the first few outcomes) is resolved by intro-
ducing fake initial outcomes. Our framework thus also covers prequential codes
that use other point estimators such as the Bayesian MAP and mean estimators
defined relative to a large class of reasonable priors. In Section 3.4.2 we conjecture
that no matter what in-model estimator is used, the prequential model cannot
yield a relative redundancy of %lnn independently of the variance of the data
generating distribution.



